
Fast Multipole Method
on the Cell Broadband Engine:

the Near Field Part

Pierre FORTIN, Jean-Luc LAMOTTE
LIP6 - Université Pierre et Marie Curie

Séminaire Performance et Généricité du LRDE

02 décembre 2009 - EPITA

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 1

Outline

1. The Cell B.E. and the Fast Multipole Method

2. The computation kernels

3. Single SPE computation

4. Multiple SPEs computation

5. Conclusion

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 2

The Cell B.E. and the Fast Multipole Method

Outline

1. The Cell B.E. and the Fast Multipole Method

2. The computation kernels

3. Single SPE computation

4. Multiple SPEs computation

5. Conclusion

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 3

The Cell B.E. and the Fast Multipole Method

The Cell Broadband Engine

Roadrunner
F June 2008: Petaflop barrier broken by the IBM Roadrunner computer
F 12240 Cells + 6120 Dual-core Opterons (2008)
F Cells⇒ over 96% of the 1.3 Pflop/s theoretical peak performance

The Cell Broadband Engine
F 1 general-purpose PowerPC core (PPE)
F 8 Synergistic Processing Elements (SPEs)

I specialized for high performance computing,
I independant fast local store (LS)
I explicit direct memory access (DMA): LS↔ Cell main memory

F 3 levels of parallelism:
I MPI multi-process parallelism
I multi-thread parallelism among the 8 SPEs
I SIMD (Single Instruction on Multiple Data) parallelism→ SPE vector units

Specific architecture
F Suitable for all applications and algorithms? (same question for GPUs. . .)

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 4

The Cell B.E. and the Fast Multipole Method

N-body problem

In The Landscape of Parallel Computing Research: A View from Berkeley
(Asanovic et al., 2006):

13 dwarfs (kernels)→ including the N-body problem

F Pairwise interactions among N bodies
(molecular dynamics, astrophysics. . .)

F Direct computation between the N(N − 1)
pairs⇒ quadratic complexity

NX
i=1

X
j 6=i

qiqj

|zi − zj |

F Mutual interaction principle

FA→B = −FB→A ⇒
NX

i=1

X
j<i

qiqj

|zi − zj |

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 5

The Cell B.E. and the Fast Multipole Method

Current N-body simulations on the Cell B.E.

Cut-off radius methods

Φ = Φnear since lim
r→+∞

Φ(r) = lim
r→+∞

(q
r

)
= 0

F Computation only with neighboring particles within cut-off radius

Current performance on 1 Cell B.E.
F Cut-off radius method:

De Fabritiis, 2007 45 Gflop/s
Luttmann et al., 2009 60 Gflop/s (for 6 SPEs)
Swaminarayan et al., 2008 34 Gflop/s (double prec. on PowerXCell8i)

F Full direct computation:
Knight et al., 2007 83 Gflop/s

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 6

The Cell B.E. and the Fast Multipole Method

Hierarchical methods for N-body problems

F Hierarchical space decomposition with an octree

F Potential decomposition

Φ = Φnear + Φfar since lim
r→+∞

Φ(r) = lim
r→+∞

(q
r

)
= 0

I near field → direct computation
I far field → approximate computation (with expansions)

F More precise than cut-off radius methods for long-range interactions

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 7

The Cell B.E. and the Fast Multipole Method

The Fast Multipole Method (FMM) : principle

Y k
j spherical harmonics used for potential expansions

sourcestargets

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 8

The Cell B.E. and the Fast Multipole Method

The Fast Multipole Method (FMM) : principle

Y k
j spherical harmonics used for potential expansions

sourcestargets

O(Ntargets × Nsources)

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 8

The Cell B.E. and the Fast Multipole Method

The Fast Multipole Method (FMM) : principle

Y k
j spherical harmonics used for potential expansions

sourcestargets

Mk
j multipole exp.:

