
Chair of Software Engineering

Genericity & Inheritance

Bertrand Meyer
ETH Zurich, Switzerland

Eiffel Software, Santa Barbara

Epita, Paris, 31 March 2010

2

On the menu

Two fundamental mechanisms for expressiveness and
reliability:

 Genericity
 Inheritance

with associated (just as important!) notions:
 Static typing
 Polymorphism
 Dynamic binding

3

Extending the basic notion of class

LIST_OF_
CARS

SET_OF_
CARS

LINKED_LIST_
OF_CARS

LIST_OF_
CITIES

LIST_OF_
PERSONS

Abstraction

Specialization

Type parameterization Type parameterization

Genericity

Inheritance

4

Extending the basic notion of class

LIST_OF_
CARS

SET_OF_
CARS

LINKED_LIST_
OF_CARS

LIST_OF_
CITIES

LIST_OF_
PERSONS

LINKED_LIST_
OF_CITIES

SET_OF_
PERSONS

Genericity

Inheritance

5

Genericity

Unconstrained

LIST [G]
e.g. LIST [INTEGER], LIST [PERSON]

Constrained

HASH_TABLE [G ―> HASHABLE]

VECTOR [G ―> NUMERIC]

6

Genericity: ensuring type safety

How can we define consistent “container” data structures, e.g.
list of accounts, list of points?

Without genericity, something like this:
c : CITY ; p : PERSON
cities : LIST ...
people : LIST ...

people.extend ()
cities.extend ()

c := cities.last

c.some_city_operation

What if
wrong?

p
c

7

Possible approaches

1. Duplicate code, manually or with help of macro processor

2. Wait until run time; if types don’t match, trigger a run-
time failure (Smalltalk)

3. Convert (“cast”) all values to a universal type, such as
“pointer to void” in C

4. Parameterize the class, giving an explicit name G to the
type of container elements. This is the Eiffel approach,
also found in recent versions of Java, .NET and others.

8

A generic class

class LIST [G] feature
extend (x : G) ...
last : G ...

end

Formal generic parameter

Actual generic parameter
To use the class: obtain a generic derivation, e.g.

cities : LIST [CITY]

9

Using generic derivations

cities : LIST [CITY]
people : LIST [PERSON]
c : CITY
p : PERSON
...

cities.extend (c)
people.extend (p)

c := cities.last
c.some_city_operation

STATIC TYPING
The compiler will reject:

 people.extend (c)

 cities.extend (p)

10

Static typing

Type-safe call (during execution):
A feature call x.f such that the object attached
to x has a feature corresponding to f

[Generalizes to calls with arguments, x.f (a, b)]

Static type checker:
A program-processing tool (such as a compiler)
that guarantees, for any program it accepts, that
any call in any execution will be type-safe

Statically typed language:
A programming language for which it is possible to
write a static type checker

11

Using genericity

LIST [CITY]
LIST [LIST [CITY]]
…

A type is no longer exactly the same thing as a class!

(But every type remains based on a class.)

12

What is a type?

(To keep things simple let’s assume that a class has zero or
one generic parameter)

A type is of one of the following two forms:

 C, where C is the name of a non-generic class

 D [T], where D is the name of a generic class
and T is a

type

type

13

A generic class

class LIST [G] feature
extend (x : G) ...
last : G ...

end

Formal generic parameter

Actual generic parameter
To use the class: obtain a generic derivation, e.g.

cities : LIST [CITY]

14

Reminder: the dual nature of classes

A class is a module
A class is a type*

As a module, a class:
 Groups a set of related services
 Enforces information hiding (not all services are

visible from the outside)
 Has clients (the modules that use it) and suppliers

(the modules it uses)
As a type, a class:

 Denotes possible run-time values (objects &
references), the instances of the type

 Can be used for declarations of entities
(representing such values)

*Or a type template
(see genericity)

15

Reminder: how the two views match

The class, viewed as a module, groups a set of services
(the features of the class)

which are precisely the operations applicable to instances
of the class, viewed as a type.

