
The CImg Library and G’MIC
Open-Source Toolboxes for Image Processing at Different Le vels

David Tschumperlé

{ Image Team - GREYC Laboratory (CNRS UMR 6072) - Caen / France}

Séminaire LRDE, Paris / France, Octobre 2009.

Talk outline

• Context and Philosophy : Research in Image Processing

• “Low-level” use (C++) : The CImg Library

• “Middle-level” use (script) : G’MIC

• “High-level” use : Providing GUI, and results in real applications

Talk outline

⇒ Context and Philosophy : Research in Image Processing

• “Low-level” use (C++) : The CImg Library

• “Middle-level” use (script) : G’MIC

• “High-level” use : Providing GUI, and results in real applications

Context : Research in Image Processing

• Fact 1 : The image processing research world is wide .
It is composed of many different people, with different scientific backgrounds :

Context : Research in Image Processing

• Fact 1 : The image processing research world is wide .
It is composed of many different people, with different scientific backgrounds :

Mathematicians

Context : Research in Image Processing

• Fact 1 : The image processing research world is wide .
It is composed of many different people, with different scientific backgrounds :

Mathematicians Physicists

Context : Research in Image Processing

• Fact 1 : The image processing research world is wide .
It is composed of many different people, with different scientific backgrounds :

Mathematicians Physicists

Computer Scientists

Context : Research in Image Processing

• Fact 1 : The image processing research world is wide .
It is composed of many different people, with different scientific backgrounds :

Mathematicians Physicists

Computer Scientists Biologists

Context : Research in Image Processing

• Fact 1 : The image processing research world is wide .
It is composed of many different people, with different scientific backgrounds :

Mathematicians Physicists

Computer Scientists Biologists(and others)....

• Fact 2 : These different people work on images for various reasons .
Photography, medical imaging, astronomy, robot vision, fluid dynamics, etc.

Context : Research in Image Processing

• Fact 1 : The image processing research world is wide .
It is composed of many different people, with different scientific backgrounds :

Mathematicians Physicists

Computer Scientists Biologists(and others)....

• Fact 2 : These different people work on images for various reasons .
Photography, medical imaging, astronomy, robot vision, fluid dynamics, etc.

=⇒ The numbers of considered problems and image datasets are actually huge .

Context : Problematic

⇒ How to design image processing tools which can be helpful for these scientists ?

Context : Problematic

⇒ How to design image processing tools which can be helpful for these scientists ?

Should provide useful, classical and all-purpose algorithms.

Context : Problematic

⇒ How to design image processing tools which can be helpful for these scientists ?

Should provide useful, classical and all-purpose algorithms.

Should be easy to use, to understand, even for non-computer geeks.

Context : Problematic

⇒ How to design image processing tools which can be helpful for these scientists ?

Should provide useful, classical and all-purpose algorithms.

Should be easy to use, to understand, even for non-computer geeks.

Should be generic enough to serve for a wide variety of applications.

Context : Problematic

⇒ How to design image processing tools which can be helpful for these scientists ?

Should provide useful, classical and all-purpose algorithms.

Should be easy to use, to understand, even for non-computer geeks.

Should be generic enough to serve for a wide variety of applications.

Should be easy to spread from/to any computer.

Context : Problematic

⇒ How to design image processing tools which can be helpful for these scientists ?

Should provide useful, classical and all-purpose algorithms.

Should be easy to use, to understand, even for non-computer geeks.

Should be generic enough to serve for a wide variety of applications.

Should be easy to spread from/to any computer.

Should be compatible with a scientific spirit, i.e. can be used,
modified and distributed by anyone, without hard restrictions.
(6= proprietary software)

Context : About genericity of images

• Fact 3 : Digital Images are generic objects by nature .

• On a computer, image data are usually stored as a discrete array of values
(pixels or voxels).

Context : About genericity of images

• Acquired digital images may be of different types :

– Domain dimensions : 2D (static image), 2D + t (image sequence), 3D

(volumetric image), 3D + t (sequence of volumetric images), ...

Context : About genericity of images

• Acquired digital images may be of different types :

– Domain dimensions : 2D (static image), 2D + t (image sequence), 3D

(volumetric image), 3D + t (sequence of volumetric images), ...

