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The Cell B.E. and the Fast Multipole Method

The Cell Broadband Engine

Roadrunner
F June 2008: Petaflop barrier broken by the IBM Roadrunner computer
F 12240 Cells + 6120 Dual-core Opterons (2008)
F Cells⇒ over 96% of the 1.3 Pflop/s theoretical peak performance

The Cell Broadband Engine
F 1 general-purpose PowerPC core (PPE)
F 8 Synergistic Processing Elements (SPEs)

I specialized for high performance computing,
I independant fast local store (LS)
I explicit direct memory access (DMA): LS↔ Cell main memory

F 3 levels of parallelism:
I MPI multi-process parallelism
I multi-thread parallelism among the 8 SPEs
I SIMD (Single Instruction on Multiple Data) parallelism→ SPE vector units

Specific architecture
F Suitable for all applications and algorithms? (same question for GPUs. . . )
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The Cell B.E. and the Fast Multipole Method

N-body problem

In The Landscape of Parallel Computing Research: A View from Berkeley
(Asanovic et al., 2006):

13 dwarfs (kernels)→ including the N-body problem

F Pairwise interactions among N bodies
(molecular dynamics, astrophysics. . . )

F Direct computation between the N(N − 1)
pairs⇒ quadratic complexity

NX
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X
j 6=i
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F Mutual interaction principle
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The Cell B.E. and the Fast Multipole Method

Current N-body simulations on the Cell B.E.

Cut-off radius methods

Φ = Φnear since lim
r→+∞

Φ(r) = lim
r→+∞

(q
r

)
= 0

F Computation only with neighboring particles within cut-off radius

Current performance on 1 Cell B.E.
F Cut-off radius method:

De Fabritiis, 2007 45 Gflop/s
Luttmann et al., 2009 60 Gflop/s (for 6 SPEs)
Swaminarayan et al., 2008 34 Gflop/s (double prec. on PowerXCell8i)

F Full direct computation:
Knight et al., 2007 83 Gflop/s
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The Cell B.E. and the Fast Multipole Method

Hierarchical methods for N-body problems

F Hierarchical space decomposition with an octree

F Potential decomposition

Φ = Φnear + Φfar since lim
r→+∞

Φ(r) = lim
r→+∞

(q
r

)
= 0

I near field → direct computation
I far field → approximate computation (with expansions)

F More precise than cut-off radius methods for long-range interactions
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The Cell B.E. and the Fast Multipole Method

The Fast Multipole Method (FMM) : principle

Y k
j spherical harmonics used for potential expansions

sourcestargets
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The Cell B.E. and the Fast Multipole Method

The Fast Multipole Method (FMM) : principle

Y k
j spherical harmonics used for potential expansions

sourcestargets

O(Ntargets × Nsources)
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The Cell B.E. and the Fast Multipole Method

The Fast Multipole Method (FMM) : principle

Y k
j spherical harmonics used for potential expansions

targets sources
O(Ntargets + Nsources)
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The Cell B.E. and the Fast Multipole Method

FMM principle : upward pass

Particles stored at the leaf level.

Level 0

Level 1

Level 2

P. Fortin, J.L. Lamotte FMM on the Cell: the Near Field Part 9



The Cell B.E. and the Fast Multipole Method

FMM principle : upward pass

Particles⇒ multiple exp. : P2M
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The Cell B.E. and the Fast Multipole Method

FMM principle : upward pass

Multipole exp. (child)⇒ multipole exp. (father) : M2M

Level 0

Level 1

Level 2
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The Cell B.E. and the Fast Multipole Method

FMM principle : upward pass

Multipole exp. (child)⇒ multipole exp. (father) : M2M
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Level 1
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The Cell B.E. and the Fast Multipole Method

FMM principle : downward pass

Interaction list : « well-separateness », 189 members in 3D
Multipole exp. ⇒ local exp. : M2L
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The Cell B.E. and the Fast Multipole Method

FMM principle : downward pass

Local exp. (father)⇒ local exp. (child) : L2L
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The Cell B.E. and the Fast Multipole Method

FMM principle : downward pass

At the leaf level→ direct computation : P2P
Direct computation list: nearest neighbors
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The Cell B.E. and the Fast Multipole Method

