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Abstract. We describe a software solution to the problem of automatic
parallelization of linear algebra code on multi-processor and multi-core
architectures. This solution relies on the definition of a domain spe-
cific language for matrix computations, a performance model for multi-
processor architectures and its implementation using C++ template meta-
programming. Experimental results asses this model and its implemen-
tation on sample computation kernels.

1 Introduction

Scientific computing applications have become more and more demanding in
terms of raw computing power. The old and easy solution of waiting for a new
generation of processors is no more viable as the rise of CPU power has been
slowing down. For a while, building clusters provided a realistic solution for
highly demanding applications like particle physics [1], financial modeling or
real time vision [2]. However, the multi-core technology [3, 4] changed the deal.
As time goes, the upcoming many-core era will feature ready-to-use, afford-
able high performance computing platforms in a simple desktop machine [5].
It also becomes clear that a growing audience of developers will have to mas-
ter these architectures. However, for non-specialists, writing efficient code for
such machines is non-trivial, as it usually involves dealing with low level APIs
(such as pthread or openmp). Such an approach makes code more error-prone,
hides domain specific algorithms and increases development cost. Several solu-
tions have been proposed to overcome this problem, ranging from dedicated
languages [6], libraries [7] or compiler extensions [8]. Those solutions, however,
suffer from various limitations because they have to find an acceptable trade-
off between efficiency and expressiveness. Trying to develop a generic tool for
parallelizing any kind of code on a multi-core machine while providing a high
level of expressiveness and efficiency is a daunting task. Instead, we think that
such tools can be developed for smaller, specific domains of applications, for
which accurate performance models and efficient parallelization strategies can
be developed. Our work focuses on defining such a domain and providing a user-
friendly tool performing automatic SMP parallelization of code, guided by an
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analytical performance model. This model, similar to the threshold system used
by OpenMP[8], is backed up by a high-level interface based on the linear algebra
syntax introduced by MatlabTM [9] as it can be easily parallelized following a
simple data-parallel scheme and fuels a large number of applications.. The tool
itself is a template-based, object oriented C++ library which is able, at the same
time, to provide performances on a par with hand-crafted, low-level C or C++
code on common architectures.

The paper is organized as follow : Section 2 presents our scientific computing
library, NT2, and its implementation. Section 3 defines a performance model
for SMP architectures, assesses its accuracy and shows how it can be integrated
into NT2. Experimental results are provided in Section 4 and we conclude by
proposing extensions of this work in Section 5.

2 NT2 : A High Performance Linear Algebra Library

NT2 is a C++ template library that aims at providing an efficient implemen-
tation of the most common linear algebra functions on multidimensional arrays
by using a refinement of E.V.E. [9] code generation engine. It offers an API
whose functionalities are close to Matlab, including template-based wrappers
to LAPACK and BLAS and transparent support for a large variety of optimiza-
tions : SIMD support for SSE2 and AltiVec, data tiling, loop unrolling, memory
management options, copy on write and statically sized matrix.

2.1 A Simple NT2 Use Case

For example, consider the Matlab code given below, performing a fixed-point
RGB to YUV transformation:

function [Y,U,V]=rgb2yuv(I)
R=I(:,:,1);
G=I(:,:,2);
B=I(:,:,3);

Y=min(bitshift(abs(2104*R+4130*G+802*B+135168),-13),235);
U=min(bitshift(abs(-1214*R-2384*G+3598*B+1052672),-13),240);
V=min(bitshift(abs(3598*R-3013*G-585*B+1052672),-13),240);

The code can be rewritten in a straightforward manner with NT2 as shown
below. Most functions are similar, the only difference being the need to declare
variables explicitly – the view container being used to prevent unwanted copy
of data slices – and to fix some Matlab syntax specificities – turning : into
for example. Table 1 reports the performances obtained with Matlab and NT2
versions, along with those obtained with a direct C version, for several image
sizes (from 128× 128 to 1024× 1024).
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void RGB2YUV(const matrix<int>& I, matrix<int>& y,
matrix<int>& u, matrix<int>& v )

{
view<int> R = I(_,_,1);
view<int> G = I(_,_,2);
view<int> B = I(_,_,3);

y=min(shr(abs(2104*R+4130*G+802*B+135168),13),235);
u=min(shr(abs(-1214*R-2384*G+3598*B+1052672),13),240);
v=min(shr(abs(3598*R-3013*G-585*B+1052672),13),240);
}

The relevant information is the speed-up measured between NT2 and Matlab
(ΓM ) and the overhead introduced by NT2 compared to the C implementation
(ωC) on a single core Power PC G5. Results show that NT2 is 40 to 100 times
faster than Matlab in interpreted mode, while the overhead introduced is never
greater than 5%.