– Pixel dimensions : Pixels can be scalars, colors, N −D vectors, matrices, ...

(a) I1 : W × H → [0, 255]3 (b) I2 : W × H × D → [0, 65535]32 (c) I3 : W × H × T → [0, 4095]

Context : About genericity of images

• Acquired digital images may be of different types :

– Domain dimensions : 2D (static image), 2D + t (image sequence), 3D

(volumetric image), 3D + t (sequence of volumetric images), ...

– Pixel dimensions : Pixels can be scalars, colors, N −D vectors, matrices, ...

– Pixel value range : depends on the sensors used for acquisition, can be N-bits
(usually 8,16,24,32...), sometimes (often) float-valued.

Context : About genericity of images

• Acquired digital images may be of different types :

– Domain dimensions : 2D (static image), 2D + t (image sequence), 3D

(volumetric image), 3D + t (sequence of volumetric images), ...

– Pixel dimensions : Pixels can be scalars, colors, N −D vectors, matrices, ...

– Pixel value range : depends on the sensors used for acquisition, can be N-bits
(usually 8,16,24,32...), sometimes (often) float-valued.

– Type of sensor grid : Square, Rectangular, Octagonal, Graph, ...

Context : About genericity of images

• Acquired digital images may be of different types :

– Domain dimensions : 2D (static image), 2D + t (image sequence), 3D

(volumetric image), 3D + t (sequence of volumetric images), ...

– Pixel dimensions : Pixels can be scalars, colors, N −D vectors, matrices, ...

– Pixel value range : depends on the sensors used for acquisition, can be N-bits
(usually 8,16,24,32...), sometimes (often) float-valued.

– Type of sensor grid : Square, Rectangular, Octagonal, Graph, ...

• All these different image data are digitally stored using specific file formats :

– PNG, JPEG, BMP, TIFF, TGA, DICOM, ANALYZE, ...

Context : About genericity of images

• Fact 4 : Image formats are just “technical” solutions for storing arrays of pixels.
They hardly give informations about the image content itself.

• Image processing and analysis is mainly about algorithms not input/output.

Context : About genericity of images

• Fact 4 : Image formats are just “technical” solutions for storing arrays of pixels.
They hardly give informations about the image content itself.

• Image processing and analysis is mainly about algorithms not input/output.

• All images below are stored in PNG format :

⇒ An image processing library/software should never be “attached” to a particular
image format. Image formats are just a way to input/output pixel values.

Context : About genericity of algorithms

• Fact 5 : Most usual image processing algorithms are image type independant .

• e.g. : binarization of an image I : Ω → Γ by a threshold ǫ ∈ R.

I : Ω → {0, 1} such that ∀p ∈ Ω, Ĩ(p) =

{

0 if ‖I(p)‖ < ǫ

1 if ‖I(p)‖ >= ǫ

⇒ Implementing an image processing algorithm should be independant from the
image format and coding.

CImg and G’MIC Philosophy

⇒ We propose CImg and G’MIC, two small image processing toolboxes based on
these facts, which try to fit these constraints :

Provides useful, classical and must-have algorithms.

Easy to use, to understand, at two different scales (C++ and script).

Generic enough for a wide variety of applications (templates).

Easy to spread from/to any computer (portable to various OS).

Distributed under Open-Source licenses

Talk outline

• Context and Philosophy : Research in Image Processing

⇒ “Low-level” use (C++) : The CImg Library

• “Middle-level” use (script) : G’MIC

• “High-level” use : Providing GUI, and results in real applications

The CImg Library : Introduction

• What ? : An open-source C++ library aiming to simplify the development of
image processing algorithms for generic datasets (CeCILL-C License).

⇒ Originally designed for algorithm prototyping.

The CImg Library : Introduction

• What ? : An open-source C++ library aiming to simplify the development of
image processing algorithms for generic datasets (CeCILL-C License).

• For whom ? : Designed for Researchers and Students in Image Processing and
Computer Vision, having basic notions of C++.

⇒ Not intended for C++ gurus.

The CImg Library : Introduction

• What ? : An open-source C++ library aiming to simplify the development of
image processing algorithms for generic datasets (CeCILL-C License).