Φ =
+∞X
j=0

jX
k=−j

Mk
j

Y k
j (θ, φ)

r j+1

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 8

The Cell B.E. and the Fast Multipole Method

The Fast Multipole Method (FMM) : principle

Y k
j spherical harmonics used for potential expansions

targets

M2L
Vector

sources

« well-separateness » criterion

Lk
j local exp.:

Φ =
+∞X
j=0

jX
k=−j

Lk
j Y k

j (θ, φ)r j

Mk
j multipole exp.:

Φ =
+∞X
j=0

jX
k=−j

Mk
j

Y k
j (θ, φ)

r j+1

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 8

The Cell B.E. and the Fast Multipole Method

The Fast Multipole Method (FMM) : principle

Y k
j spherical harmonics used for potential expansions

targets sources

« well-separateness » criterion

Lk
j local exp.:

Φ =
+∞X
j=0

jX
k=−j

Lk
j Y k

j (θ, φ)r j

Mk
j multipole exp.:

Φ =
+∞X
j=0

jX
k=−j

Mk
j

Y k
j (θ, φ)

r j+1

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 8

The Cell B.E. and the Fast Multipole Method

The Fast Multipole Method (FMM) : principle

Y k
j spherical harmonics used for potential expansions

targets sources
O(Ntargets + Nsources)

Lk
j local exp.:

Φ =
PX

j=0

jX
k=−j

Lk
j Y k

j (θ, φ)r j

ε error
⇓

P max degree
⇓

O(P2) terms

Mk
j multipole exp.:

Φ =
PX

j=0

jX
k=−j

Mk
j

Y k
j (θ, φ)

r j+1

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 8

The Cell B.E. and the Fast Multipole Method

FMM principle : upward pass

Particles stored at the leaf level.

Level 0

Level 1

Level 2

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 9

The Cell B.E. and the Fast Multipole Method

FMM principle : upward pass

Particles⇒ multiple exp. : P2M

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 9

The Cell B.E. and the Fast Multipole Method

FMM principle : upward pass

Multipole exp. (child)⇒ multipole exp. (father) : M2M

Level 0

Level 1

Level 2

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 9

The Cell B.E. and the Fast Multipole Method

FMM principle : upward pass

Multipole exp. (child)⇒ multipole exp. (father) : M2M

Level 0

Level 1

Level 2

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 9

The Cell B.E. and the Fast Multipole Method

FMM principle : downward pass

Interaction list : « well-separateness », 189 members in 3D
Multipole exp. ⇒ local exp. : M2L

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 10

The Cell B.E. and the Fast Multipole Method

FMM principle : downward pass

Local exp. (father)⇒ local exp. (child) : L2L

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 10

The Cell B.E. and the Fast Multipole Method

FMM principle : downward pass

At the leaf level→ direct computation : P2P
Direct computation list: nearest neighbors

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 10

The Cell B.E. and the Fast Multipole Method

Fast Multipole Method (FMM)

F O(N) operation count (with optimal octree height)

F Far field:
I multipole and local expansions
I upward pass & downward pass of the octree

F Near field:
I direct computation between 26 nearest neighbors = pair computation
→ 13 neighbors thanks to the mutual interaction principle

I direct computation for all particles within each leaf = own computation

F Hybrid MPI-thread FMB (Fast Multipole with BLAS) parallel code:
I efficient far-field computation with BLAS routines in the FMB code

(Coulaud, Fortin, Roman, Journal of Computational Physics, 2008)
⇒ direct porting on Cell!
When optimized level 3 BLAS CGEMM/ZGEMM routines are available. . .
⇒We focus here on the near-field computation.