(Example: class BUS, features stop, move, speed,
passenger_count)

16

Extending the basic notion of class

LIST_OF_
CARS

SET_OF_
CARS

LINKED_LIST_
OF_CARS

LIST_OF_
CITIES

LIST_OF_
PERSONS

Abstraction

Specialization

Type parameterization Type parameterization

Genericity

Inheritance

17

Inheritance basics

Principle:
Describe a new class as extension or specialization of an
existing class

(or several with multiple inheritance)

If B inherits from A :

 As modules: all the services of A are available in B
(possibly with a different implementation)

 As types: whenever an instance of A is required, an
instance of B will be acceptable

(“is-a” relationship)

18

Terminology

If B inherits from A (by listing A in its inherit clause):
 B is an heir of A
 A is a parent of B

For a class A:
The descendants of A are A itself and (recursively)
the descendants of A ’s heirs
 Proper descendants exclude A itself

Reverse notions:
Ancestor
 Proper ancestor

More precise notion of instance:
 Direct instances of A
 Instances of A : the direct instances

of A and its descendants

(Other terminology: subclass, superclass, base class)

B

A

C D

E

19

Example hierarchy (from Traffic)

MOVING

VEHICLE

TAXI

EVENT_TAXI

LINE_VEHICLE

TRAM BUS

position

load

busy

take +

take *

update_coordinates
move

update_coordinates ++

move ++

* Deferred
+ Effective
++ Redefined

*

*

**

20

Features in the example

Feature
take (from_location,

to_location : COORDINATE)
-- Bring passengers
-- from from_location
-- to to_location.

busy : BOOLEAN
--Is taxi busy?

load (q : INTEGER)
-- Load q passengers.

position : COORDINATE
-- Current position on map.

From class:

EVENT_TAXI

TAXI

VEHICLE

MOVING

MOVING

VEHICLE

TAXI

EVENT_TAXI

LINE_VEHICLE

TRAM BUS

*

*

**

21

Inheriting features

class
EVENT_TAXI

inherit
TAXI

feature
[… Rest of class …]

end

deferred class
TAXI

inherit
VEHICLE

feature
[… Rest of class …]

end

All features of TAXI are applicable
to instances of EVENT_TAXI

All features of VEHICLE are
applicable to instances of TAXI

deferred class
VEHICLE

inherit
MOVING

feature
[… Rest of class …]

end

All features of MOVING are
applicable to instances of VEHICLE

22

Inherited features

m : MOVING; v : VEHICLE; t : TAXI; e : EVENT_TAXI

v •load (…)
e •take (…)
m •position -- An expression
t •busy -- An expression

e •load (…)
e •take (…)
e •position -- An expression
e •busy -- An expression

MOVING

VEHICLE

TAXI

EVENT_TAXI

LINE_VEHICLE

TRAM BUS

*

*

**

23

Definitions: kinds of feature

A “feature of a class” is one of:

An inherited feature if it is a feature of one of the
parents of the class.

An immediate feature if it is declared in the class,
and not inherited. In this case the class is said to
introduce the feature.

24

Polymorphic assignment

v : VEHICLE
cab : EVENT_TAXI

(VEHICLE)

(EVENT_TAXI)

v

cab

A proper
descendant type

of the original

v := cab

More interesting:
if some_condition then

v := cab
else

v := tram
…
end



tram: TRAM

25

Assignments

Assignment:
target := expression

With polymorphism:
The type of expression is a descendant of the
type of target

So far (no polymorphism):

expression was always of the same type as target

26

Polymorphism is also for argument passing

register_trip (v : VEHICLE)
do … end

Type of actual argument
is proper descendant of

type of formal

A particular call:

register_trip (cab)

27

Definitions: Polymorphism

An attachment (assignment or argument passing) is
polymorphic if its target variable and source expression
have different types.

An entity or expression is polymorphic if it may at
runtime — as a result of polymorphic attachments —
become attached to objects of different types.

Polymorphism is the existence of these possibilities.