• For whom ? : Designed for Researchers and Students in Image Processing and
Computer Vision, having basic notions of C++.

• How ? : Defines a minimal set of C++ classes able to manipulate and process
image datasets. Uses template mechanisms to handle pixel value genericity.

⇒ Easy to apprehend.

The CImg Library : Introduction

• What ? : An open-source C++ library aiming to simplify the development of
image processing algorithms for generic datasets (CeCILL-C License).

• For whom ? : Designed for Researchers and Students in Image Processing and
Computer Vision, having basic notions of C++.

• How ? : Defines a minimal set of C++ classes able to manipulate and process
image datasets. Uses template mechanisms to handle pixel value genericity.

• When ? : Started in late 1999, the library is hosted on Sourceforge since
December 2003 (about 1200 visits and 100 downloads/day).http://img.soureforge.net/

The CImg Library : Characteristics

CImg is lightweight and easy to use :

• Easy to get : CImg is distributed as a package (≈ 8.7 Mo) containing the library
code (≈ 40000 lines), examples of use, documentations and resource files.

⇒ Intended to remain small in the future.

The CImg Library : Characteristics

CImg is lightweight and easy to use :

• Easy to get : CImg is distributed as a package (≈ 8.7 Mo) containing the library
code (≈ 40000 lines), examples of use, documentations and resource files.

• Easy to use : Using CImg requires only the include of a single file :#inlude �CImg.h� // Just do that...using namespae img library; // ...and you are ready to go

⇒ No complex installation required.

The CImg Library : Characteristics

CImg is lightweight and easy to use :

• Easy to get : CImg is distributed as a package (≈ 8.7 Mo) containing the library
code (≈ 40000 lines), examples of use, documentations and resource files.

• Easy to use : Using CImg requires only the include of a single file :#inlude �CImg.h� // Just do that...using namespae img library; // ...and you are ready to go

• Easy to understand : It defines only four C++ classes :CImg<T>, CImgList<T>, CImgDisplay, CImgExeption

⇒ Easy to apprehend.

The CImg Library : Characteristics

CImg is lightweight and easy to use :

• Easy to get : CImg is distributed as a package (≈ 8.7 Mo) containing the library
code (≈ 40000 lines), examples of use, documentations and resource files.

• Easy to use : Using CImg requires only the include of a single file :#inlude �CImg.h� // Just do that...using namespae img library; // ...and you are ready to go

• Easy to understand : It defines only four C++ classes :CImg<T>, CImgList<T>, CImgDisplay, CImgExeption

Image processing algorithms are methods of these classes :CImg<T>::blur(), CImgList<T>::insert(), CImgDisplay::resize(), ...

⇒ CImg Motto : KIS(S)S, Keep it small and (stupidly) simple.

The CImg Library : Characteristics

CImg is (sufficiently) generic :

• CImg implements static genericity by using the C++ template mechanism.
Keep-it-simple philosophy : One template parameter only !
=⇒ the type of the image pixel (bool, char, int, float, ...).

The CImg Library : Characteristics

CImg is (sufficiently) generic :

• CImg implements static genericity by using the C++ template mechanism.
Keep-it-simple philosophy : One template parameter only !
=⇒ the type of the image pixel (bool, char, int, float, ...).

• A CImg<T> instance can handle hyperspectral volumetric images
(4D = width×height×depth×spectrum).

The CImg Library : Characteristics

CImg is (sufficiently) generic :

• CImg implements static genericity by using the C++ template mechanism.
Keep-it-simple philosophy : One template parameter only !
=⇒ the type of the image pixel (bool, char, int, float, ...).

• A CImg<T> instance can handle hyperspectral volumetric images
(4D = width×height×depth×spectrum).

• A CImgList<T> instance can handle sequences or sets of 4D images.

The CImg Library : Characteristics

CImg is (sufficiently) generic :

• CImg implements static genericity by using the C++ template mechanism.
Keep-it-simple philosophy : One template parameter only !
=⇒ the type of the image pixel (bool, char, int, float, ...).

• A CImg<T> instance can handle hyperspectral volumetric images
(4D = width×height×depth×spectrum).

• A CImgList<T> instance can handle sequences or sets of 4D images.