N 128 256 512 1024

Matlab 44.6ms 175.8ms 487.5ms 1521.2ms

C 0.41ms 2.0ms 11.4ms 40.5ms

NT2 0.43ms 2.1ms 11.6ms 40.8ms

ΓM 103.71 83.7 42.0 37.3

ωC 4.89% 5% 1.75% 0.74%
Table 1. Performance of the RGB to YUV algorithm

2.2 NT2 Implementation

The implementation of NT2 is based upon a meta-programming technique known
as Expression Templates [10]. As shown above, this mechanism can virtually
eliminate the overhead classically associated to object-oriented implementations
of matrix and linear algebra libraries (comparable to hand written C or fortran
code). In the sequel, we give a short account on the principle of this technique.

Consider for example a simple expression, such as r=(a+b)/c, where a, b,
c and r are matrices of integers (matrix<int>). In an object-oriented setting,
the classical approach for evaluating this expression is to overload the + and /
operators. However, such an approach produces unnecessary loops and memory
copies (see [11, 9] for a complete account). The idea of expression templates is
to overload operators so that they return an object that reflects the structure of
the expression in its type. This has the effect of building an expression abstract
syntax tree as a first class object at compile-time.

Technically, the leaves of the abstract syntax tree will be matrices and a
custom class – node – will be used to encode binary operators:
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template <class O,class L,class R> struct node
{
node(const L& l,const R& r) : l_(l), r_(r) {}
L l_;
R r_;
};

This abstract syntax tree is obtained by overloading the classical operators
for all combinations of operand types. For example:

template<class T,class U> node<Add,matrix<T>,matrix<U> >
operator+( const matrix<T>& l,const matrix<U>& r )
{
return node<Add,matrix<T>,matrix<U> >(l,r);
}

With this approach, when evaluating the expression (a+b)*c, the compiler builds
a temporary object whose type is:

node<Div,node<Add,matrix<int>,matrix<int>>,matrix<int>>

where Div and Add are placeholder types encoding the operation associated to
a node. Then, we overload the = operator of the matrix class so that it actually
evaluates the assignment operator argument. In this operator, a for loop iterates
over the elements of each arrays which size are given by the size() method:

template<class T> template<class U>
matrix<T>& matrix<T>::operator=( const node<U>& tree )
{
for(int i=0;i<size();i++)
data[i] = Eval< node<U> >::evalAt(tree,i);

return *this;
}

Eval recursively parses the tree argument to produce the corresponding
residual code. Depending on the type of tree, it proceeds differently:

– When visiting a leaf, it evaluates the matrix element for the current index:

template<class T> struct Eval< matrix<T> >
{
typedef matrix<T> type;
static inline T Do(const type& m, size_t i) { return m[i]; }
};

– When visiting a binary node this function first evaluates the values of both
node’s siblings and passes the results to the embedded operator. The em-
bedded operator itself is a simple functor providing a class method called Do
that takes care of the actual computation:
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template<class O,class L,class R> struct Eval<node<O,L,R>>
{
typedef node<O,L,R> type;
static inline T Do(const type& n,size_t i)
{
return O::Compute(Eval<L>::Do(n.l_,i),Eval<R>::Do(n.r_,i));

}
};

Since all generated functions are candidates for inlining, most compilers are
able to optimize call overhead and empty structures so that the result is the same
as if we generated the code in place. For the previous example (r=(a+b)/c), the
generated code is:

for(int i=0;i<size();i++) r[i] = (a[i]+b[i])/c[i];

A closer look at the generated assembly code validates this process. This basic
technique can be enhanced by using type lists [12] to handle n-ary operators in a
seamless fashion and type traits [13] to perform correct return type computation.

3 An SMP-aware Implementation of NT2

The main motivation for an SMP-aware implementation of NT2 is that many
linear algebra operations are regular, exhibit a high potential parallelism and
can be easily parallelized by using a simple data-parallel approach in which each
core or processor1 applies the same operation on a subset of the matrix elements.

Parallelization can be beneficial, however, only when the amount of data to
be processed is above a certain threshold, because of the overhead of creating and
synchronizing threads in an SMP context. It is very easy to observe “negative”
speed-ups (i.e. < 1) if data sets are too small and/or overhead is too large on
a given architecture. This justifies the need for performance model by which it
should possible to evaluate, thanks to a compile time process, whether relying
on SMP parallelism at run-time is worthwhile or not. In this section, we present
such a performance model and show how it can serve parallelization purposes in
NT2.