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 11

The Cell B.E. and the Fast Multipole Method

FMB multi-thread parallelization (Coulaud, Fortin, Roman, ISPDC 2007)

F Basis for our Cell B.E. implementation
F POSIX Threads in shared memory
F

Static octree decomposition
among the threads ⇒


I load balancing
I data locality

F Morton decomposition:
octree +
Morton ordering +
cost function
⇒ 1 interval per thread

Decomposition between 4 threads

t1
F Mutual interactions: write/write conflicts

⇒ mutual exclusion at each leaf
(1 “lock” bit per leaf and 1 mutex per interval)

+ postponed conflict resolution
(FIFO structures)

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 12

The Cell B.E. and the Fast Multipole Method

FMB multi-thread parallelization (Coulaud, Fortin, Roman, ISPDC 2007)

F Basis for our Cell B.E. implementation
F POSIX Threads in shared memory
F

Static octree decomposition
among the threads ⇒


I load balancing
I data locality

F Morton decomposition:
octree +
Morton ordering +
cost function
⇒ 1 interval per thread

Decomposition between 4 threads

t1

t2

F Mutual interactions: write/write conflicts

⇒ mutual exclusion at each leaf
(1 “lock” bit per leaf and 1 mutex per interval)

+ postponed conflict resolution
(FIFO structures)

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 12

The computation kernels

Outline

1. The Cell B.E. and the Fast Multipole Method

2. The computation kernels

3. Single SPE computation

4. Multiple SPEs computation

5. Conclusion

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 13

The computation kernels

Design of efficient computation kernels

Objectives
F Force computation only (no potential computed) in single precision
F Exploiting at most the mutual interaction principle

Starting point
F Low numbers of particles per leaf→ each pair or own computation computed

by only 1 SPE

SIMD code
F "Structure of arrays" (SOA) data layout
F Computation by blocks of 4 bodies
→ array padding with zero mass bodies

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 14

The computation kernels

Optimisation of the pair computation kernel

F Data layout:

→ 4 interactions / 8 body loads

F Quadword rotates (dual-issued with floating point instructions):

→ thanks to numerous SPE vector registers

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 15

The computation kernels

Optimisation of the pair computation kernel

F Data layout:

F Quadword rotates (dual-issued with floating point instructions):

→ thanks to numerous SPE vector registers

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 15

The computation kernels

Optimisation of the pair computation kernel

F Data layout:

→ 16 interactions / 8 body loads

F Quadword rotates (dual-issued with floating point instructions):

→ thanks to numerous SPE vector registers

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 15

The computation kernels

Optimisation of the pair computation kernel

F Data layout:

→ 32 interactions / 12 body loads

F Quadword rotates (dual-issued with floating point instructions):

→ thanks to numerous SPE vector registers

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 15

The computation kernels

Design of efficient computation kernels (2)

SIMD code (2)
F Many instructions in the internal loop body reordered at best by the compiler
F Internal loop unrolled manually + interleaving of iteration instructions
F Own computation kernel: interactions among the same 4 bodies→ no use of

mutual interaction principle
F IBM rsqrtf4 vector function : floating-point 1√

x estimate + 1 Newton-Raphson
iteration→ single floating point precision

Flops per interaction
F Pair computation: 27 flops/interaction
⇒ but thanks to mutual interaction principle: 13.5 flops/interaction

F Own block computation: 24 flops/interaction
F For reference, on CPU and PPE: 12 flops/interaction (mutual used)

Theoretical peak performance
F 7 fused multiply-add (FMA) / 27 flops
⇒ 67.5% of SPE peak performance = 17.28 Gflop/s on 1 SPE

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 16

The computation kernels

Results for pair computation on 1 SPE

1 SPE / 1 PPE / 1 CPU core (Intel Xeon 5150, 2.66GHz)

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 4 8 16 32 64 128 256 512 1024 2048

 1

 3

 5

 7

 9

 11

 13

 15

In
te

ra
ct

io
ns

/s
 (

lo
g

sc
al

e)

G
flo

p/
s

N

SPE (Interactions/s)
SPE Gflop/s (comp)

SPE Gflop/s (comp+comms)
PPE (Interactions/s)

PPE Gflop/s
CPU (Interactions/s)