• ... But , CImg is limited to images defined on regular rectangular grids , and
cannot handle image domains higher than 4 dimensions.

⇒ CImg covers actually most of the image types found in real world applications,
while remaining understandable by non computer-geeks.

CImg wants to avoid too much genericity...

• CImg is generic, but wants to avoid quirks/difficulties encountered by hyper-
generic libraries.

CImg wants to avoid too much genericity...

• CImg is generic, but wants to avoid quirks/difficulties encountered by hyper-
generic libraries.

• Discouraging for any average C++ programmers !! (i.e. most researchers....).

CImg wants to avoid too much genericity...

• CImg is generic, but wants to avoid quirks/difficulties encountered by hyper-
generic libraries.

• Discouraging for any average C++ programmers !! (i.e. most researchers....).

• What if I want to contribute with non-generic algorithms ?

CImg wants to avoid too much genericity...

• CImg is generic, but wants to avoid quirks/difficulties encountered by hyper-
generic libraries.

• Discouraging for any average C++ programmers !! (i.e. most researchers....).

• What if I want to contribute with non-generic algorithms ?

• Several API levels required to get both enough genericity and usability.

⇒ Requires too much development efforts, regarding the benefi ts.

The CImg Library : Overview of available functions

• Link to the documentation web page.

The CImg Library : Characteristics

CImg is multi-platform and extensible :

• CImg does not depend on many libraries.
It can be compiled only with the standard C++ libraries
(useful for embedded architectures).

• Successfully tested platforms : Win32, Linux, Solaris, *BSD, Mac OS X.

• CImg is extensible : External tools or libraries may be used to improve CImg
capabilities (ImageMagick, XMedcon, libpng, libjpeg, libtiff, libfftw3...), these tools
being freely available for any platform.

• CImg defines a simple plug-in mechanism to easily add your own functions to the
library core.

The CImg Library : Characteristics

Last but not least, CImg is very useful on a daily basis !

• CImg is able to read/write different image formats.

• CImg has lot of classical algorithms for image processing.

• CImg has an integrated parser of mathematical expressions.

• CImg has an integrated renderer of 3D objects.

• CImg has methods dedicated to data visualization.

• CImg has structure and methods to quickly create interactive windows.

• CImg is small and modulable enough to be integrated everywhere.

The CImg Library : Code example (1/5)#inlude "CImg.h"using namespae img_library;int main() {onst CImg<float>img1(256,256),img2("milla.bmp"),img3(256,256,1,3,"128 + 128*os(x*y*(1+)/40)",true);(img1,img2,img3).display();return 0;}

The CImg Library : Code example (2/5)#inlude "CImg.h"using namespae img_library;int main(int arg,har **argv) {onst CImg<>img("milla.bmp"),res = (img + "128 + 128*os(x*y*(1+)/40)).normalize(0,255);(img,res).display();return 0;}

The CImg Library : Code example (3/5)#inlude "CImg.h"using namespae img_library;int main(int arg,har **argv) {onst CImg<>img("milla.bmp"),olors = CImg<>::ontrast_LUT8(),res = img.get_norm().blur(1).quantize(4).label_regions().map(olors);(img,res).display();return 0;}

The CImg Library : Code example (4/5)#inlude "CImg.h"using namespae img_library;int main(int arg,har **argv) {CImg<> img("referene.inr");CImgDisplay disp(img,"3D volume");float olor[1℄ = { 1000 };CImgList<unsigned int> faes3d;onst CImg<> points3d = img.draw_fill(17,58,39,olor,1,30).blur(1).get_isosurfae3d(faes3d,900);CImg<unsigned har>().display_objet3d("3D brain",points3d,faes3d);return 0;}

The CImg Library : Code example (5/5)#inlude "CImg.h"using namespae img_library;int main(int arg,har **argv) {onst CImg<>img("milla.bmp"),hist = img.get_histogram(128,0,255),img2 = img.get_fill("255*((i/255)^1.7)",true),hist2 = img2.get_histogram(128,0,255);CImgDisplay disp((img,img2),"Images");(hist,hist2).get_append('v').display_graph("Histograms");return 0;}

More about the single-file library structure

• The core of the CImg code is all contained in a single header file CImg.h.