28

Definitions (Static and dynamic type)

The static type of an entity is the type used in its
declaration in the corresponding class text

If the value of the entity, during a particular execution,
is attached to an object, the type of that object is the
entity’s dynamic type at that time

29

Static and dynamic type

v : VEHICLE
cab : EVENT_TAXI

(VEHICLE)

(EVENT_TAXI)

v

cab

v := cab

Static type of v :
VEHICLE

Dynamic type after this assignment:
EVENT_TAXI



30

Basic type property

Static and dynamic type

The dynamic type of an entity will always
conform to its static type

(Ensured by the type system)

31

Static typing

Type-safe call (during execution):
A feature call x.f such that the object attached
to x has a feature corresponding to f

[Generalizes to calls with arguments, x.f (a, b)]

Static type checker:
A program-processing tool (such as a compiler)
that guarantees, for any program it accepts, that
any call in any execution will be type-safe

Statically typed language:
A programming language for which it is possible to
write a static type checker

32

Inheritance and static typing

Basic inheritance type rule

For a polymorphic attachment to be valid,
the type of the source must conform

to the type of the target

Conformance: basic definition

Reference types (non-generic): U conforms to T if U is
a descendant of T

An expanded type conforms only to itself

33

Conformance: full definition

A reference type U conforms to a reference
type T if either:
 They have no generic parameters, and U is

a descendant of T.
 They are both generic derivations with the

same number of actual generic parameters,
the base class of U is a descendant of the
base class of T, and every actual
parameter of U (recursively) conforms to
the corresponding actual parameter of T.

An expanded type conforms only to itself.

34

Static typing (reminder)

Type-safe call (during execution):
A feature call x.f such that the object attached
to x has a feature corresponding to f.

[Generalizes to calls with arguments, x.f (a, b)]

Static type checker:
A program-processing tool (such as a compiler)
that guarantees, for any program it accepts, that
any call in any execution will be type-safe.

Statically typed language:
A programming language for which it is possible to
write a static type checker.

35

Another example hierarchy

FIGURE*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE
TRIANGLE

SQUARE

center * display *
rotate*

perimeter *

perimeter +perimeter +

perimeter ++

diagonal

...
...

perimeter ++

+
+

side2

* deferred

+ effective

++ redefined

perimeter ++

side1

36

Redefinition 1: polygons

class POLYGON inherit
CLOSED_FIGURE

create
make

feature
vertex : ARRAY [POINT]
vertex_count : INTEGER
perimeter : REAL

-- Perimeter length.
do

across vertex as v loop

Result := Result + v [i] . distance (v [i + 1])
end

end
invariant

vertex_count >= 3
vertex_count = vertex.count

end

vertex [i]

vertex [i + 1]

37

Redefinition 2: rectangles

class RECTANGLE inherit
POLYGON

redefine
perimeter

end
create

make
feature

diagonal, side1, side2 : REAL
perimeter : REAL

-- Perimeter length.
do Result := 2 ∗ (side1 + side2) end

invariant

vertex_count = 4
end

side1

side2
diagonal

38

Inheritance, typing and polymorphism

(POLYGON)

(RECTANGLE)

p

r

"

Assume:
p : POLYGON ; r : RECTANGLE ; t : TRIANGLE
x : REAL

Permitted:
x := p.perimeter
x := r.perimeter
x := r.diagonal
p := r

NOT permitted:

x := p.diagonal -- Even just after p := r !
r := p

39

Dynamic binding

What is the effect of the following (if some_test is true)?

if some_test then
p := r

else
p := t

end
x := p.perimeter

Redefinition: A class may change an inherited feature, as
with POLYGON redefining perimeter.

Polymorphism: p may have different forms at run-time.

Dynamic binding: Effect of p.perimeter depends on run-
time form of p.

40

Definitions (Dynamic binding)

Dynamic binding (a semantic rule):
Any execution of a feature call will use the
version of the feature best adapted to the type
of the target object

41

Binding and typing

(For a call xf)

Static typing: The guarantee that there is at least one
version for f

Dynamic binding: The guarantee that every call will use the
most appropriate version of f

42

Without dynamic binding?

display (f : FIGURE)
do

if “f is a CIRCLE” then
...

elseif “f is a POLYGON” then
...

end
end

and similarly for all other routines!

Tedious; must be changed whenever there’s a new
figure type

43

With inheritance and associated techniques

With:

Initialize:

and:

Then just use:

f : FIGURE
c : CIRCLE
p : POLYGON

create c.make (...)
create p.make (...)

if ... then
f := c

else
f := p

end

f.move (...)
f.rotate (...)
f.display (...)

-- and so on for every
-- operation on f !