CPU Gflop/s

F PPE performs poorly
F SPE up to 10x faster than

CPU
F SPE: up to 14.6 Gflop/s
→ very good compared to
theoretical 17.28 Gflop/s

F DMA transfers not costful for
high enough N values

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 17

The computation kernels

Results for own computation on 1 SPE

1 SPE / 1 PPE / 1 CPU core (Intel Xeon 5150, 2.66GHz)

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 4 8 16 32 64 128 256 512 1024 2048

 1

 3

 5

 7

 9

 11

 13

 15

In
te

ra
ct

io
ns

/s
 (

lo
g

sc
al

e)

G
flo

p/
s

N

SPE (Interactions/s)
PPE (Interactions/s)
CPU (Interactions/s)

SPE Gflop/s (comp+comms)

SPE Gflop/s (comp)
PPE Gflop/s
CPU Gflop/s

F Same conclusion as for pair
computation

F SPE: up to 12.4 Gflop/s

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 18

Single SPE computation

Outline

1. The Cell B.E. and the Fast Multipole Method

2. The computation kernels

3. Single SPE computation

4. Multiple SPEs computation

5. Conclusion

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 19

Single SPE computation

DMA transfer design

F Bodies data transfered and treated by chunk of 2048 bodies
F Algorithm for computing 1 task = own computation of target leaf T + all pair

computations between T and its nearest neighbors S1, ...,SN

...

...

...

For S1,1..S1,N , S2,1..S2,N , ...

Get T3

Get T4

Get T1

Get T3

Get T4

Put T2

Get S1,1

Put TN−1

Get S1,2

Put TN

Get T2
Put T1

Put SN,N

Get T2

Put SN,N−1

F Only 3 shared I/O buffers
F Almost all DMA transfers overlapped with computation

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 20

Single SPE computation

PPE-SPE synchronization

Objective
F Maintain the computation kernel performance on the overall FMM near field

computation on 1 SPE
→ minimize the time where the SPE is idle (between 2 computations)
→ fast notifications between the PPE and the SPE

PPE-SPE task synchronization
F Task notification by PPE→SPE mailbox
F Using several “slots”
→ several tasks assigned to SPE at any time
→ next task already available on the next slot
→ up to 4 possible slots

F After task computation: SPE DMA writes in the Cell main memory
I fastest SPE→PPE notification of task end
I allows notification overwriting

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 21

Single SPE computation

Overall near field part on 1 SPE

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 2 4 8 16 32 64 128 256 512 1024 2048 4096

 1

 3

 5

 7

 9

 11

 13

 15

In
te

ra
ct

io
ns

/s

G
flo

p/
s

N (average number of bodies per leaf)

pure computation
overall / 1 slot

overall / 2 slots
overall / 4 slots

1 pair reference

F Task DMA overlapping⇒ overall performance better than 1 pair reference
F 2 or 4 slots⇒ performance↗ (now use 2 slots)
F Overall performance close to pure computation for N ≥ 64
F Overall performance maintained for N ≥ 2048 (buffer size)

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 22

Multiple SPEs computation

Outline

1. The Cell B.E. and the Fast Multipole Method

2. The computation kernels

3. Single SPE computation

4. Multiple SPEs computation

5. Conclusion

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 23

Multiple SPEs computation

Objective and load balancing

Objective
F Maintain the computation kernel performance on the overall FMM near field

computation on up to 16 SPEs
→ minimize the time where SPEs are idle
→ responsive PPE code

Load balancing
F No interaction computed on the PPE
F Among the homogeneous SPEs:

use static load balancing of FMB multi-thread parallelization

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 24

Multiple SPEs computation

Locking stategy

Previous FMB multi-thread parallelization
F lock bits set/unset for each pair or own computation
→ fine-grained locks and fined-grained computations
→ too strong synchronisation overhead on the Cell B.E.