• It defies classical programming rules in C++ ! Are the developers stupid ?

More about the single-file library structure

• The core of the CImg code is all contained in a single header file CImg.h.

⇒ This is one technical solution to fit with technical constraints.

More about the single-file library structure

• The core of the CImg code is all contained in a single header file CImg.h.

⇒ This is one technical solution to fit with technical constraints.

• Question 1 :
Why not having a classical library structure based on header & binary object ?

More about the single-file library structure

• The core of the CImg code is all contained in a single header file CImg.h.

⇒ This is one technical solution to fit with technical constraints.

• Question 1 :
Why not having a classical library structure based on header & binary object ?

⇒ Because the library uses templates : The template type of used instanciated
objects are only known during the compilation phase, so one cannot anticipate
the types of the functions that will be required to compile one particular code.

⇒ It is quite common in C++ to put implementations of generic functions in headers
(e.g. STL).

More about the single-file library structure

• The core of the CImg code is all contained in a single header file CImg.h.

⇒ This is one technical solution to fit with technical constraints.

• Question 2 :
The number of possible template types are actually limited (bool, char, float, ...).
Why not compiling CImg methods for all possible types as an object/library file ?

More about the single-file library structure

• The core of the CImg code is all contained in a single header file CImg.h.

⇒ This is one technical solution to fit with technical constraints.

• Question 2 :
The number of possible template types are actually limited (bool, char, float, ...).
Why not compiling CImg methods for all possible types as an object/library file ?

⇒ Because it would be useless : Usually, less than 10% of the CImg methods are
used in a given program. Compilers know how to avoid compilation of unused
functions in the final binary code, so it remains small.

More about the single-file library structure

• The core of the CImg code is all contained in a single header file CImg.h.

⇒ This is one technical solution to fit with technical constraints.

• Question 2 :
The number of possible template types are actually limited (bool, char, float, ...).
Why not compiling CImg methods for all possible types as an object/library file ?

⇒ Because it would be useless : Usually, less than 10% of the CImg methods are
used in a given program. Compilers know how to avoid compilation of unused
functions in the final binary code, so it remains small.

⇒ Because it would be huge : CImg methods often take one or several template
images as parameters (e.g. CImg<T>::draw image()). Combinatorially speaking,
the number of functions to be compiled is gigantic.

More about the single-file library structure

• The core of the CImg code is all contained in a single header file CImg.h.

⇒ This is one technical solution to fit with technical constraints.

• Question 3 :
But, why having a big single file with all classes/namespaces inside ? Why not
splitting it as one header per class ?

More about the single-file library structure

• The core of the CImg code is all contained in a single header file CImg.h.

⇒ This is one technical solution to fit with technical constraints.

• Question 3 :
But, why having a big single file with all classes/namespaces inside ? Why not
splitting it as one header per class ?

⇒ Because CImg classes and namespaces are interdependent : Any code would
require the systematic inclusion of all these headers.

• This interdependence is due to the fact that algorithms are methods of the CImg
classes. It is not possible to apply an algorithm on another container (as the STL
is able to do for instance).

More about the single-file library structure

• The core of the CImg code is all contained in a single header file CImg.h.

⇒ This is one technical solution to fit with technical constraints.

• Question 3 :
But, why having a big single file with all classes/namespaces inside ? Why not
splitting it as one header per class ?

⇒ Because CImg classes and namespaces are interdependent : Any code would
require the systematic inclusion of all these headers.

⇒ Because CImg is a small toolkit and will remain as it. It contains only classical
image processing and does not intend to blow-up with billions of different
algorithms.

More about the single-file library structure

• The core of the CImg code is all contained in a single header file CImg.h.

⇒ This is one technical solution to fit with technical constraints.

• Question 3 :
But, why having a big single file with all classes/namespaces inside ? Why not
splitting it as one header per class ?

⇒ Because CImg classes and namespaces are interdependent : Any code would
require the systematic inclusion of all these headers.

⇒ Because CImg is a small toolkit and will remain as it. It contains only classical
image processing and does not intend to blow-up with billions of different
algorithms.

⇒ Because splitting a header file in several parts does not speed-up the compilation
process, nor ease the maintenance or add clarity to the source code.