3.1 A Performance Model for SMP Architectures

We propose a simple performance model based on a simple interpretation of SMP
speed-up Γ = τs

τp
, where τs and τp are the sequential and parallel execution times.

τs can be defined as the sum of the computation time and the memory access
time :

τs = N · (ψc + ψm)

1 We refer to cores or processors as processing elements or PEs.
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where N is the size of the data to process (the matrix size), ψc is the time
spent in computation per element and ψm the time spent in memory access per
element. Similarly, we can define τp as

τp = N · (ψc
P

+ ψm) + ω

where P is the number of PEs in the considered architecture and ω the overhead
introduced by the parallelization process. In this model, we assume that all PEs
share a common bus to the main memory, thus forcing the memory access to
be serialized and that, for a given architecture, the end user will always use all
the PEs available, meaning that ω corresponds to the overhead of starting and
handling P threads. Hence :

Γ =
(ψc + ψm)

(ψc

P + ψm) + ω/N

So we have:

Γ > 1 ⇐⇒ N >
P

P − 1
· ω
ψc

To check whether it is worthwhile to trigger SMP execution, we therefore
only have to compare N to the threshold N∗ = P

P−1 ·
ω
ψc

.

To assess this model, we measured ω once and for all and ψc for various basic
operations (addition, division, cosinus, . . . ) and derived a theoretical value for
N∗ (N∗theor) for these operations. Since we do not want the model parameters
to depend on cache effects, we performed the measure of ψc on a data set whose
size was made to fit into the L1 cache of the processor. We then obtained an
experimental value of N∗ (N∗exp) by just running an SMP version of the code
and observing when the speed-up got above 1. Results are summarized in ta-
ble 2, where δ is the relative error between the theoretically and experimentally
determined value of the N∗ threshold on a dual processor PowerPC G5 (P = 2)
on which ω has been evaluated to 366000 cycles.

ψc N∗theor N∗exp δ

Addition

0.03 24400000 23040000 5.9%

Division

7 104572 99328 5.2%

Cosinus

124.74 5869 5632 4.2%
Table 2. Comparison of experimental results with our prediction model.

Despite the very simple nature of the model, threshold values are estimated
within a 6% error margin, which is fairly acceptable. Moreover, this predicted
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threshold is always above the real one, meaning that the SMP parallelization
will always be triggered when the resulting speed-up is greater than one. This
overestimation is due to the fact that we purposely don’t take into account the
way compilers may reschedule or optimize instructions within our loop nests.

3.2 Meta-programming the Parallelization Heuristic

To integrate the analytical performance model to the NT2 library, we have

1. to compute, at compile time, ψc for any expression, and N∗;
2. to generate sequential or SMP residual code depending on the actual value

of N .

The first step is performed by decorating the abstract syntax tree generated
by the expression templates with information relative to the cost of operator
nodes, so that the total cost ψc of an expression can be computed by accumulat-
ing costs of basic operations during a simple tree traversal. In practice, the values
of ψc for every function supported by the library are evaluated and stored into
a header file generated by a separate application run off-line. This application
proceeds as follow:

– ω is evaluated by timing a group of P threads performing no computation;
– For each operation, the associated ψc is evaluated by benchmarking it for

each supported numeric types (e.g. char,short,long,float, etc...) on a data
block whose size is computed to fit in the CPU L1 cache. This ensures that
all estimated ψc values are indeed independent of N .

– A header file containing the value of ω and, for each basic operation, a
header file containing a structure encoding the value of ψc for each supported
type 2. Those constants, for precision purpose, are stored in hundredths. For
example, here is a excerpt of the header associated to the cos function
specialized for double precision values (whith ψc = 124.74):

template<> struct cost<Cos, double> : int_<12474> {};

The second step is performed when expressions are actually evaluated by
the overloaded operator= of the matrix class, as illustrated in the following
listing. The various static values needed to decide if parallelization is worth
to be triggered are gathered at lines 4-6. A dynamic test is then performed
(line 8). As all the required values are static, a single integer comparison is
performed at run-time. This test either starts a thread group (line 9) or use a
single thread loop (lines 11) to evaluate the expression. The thread template
class performs boundaries computation, spawns the threads and takes care of
threads synchronization using the BOOST::Thread encapsulation of pthread.