Fast Multipole Method (FMM)

F O(N) operation count (with optimal octree height)

F Far field:
I multipole and local expansions
I upward pass & downward pass of the octree

F Near field:
I direct computation between 26 nearest neighbors = pair computation
→ 13 neighbors thanks to the mutual interaction principle

I direct computation for all particles within each leaf = own computation

F Hybrid MPI-thread FMB (Fast Multipole with BLAS) parallel code:
I efficient far-field computation with BLAS routines in the FMB code

(Coulaud, Fortin, Roman, Journal of Computational Physics, 2008)
⇒ direct porting on Cell!
When optimized level 3 BLAS CGEMM/ZGEMM routines are available. . .
⇒We focus here on the near-field computation.
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The Cell B.E. and the Fast Multipole Method

FMB multi-thread parallelization (Coulaud, Fortin, Roman, ISPDC 2007)

F Basis for our Cell B.E. implementation
F POSIX Threads in shared memory
F

Static octree decomposition
among the threads ⇒


I load balancing
I data locality

F Morton decomposition:
octree +
Morton ordering +
cost function
⇒ 1 interval per thread

Decomposition between 4 threads

t1
F Mutual interactions: write/write conflicts

⇒ mutual exclusion at each leaf
(1 “lock” bit per leaf and 1 mutex per interval)

+ postponed conflict resolution
(FIFO structures)
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The computation kernels

Design of efficient computation kernels

Objectives
F Force computation only (no potential computed) in single precision
F Exploiting at most the mutual interaction principle

Starting point
F Low numbers of particles per leaf→ each pair or own computation computed

by only 1 SPE

SIMD code
F "Structure of arrays" (SOA) data layout
F Computation by blocks of 4 bodies
→ array padding with zero mass bodies
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The computation kernels

Optimisation of the pair computation kernel

F Data layout:

→ 4 interactions / 8 body loads

F Quadword rotates (dual-issued with floating point instructions):

→ thanks to numerous SPE vector registers
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The computation kernels

Optimisation of the pair computation kernel

F Data layout:

→ 16 interactions / 8 body loads

F Quadword rotates (dual-issued with floating point instructions):

→ thanks to numerous SPE vector registers
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The computation kernels

Optimisation of the pair computation kernel

F Data layout:

→ 32 interactions / 12 body loads

F Quadword rotates (dual-issued with floating point instructions):

→ thanks to numerous SPE vector registers
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The computation kernels

Design of efficient computation kernels (2)

SIMD code (2)
F Many instructions in the internal loop body reordered at best by the compiler
F Internal loop unrolled manually + interleaving of iteration instructions
F Own computation kernel: interactions among the same 4 bodies→ no use of

mutual interaction principle
F IBM rsqrtf4 vector function : floating-point 1√

x estimate + 1 Newton-Raphson
iteration→ single floating point precision

Flops per interaction
F Pair computation: 27 flops/interaction
⇒ but thanks to mutual interaction principle: 13.5 flops/interaction

F Own block computation: 24 flops/interaction
F For reference, on CPU and PPE: 12 flops/interaction (mutual used)

Theoretical peak performance
F 7 fused multiply-add (FMA) / 27 flops
⇒ 67.5% of SPE peak performance = 17.28 Gflop/s on 1 SPE
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The computation kernels

Results for pair computation on 1 SPE

1 SPE / 1 PPE / 1 CPU core (Intel Xeon 5150, 2.66GHz)
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F PPE performs poorly
F SPE up to 10x faster than

CPU
F SPE: up to 14.6 Gflop/s
→ very good compared to
theoretical 17.28 Gflop/s

F DMA transfers not costful for
high enough N values
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The computation kernels

Results for own computation on 1 SPE

1 SPE / 1 PPE / 1 CPU core (Intel Xeon 5150, 2.66GHz)
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F Same conclusion as for pair
computation

F SPE: up to 12.4 Gflop/s
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Single SPE computation
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Single SPE computation

DMA transfer design

F Bodies data transfered and treated by chunk of 2048 bodies
F Algorithm for computing 1 task = own computation of target leaf T + all pair

computations between T and its nearest neighbors S1, ...,SN

...

...

...