More about the single-file library structure

• The core of the CImg code is all contained in a single header file CImg.h.

⇒ This is one technical solution to fit with technical constraints.

• Question 4 :
So, you don’t allow algorithm reusability in a generic library. Isn’t it a design flaw ?

More about the single-file library structure

• The core of the CImg code is all contained in a single header file CImg.h.

⇒ This is one technical solution to fit with technical constraints.

• Question 4 :
So, you don’t allow algorithm reusability in a generic library. Isn’t it a design flaw ?

⇒ Not at all. Different genericity levels can be considered : Genericity can be focused
on structures, algorithms, or both. CImg does not propose generic algorithms, but
algorithms working on a given set of generic structures.

More about the single-file library structure

• The core of the CImg code is all contained in a single header file CImg.h.

⇒ This is one technical solution to fit with technical constraints.

• Question 4 :
So, you don’t allow algorithm reusability in a generic library. Isn’t it a design flaw ?

⇒ Not at all. Different genericity levels can be considered : Genericity can be focused
on structures, algorithms, or both. CImg does not propose generic algorithms, but
algorithms working on a given set of generic structures.

⇒ Simplicity : Having algorithms as methods allows us to write code as :img.blur(3).mirror('x').rotate(90).save(�foo.jpg�);

instead ofsave(rotate(mirror(blur(img,3),'x'),90),�foo.jpg�);

Live demo

• Here is a quick live demo of CImg.
It illustrates some of the important characteristics of the CImg Library.

Talk outline

• Context and Philosophy : Research in Image Processing

• “Low-level” use (C++) : The CImg Library

⇒ “Middle-level” use (script) : G’MIC

• “High-level” use : Providing GUI, and results in real applications

G’MIC : Motivations

• Observation 1 : CImg requires (basic) C++ knowledge.
It eases the implementation of image algorithms from scratch, but is still hardly
usable by non C++ programmers.

G’MIC : Motivations

• Observation 1 : CImg requires (basic) C++ knowledge.
It eases the implementation of image algorithms from scratch, but is still hardly
usable by non C++ programmers.

• Observation 2 : When we get new image data, we often want to perform the same
basic operations on them (visualization, gradient, noise reduction, ...).

G’MIC : Motivations

• Observation 1 : CImg requires (basic) C++ knowledge.
It eases the implementation of image algorithms from scratch, but is still hardly
usable by non C++ programmers.

• Observation 2 : When we get new image data, we often want to perform the same
basic operations on them (visualization, gradient, noise reduction, ...).

• Observation 3 : It is not convenient to create C++ programs specifically for this
task (requires code edition, compilation time, ...).

G’MIC : Motivations

• Observation 1 : CImg requires (basic) C++ knowledge.
It eases the implementation of image algorithms from scratch, but is still hardly
usable by non C++ programmers.

• Observation 2 : When we get new image data, we often want to perform the same
basic operations on them (visualization, gradient, noise reduction, ...).

• Observation 3 : It is not convenient to create C++ programs specifically for this
task (requires code edition, compilation time, ...).

⇒ G’MIC defines a script language which interfaces the CImg functionalities.

⇒ No compilation required, most of the CImg features available.

⇒ G’MIC is a “middle-scale” tool for image processing.

G’MIC : Language properties

• G’MIC input/outputs are lists of numbered images (eq. to CImgList<T>).

• Each G’MIC instruction runs an image processing algorithm, or control the
program execution : -blur, -rgb2hsv, -isosurfae3d, -if, -endif ...

• A G’MIC program is interpreted as successive calls of CImg methods.

• Custom G’MIC functions can be written and recognized by the interpreter.

• The G’MIC interpreter can be called from the command line of from any external
project (provided as a library).