2 Technically, these constants are encoded as BOOST::MPL[14, 15] static integral con-
stants.
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1 template <class T> template <class U>
2 matrix <T>& operator =( const node <U>& tree )
3 {
4 const size_t proc = config ::proc:: value; // Nbr of PEs
5 const size_t num = proc*config :: omega::value; // P*omega
6 const_size_t den = (proc -1)*node <U>:: cost::value; // (P -1)*psi_c
7

8 if( tree.size()*den > num ) // Check if N > P*omega /(P -1)*psi_c
9 thread <proc >:: Eval(tree , this);

10 else
11 for(int i=0;i<size();i++) data[i] = tree.eval(i);
12 return *this;
13 }

4 Experimental Results

Experimental results for this implementation are given below. We measured the
speed-up for SMP implementation of two applications of increasing complex-
ity (the term ψc reflects this complexity): image difference and a trigonometric
computation involving cos and exponential. The target platforms are:

– a 2x2.5GHz Mac Book Pro with 1 Gb of memory running MAC OS X 10.5;
– a 4x2.4GHz Intel Quad Core Q6600 with 4Gb of memory running Windows

XP.

Image difference is performed on 8 bits array. The associated code is:

delta = abs(im1 - im2)

For this code, our performance predictor evaluates that ψc = 4.75, N∗dual =
154106, N∗quad = 298443. Experimental results are given in table 3 in which the
rows Naive speed-up and NT2 speed-up respectively give the the speed-up – com-
pared to single threaded C code – obtained with a hand-coded C multi-threaded
version of the application and with the NT2 version of the same application.

N 28 210 212 214 216 218 220

Dual Core

Naive speed-up 0.003 0.01 0.05 0.19 0.59 1.26 1.74
NT2 speed-up 1.00 1.00 1.00 1.00 1.00 1.24 1.72

Quad Core

Naive speed-up 0.0011 0.0046 0.02 0.07 0.27 0.91 2.16
NT2 speed-up 1.00 1.00 1.00 1.01 1.00 1.01 2.14

Table 3. Speed-up benchmark for the image diffence application

For the second application, the associated code is:

val = cos(z) - 0.5*( exp(i()*z) + exp(-i()*z) ) )

For this code, our performance predictor evaluates that ψc = 660.02, N∗dual =
1110, N∗quad = 2149. Experimental results are given in table 4.
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N 28 210 212 214 216 218 220

Dual Core

Naive speed-up 0.37 0.96 1.57 1.87 1.97 1.98 1.99
NT2 speed-up 1.01 1.01 1.55 1.85 1.96 1.98 1.99

Quad Core

Naive speed-up 0.15 0.55 1.55 2.87 3.64 3.90 3.98
NT2 speed-up 1.01 1.00 1.50 2.83 3.62 3.88 3.98

Table 4. Speed-up benchmark for the trigonometric application

4.1 Discussion

Those results demonstrate the following points:

– The model experimentally scales well with the number of PEs;
– The estimated N∗ value is correct even for complex expressions;
– For the first application, speed-up is only obtained for large values of N ,

because of the low ψc value. This is detected by NT2, which correctly inhibits
SMP parallelization when the actual N value is below this threshold;

– When NT2 triggers SMP parallelization, the measured speed-up is within a
5% margin of the hand-crafted code speed-up.

5 Conclusion

In this paper we introduced the need to provide a SMP-aware scientific comput-
ing library. We presented NT2 as a solution to the problem of efficient scientific
computing in C++ and exposed the technical challenges to overcome when trying
to provide a proper SMP parallelization process for such a library.

Our solution was to define a performance model for SMP computa-
tions that is able to predict if an expression is worth parallelizing. Then, we
proposed an SMP-aware implementation of NT2, taking advantage of its in-
ner meta-programmed core to statically detect expressions to parallelize.
Experimental results showed that our model, despite its simplicity, was precise
enough to trigger parallelization only when needed and provide a significant
speed-up for various computation kernels on various multi-core architecture.

Work in progress includes fine tuning the prediction model to target emer-
gent many-core architectures like the IBM/SONY/TOSHIBA CELL processor.
Future work could target the TILERA TILE64 or the upcoming Intel Polaris 80.
Regarding the cost model, an important issue would be to extend it to deal with
situations where complexity depends non-linearly on the data size N . Moreover,
in the case of many-core architectures, it can be worth to use only a subset
of the available cores for NT2 computations (as several concurrent applications
can run on the platform). In this case, a challenging question is whether the cost
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model can be adapted to predict an optimal size for this subset. Finally, and a on
more longer term, we are contemplating the possibility of targeting distributed
memory architectures, by providing a message-based implementation model for
NT2. Our ultimate goal would be the automatic parallelization of linear algebra
code on heterogeneous architectures starting from a single NT2 source, adapted
from a Matlab application.
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