For S1,1..S1,N , S2,1..S2,N , ...

Get T3

Get T4

Get T1

Get T3

Get T4

Put T2

Get S1,1

Put TN−1

Get S1,2

Put TN

Get T2
Put T1

Put SN,N

Get T2

Put SN,N−1

F Only 3 shared I/O buffers
F Almost all DMA transfers overlapped with computation
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Single SPE computation

PPE-SPE synchronization

Objective
F Maintain the computation kernel performance on the overall FMM near field

computation on 1 SPE
→ minimize the time where the SPE is idle (between 2 computations)
→ fast notifications between the PPE and the SPE

PPE-SPE task synchronization
F Task notification by PPE→SPE mailbox
F Using several “slots”
→ several tasks assigned to SPE at any time
→ next task already available on the next slot
→ up to 4 possible slots

F After task computation: SPE DMA writes in the Cell main memory
I fastest SPE→PPE notification of task end
I allows notification overwriting
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Single SPE computation

Overall near field part on 1 SPE
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F Task DMA overlapping⇒ overall performance better than 1 pair reference
F 2 or 4 slots⇒ performance↗ (now use 2 slots)
F Overall performance close to pure computation for N ≥ 64
F Overall performance maintained for N ≥ 2048 (buffer size)
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Multiple SPEs computation
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Multiple SPEs computation

Objective and load balancing

Objective
F Maintain the computation kernel performance on the overall FMM near field

computation on up to 16 SPEs
→ minimize the time where SPEs are idle
→ responsive PPE code

Load balancing
F No interaction computed on the PPE
F Among the homogeneous SPEs:

use static load balancing of FMB multi-thread parallelization
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Multiple SPEs computation

Locking stategy

Previous FMB multi-thread parallelization
F lock bits set/unset for each pair or own computation
→ fine-grained locks and fined-grained computations
→ too strong synchronisation overhead on the Cell B.E.

New locking strategy
F set together all lock bits of the whole task
F if some lock bits already set⇒ FIFOs to postpone the whole task
F computation grain↗ but possible deadlocks. . .
⇒ move from multi-thread PPE to single thread PPE

I deadlocks easily avoided
I no mutexes required
I avoids costful thread context switches

⇒ more responsive PPE to all SPEs

For comparison purpose: lock-free version
F pair computations without mutual when the 2 leafs ∈ to 2 different threads
F PPE management↘ but SPE work↗ (redundant computations)
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Multiple SPEs computation

Overall near field part on multiple SPEs: uniform distribution

Up to 16 SPEs on 1 IBM QS20 blade (CINES, France)
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F For N ≥ 128 very good
parallel accelerations up to
16 SPEs

F Responsive enough single
thread PPE code for 16
SPEs

F Still very efficient on 1 Cell
with N ≈ 64

F Too low N ⇒ no good parallel efficiencies
I too small computation grain
I PPE not responsive enough

F Lock-free version
I hardly faster for low N ⇒ PPE hardware not powerful enough...
I slower for high N (because of redundant computations)
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Multiple SPEs computation

Overall near field part on multiple SPEs: cylinder and Plummer model
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Plummer model

F Non uniform cylindric distribution
I same performance and same conclusions
I validates our load balancing for both uniform and non uniform distributions

F Highly concentratred astrophysical Plummer model
I too many almost empty leafs with very low computation grain. . .
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Conclusion

Conclusion and future work

Conclusion
F First implementation of the Fast Multipole Method near field part on the Cell
F Very efficient implementation for average number bodies/leaf ≥ 128

I with up to 16 SPEs
I for both uniform and non uniform distributions

Performance summary:
FMM near field Full direct computation

FMB / Cell Literature NVIDIA Tesla C1060
(13.5 flops/interaction, on 1 Cell (20 flops/interaction, since no mutual)

since mutual)
1 Cell 1 QS20 (N = 8192) (N = 128) (N = 1024) (N = 16384)

Nb of
interactions/s 8.5× 109 17× 109 1.8× 109 8.6× 109 17.9× 109

Gflop/s 115.8 230.4 ≤ 83 35.5 171.1 359.0

Future work
F Find optimized complex BLAS routines for far field Cell implementation
F Looking for bigger Cell-based supercomputer
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