New locking strategy
F set together all lock bits of the whole task
F if some lock bits already set⇒ FIFOs to postpone the whole task
F computation grain↗ but possible deadlocks. . .
⇒ move from multi-thread PPE to single thread PPE

I deadlocks easily avoided
I no mutexes required
I avoids costful thread context switches

⇒ more responsive PPE to all SPEs

For comparison purpose: lock-free version
F pair computations without mutual when the 2 leafs ∈ to 2 different threads
F PPE management↘ but SPE work↗ (redundant computations)

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 25

Multiple SPEs computation

Overall near field part on multiple SPEs: uniform distribution

Up to 16 SPEs on 1 IBM QS20 blade (CINES, France)

 1e+08

 1e+09

 1e+10

 4 8 16 32 64 128 256 512 1024 2048 4096
 0.25

 1

 4

 16

 64

 256

In
te

ra
ct

io
ns

/s
 (

lo
g

sc
al

e)

G
flo

p/
s

(lo
g

sc
al

e)

N (average number of bodies per leaf)

1 SPE
2 SPEs
4 SPEs
8 SPEs

16 SPEs
lock-free 8 SPEs

F For N ≥ 128 very good
parallel accelerations up to
16 SPEs

F Responsive enough single
thread PPE code for 16
SPEs

F Still very efficient on 1 Cell
with N ≈ 64

F Too low N ⇒ no good parallel efficiencies
I too small computation grain
I PPE not responsive enough

F Lock-free version
I hardly faster for low N ⇒ PPE hardware not powerful enough...
I slower for high N (because of redundant computations)

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 26

Multiple SPEs computation

Overall near field part on multiple SPEs: cylinder and Plummer model

 1e+08

 1e+09

 1e+10

 4 16 64 256 1024 4096 16384
 0.25

 1

 4

 16

 64

 256

In
te

ra
ct

io
ns

/s
 (

lo
g

sc
al

e)

G
flo

p/
s

(lo
g

sc
al

e)

N (average number of bodies per leaf)

1 SPE
2 SPEs
4 SPEs
8 SPEs

16 SPEs
lock-free 8 SPEs

Cylinder

 1e+08

 1e+09

 1e+10

 4 8
 0.25

 1

 4

 16

 64

 256

In
te

ra
ct

io
ns

/s
 (

lo
g

sc
al

e)

G
flo

p/
s

(lo
g

sc
al

e)

N (average number of bodies per leaf)

1 SPE
2 SPEs
4 SPEs
8 SPEs

16 SPEs
lock-free 8 SPEs

Plummer model

F Non uniform cylindric distribution
I same performance and same conclusions
I validates our load balancing for both uniform and non uniform distributions

F Highly concentratred astrophysical Plummer model
I too many almost empty leafs with very low computation grain. . .

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 27

Conclusion

Outline

1. The Cell B.E. and the Fast Multipole Method

2. The computation kernels

3. Single SPE computation

4. Multiple SPEs computation

5. Conclusion

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 28

Conclusion

Conclusion and future work

Conclusion
F First implementation of the Fast Multipole Method near field part on the Cell
F Very efficient implementation for average number bodies/leaf ≥ 128

I with up to 16 SPEs
I for both uniform and non uniform distributions

Performance summary:
FMM near field Full direct computation

FMB / Cell Literature NVIDIA Tesla C1060
(13.5 flops/interaction, on 1 Cell (20 flops/interaction, since no mutual)

since mutual)
1 Cell 1 QS20 (N = 8192) (N = 128) (N = 1024) (N = 16384)

Nb of
interactions/s 8.5× 109 17× 109 1.8× 109 8.6× 109 17.9× 109

Gflop/s 115.8 230.4 ≤ 83 35.5 171.1 359.0

Future work
F Find optimized complex BLAS routines for far field Cell implementation
F Looking for bigger Cell-based supercomputer

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 29

	The Cell B.E. and the Fast Multipole Method
	The computation kernels
	Single SPE computation
	Multiple SPEs computation
	Conclusion