44

Inheritance: summary 1

Type mechanism: lets you organize our data abstractions
into taxonomies

Module mechanism: lets you build new classes as
extensions of existing ones

Polymorphism: Flexibility with type safety

Dynamic binding: automatic adaptation of operation to
target, for more modular software architectures

45

Redefinition

deferred class MOVING feature
origin : COORDINATE
destination : COORDINATE
position : COORDINATE
polycursor : LIST [COORDINATE]
update_coordinates

-- Update origin and destination.
do

[…]
origin := destination
polycursor.forth
destination := polycursor.item
[…]

end
[…]

end

polycursor.i_th (i)

polycursor.i_th (i + 1)

46

Redefinition 2: LINE_VEHICLE
deferred class LINE_VEHICLE inherit

VEHICLE
redefine update_coordinates end

feature
linecursor : LINE_CURSOR
update_coordinates

-- Update origin and destination.
do

[…]
origin := destination
polycursor.forth
if polycursor.after then

linecursor.forth
create polycursor.make (linecursor.item.polypoints)
polycursor.start

end
destination := polycursor.item

end

polycursor.i_th(i)

polycursor.i_th (i + 1)

47

Dynamic binding

What is the effect of the following (assuming some_test true)?
m : MOVING, l : LINE_VEHICLE, t : TAXI

if some_test then
m := l

else
m := t

end
m.update_coordinates

Redefinition: A class may change an inherited feature, as with
LINE_VEHICLE redefining update_coordinates.

Polymorphism: m may have different forms at run-time.

Dynamic binding: Effect of m.update_coordinates depends on run-time
form of m

48

Dynamic binding

*
TAXI

EVENT_TAXI DISPATCHER_TAXI

busy

take

take*

take

There are multiple versions of take.

inherits from

* deferred

49

Extending the basic notion of class

LIST_OF_
CARS

SET_OF_
CARS

LINKED_LIST_
OF_CARS

LIST_OF_
CITIES

LIST_OF_
PERSONS

Abstraction

Specialization

Type parameterization Type parameterization

Genericity

Inheritance

50

Extending the basic notion of class

LIST_OF_
CARS

SET_OF_
CARS

LINKED_LIST_
OF_CARS

LIST_OF_
CITIES

LIST_OF_
PERSONS

LINKED_LIST_
OF_CITIES

SET_OF_
PERSONS

Genericity

Inheritance

51

Conformance

Defined earlier for non-generically derived types:

52

Polymorphic data structures

fleet: LIST [VEHICLE]
v: VEHICLE

extend (v : G)
-- Add a new occurrence of v.

…
fleet.extend (v)
fleet.extend (cab)

(TAXI) (TAXI)(TRAM) (TRAM) (BUS)

53

Definition (Polymorphism, adapted)

An attachment (assignment or argument passing) is
polymorphic if its target entity and source expression
have different types.

An entity or expression is polymorphic if – as a result
of polymorphic attachments – it may at runtime become
attached to objects of different types.

A container data structure is polymorphic if it may
contain references to objects of different types.

Polymorphism is the existence of these possibilities.

54

What we have seen

The basics of fundamental O-O mechanisms:
 Inheritance
 Polymorphism
 Dynamic binding
 Static typing
 Genericity

55

Our program for the second part

Reminder on genericity, including constrained

Inheritance: deferred classes
Inheritance: what happens to contracts?

Inheritance: how do we find the actual type of an object?

Still to see about inheritance after this lecture: multiple
inheritance, and various games such as renaming

56

Genericity (reminder)

Unconstrained

LIST [G]
e.g. LIST [INTEGER], LIST [PERSON]

Constrained

HASH_TABLE [G ―> HASHABLE]

VECTOR [G ―> NUMERIC]

57

A generic class (reminder)

class LIST [G] feature
extend (x : G) ...
last : G ...

end

Formal generic parameter

Actual generic parameter
To use the class: obtain a generic derivation, e.g.

cities : LIST [CITY]

58

Using generic derivations (reminder)

cities : LIST [CITY]
people : LIST [PERSON]
c : CITY
p : PERSON
...

cities.extend (c)
people.extend (p)

c := cities.last
c.some_city_operation

STATIC TYPING
The compiler will reject:

 people.extend (c)

 cities.extend (p)