G’MIC : Examples of use (1/6)gmi ~/work/img/lena.jpg -blur 3 -sharpen 1000 -noise 30 -+ "'os(x/3)*30'"

G’MIC : Examples of use (2/6)gmi referene.inr --flood 23,53,30,50,1,1000 -flood[-2℄ 0,0,0,30,1,1000 -blur 1 -isosurfae3d 900-o3d[-2℄ 0.2 -olor3d[-1℄ 255,128,0 -+3d

G’MIC : Examples of use (3/6)gmi tunis.jpg -repeat 4 -smooth 30 -done -o tunis2.jpg

G’MIC : Examples of use (4/6)gmi -isosurfae3d "'sin(x*y*z)'",0,-10,-10,-10,10,10,10,128,128,64

G’MIC : Examples of use (5/6)gmi lena.jpg -penilbw 0.3 -o gmi_lena1.jpg; gmi lena.jpg -ubism 160 -o gmi_lena3.jpggmi lena.jpg -flower 10 -o gmi_lena4.jpg; gmi lena.jpg -stenibw 30 -o gmi_lena2.jpg

G’MIC : Examples of use (6/6)gmi milla.bmp --f '255*(i/255)^1.7' -histogram 128,0,255 -a -plot
is the G’MIC equivalent code to#inlude "CImg.h"using namespae img_library;int main(int arg,har **argv) {onst CImg<>img("milla.bmp"),hist = img.get_histogram(128,0,255),img2 = img.get_fill("255*((i/255)^1.7)",true),hist2 = img2.get_histogram(128,0,255);(hist,hist2).get_append('').display_graph("Histograms");return 0;}

Writting a complex G’MIC function : Fish-Eye demo-v- -type float-if {�#>0} -a x -n 0,255 -r2dy 220 -else120,90,1,3 -rand[-1℄ 0,255 -plasma[-1℄ 0.3,3 -n 0,255-text " G'MIC\nFISH-EYE\n DEMO",15,13,24,1,255 -resize2x -blur 5 -sharpen 1000-f i+150-4*abs(y-h/2) -[-1℄ 0,255 -frame_fuzzy[-1℄ 15,10,15,1.5,0 -to_rgb[-1℄-endif-torus3d 20,6 -ol3d[-1℄ {?(30,255)},{?(30,255)},{?(30,255)} --rot3d[-1℄ 1,0,0,90-ol3d[-1℄ {?(30,255)},{?(30,255)},{?(30,255)} -+3d[-1℄ 15 -+3d[-2,-1℄ -db3d 0 -3d[-1℄-p[0℄ 30 -w[-2℄ {2*�{-2,w}},{2*�{-2,h}},0,0-repeat 100000-wait 40-if {�{!,b}==1} -p[0℄ {min(80,�{*,0}+8)} -pp[1℄ -endif-if {�{!,b}==2} -p[0℄ {max(3,�{*,0}-8)} -pp[1℄ -endif--objet3d[-2℄ [-1℄,{50+30*os(�{>,-1}/20)}%,{50+30*sin(�{>,-1}/31)}%,{50+330*sin(�{>,-1}/19)},0.7,0-rot3d[-2℄ 1,0.2,0.6,3-if {�{!,x}>=0}-fish_eye[-1℄ {�{!,x}*100/�{!,w}},{�{!,y}*100/�{!,h}},�{*,0}-endif-name[-1℄ "Fish-Eye Demo" -w[-1℄ -rm[-1℄-if {"�!==0 || �{!,ESC} || �{!,Q}"} -rm[-2,-1℄ -pp[0℄ -w 0 -v+ -return -endif-done

More G’MIC scripts : Mandelbrot Explorer and Spline Editorgmi -x_splinegmi -x_mandelbrot

Talk outline

• Context and Philosophy : Research in Image Processing

• “Low-level” use (C++) : The CImg Library

• “Middle-level” use (script) : G’MIC

⇒ “High-level” use : Providing GUI, and results in real applic ations

G’MIC : Plug-in for GIMP

• GIMP is an open-source image retouching software with plug-in capabilities.

• The G’MIC interpreter has been embedded in a plug-in for GIMP.

⇒ All G’MIC functionalities are available directly from the GIMP interface.

⇒ Management of multiple image input/output via the image layers.

Two CImg applications

on different modalities

Application of CImg<T>::blur anisotropi()
“Babouin” (détail) - 512x512 - (1 iter., 19s)

Application of CImg<T>::blur anisotropi()

“Tunisie” - 555x367

Application of CImg<T>::blur anisotropi()

“Tunisie” - 555x367 - (1 iter., 11s)

Application of CImg<T>::blur anisotropi()

“Tunisie” - 555x367 - (1 iter., 11s)

Application of CImg<T>::blur anisotropi()

“Bébé” - 400x375

Application of CImg<T>::blur anisotropi()

“Bébé” - 400x375 - (2 iter, 5.8s)

Application of CImg<T>::blur anisotropi()
“Bébé” - 400x375 - (2 iter, 5.8s)

Application of CImg<T>::blur anisotropi()

“Van Gogh”

Application of CImg<T>::blur anisotropi()

“Van Gogh” - (1 iter, 5.122s).

Application of CImg<T>::blur anisotropi()
“Fleurs” (JPEG, 10% quality).

Application of CImg<T>::blur anisotropi()
“Corail” (1 iter.)

Application : Image Inpainting with CImg

“Bird”, original color image.

Application : Image Inpainting with CImg

“Bird”, inpainting mask definition.

Application : Image Inpainting with CImg

“Bird”, inpainted with PDE-based diffusion.

Application : Image Inpainting with CImg

“Chloé au zoo”, original color image.

Application : Image Inpainting with CImg

“Chloé au zoo”, inpainting mask definition.

Application : Image Inpainting with CImg

“Chloé au zoo”, inpainted with PDE-based diffusion.

Application : Image Inpainting and Reconstruction with CIm g

“Parrot”

500x500

(200 iter.,

4m11s)

“Owl”

320x246

(10 iter., 1m01s)

Application : Image Resizing with CImg

“Nude” - (1 iter., 20s)

Application : Image Resizing with CImg

“Forest” - (1 iter., 5s)

Application : Image Resizing with CImg

(c) Details from the image resized by bicubic interpolation.

(d) Details from the image resized by a non-linear regularization PDE.

Application : Image Resizing with CImg

(a) Original

color image

(b) Bloc Interpolation (c) Linear Interpolation (d) Bicubic Interpolation (e) PDE/LIC Interpolation

Application for DT-MRI Images processing : Principle

• MRI-based image modality measuring water diffusion within tissues.

• Acquisition of several raw images under different magnetic field magnitudes and
orientations.

DT-MRI Images : Principle (2)

• A volume of Diffusion Tensors can be further estimated from these raw images.

• Diffusion tensors represent gaussian models of the water diffusion in the voxels,
and are 3x3 symmetric and positive-definite matrices.

• Representation of a DT-MRI image with a volume of ellipsoids :

DT-MRI Images : Principle (3)

• DT-MRI images give structural informations about fiber networks within tissues.

• Fiber reconstruction can be performed by tracking the principal tensor directions.

• Used for tractography.

DT-MRI Estimation : Variational approach

• Robust tensor estimation by minimizing the following criterion :

min
D∈P(3)

∫

Ω

n
∑

k=1

ψ

(
∣

∣

∣

∣

ln

(

S0

Sk

)

− gT
k Dgk

∣

∣

∣

∣

)

+ α φ(‖∇D‖) dΩ

• The corresponding gradient descent that respect the positive-definite property of
the tensors is :

T(t=0) = Id

∂T

∂t
= (G + G

T)T2 + T
2(G + G

T)

where G corresponds to the unconstrained velocity matrix defined as : Gi,j =
∑n

k=1ψ
′
(|vk|)sign(vk)

(

gkg
T
k

)

i,j
+αdiv

(

φ
′
(‖∇T‖)
‖∇T‖ ∇Ti,j

)

, with vk = ln
(

S0
Sk

)

− gT
k Tgk.

⇒ Coded with CImg in less than 300 lines...

DT-MRI Visualization

• DTMRI dataset visualization and fibertracking code is distributed in the CImg
package (File examples/dtmri view.cpp, 823 lines).

Corpus Callosum Fiber Tracking

Conclusion and Links

• The CImg Library is a very small and pleasant C++ library that eases the coding
of image processing algorithms.http://img.soureforge.net/

• G’MIC is the script-based counterpart of CImg. It can be used for day-to-day
image processing needs.http://gmi.soureforge.net/

• These projects are Open-Source and can be used, modified and redistributed
without hard restrictions.

⇒ Generic (enough) libraries can do generic things !!

⇒ Small , open and easily embeddable libraries : can be integrated in third parties
applications.

The end

Thank you for your attention.

Time for questions if any ..