59

Genericity: summary 1

 Type extension mechanism

 Reconciles flexibility with type safety

 Enables us to have parameterized classes

 Useful for container data structures: lists, arrays,
trees, …

 “Type” now a bit more general than “class”

60

Definition: Type

We use types to declare entities, as in

x : SOME_TYPE

With the mechanisms defined so far, a type is one of:

 A non-generic class
e.g. METRO_STATION

 A generic derivation, i.e. the name of a class
followed by a list of types, the actual generic
parameters, in brackets

e.g. LIST [METRO_STATION]
LIST [ARRAY [METRO_STATION]]

61

Combining genericity with inheritance

LIST_OF_
CARS

SET_OF_
CARS

LINKED_LIST_
OF_CARS

LIST_OF_
CITIES

LIST_OF_
PERSONS

Abstraction

Specialization

Type parameterization Type parameterization

Genericity

Inheritance

62

Genericity + inheritance 1: Constrained genericity

class VECTOR [G] feature
plus alias "+" (other : VECTOR [G]): VECTOR [G]

-- Sum of current vector and other.
require

lower = other.lower
upper = other.upper

local
a, b, c: G

do
... See next ...

end
... Other features ...

end

63

Adding two vectors

i a b c=+

+ =u v w

1
2

64

Constrained genericity

Body of plus alias "+":

create Result.make (lower, upper)

from
i := lower

until
i > upper

loop
a := item (i)
b := other.item (i)
c := a + b -- Requires “+” operation on G!
Result.put (c, i)
i := i + 1

end

65

The solution

Declare class VECTOR as

class VECTOR [G –> NUMERIC] feature
... The rest as before ...

end

Class NUMERIC (from the Kernel Library) provides
features plus alias "+", minus alias "-"and so on.

66

Improving the solution

Make VECTOR itself a descendant of NUMERIC,
effecting the corresponding features:

class VECTOR [G –> NUMERIC] inherit
NUMERIC

feature
... Rest as before, including infix "+"...

end
Then it is possible to define

v : VECTOR [INTEGER]
vv : VECTOR [VECTOR [INTEGER]]
vvv : VECTOR [VECTOR [VECTOR [INTEGER]]]

67

Combining genericity with inheritance

LIST_OF_
CARS

SET_OF_
CARS

LINKED_LIST_
OF_CARS

LIST_OF_
CITIES

LIST_OF_
PERSONS

Abstraction

Specialization

Type parameterization Type parameterization

Genericity

Inheritance

68

Genericity + inheritance 2: Polymorphic data structures

figs : LIST [FIGURE]
p1, p2 : POLYGON
c1, c2 : CIRCLE
e : ELLIPSE

(POLYGON) (CIRCLE) (POLYGON)(CIRCLE) (ELLIPSE)

class LIST [G] feature
extend (v : G) do …

end
last : G
…

end

figs.extend (p1) ; figs.extend (c1) ; figs.extend (c2)
figs.extend (e) ; figs.extend (p2)

69

Example hierarchy

FIGURE*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE
TRIANGLE

SQUARE

center * display *
rotate*

perimeter *

perimeter +perimeter +

perimeter ++ diagonal

...
...

perimeter ++

+
+

side2

* deferred

+ effective

++ redefined

perimeter ++

side1

70

Another application: undoing-redoing

This example again uses a powerful polymorphic data
structure
This will only be a sketch; we’ll come back to the details in
the agent lecture

References:

 Chapter 21 of my Object-Oriented Software
Construction, Prentice Hall, 1997

 Erich Gamma et al., Design Patterns, Addison –
Wesley, 1995: “Command pattern”

71

The problem

Enabling users of an interactive system to cancel the
effect of the last command

Often implemented as “Control-Z”

Should support multi-level undo-redo (“Control-Y”), with
no limitation other than a possible maximum set by the
user

72

Our working example: a text editor

Notion of “current line”.
Assume commands such as:

 Remove current line
 Replace current line by specified text
 Insert line before current position
 Swap current line with next if any
 “Global search and replace” (hereafter GSR):

replace every occurrence of a specified string by
another

 ...

This is a line-oriented view for simplicity, but the
discussion applies to more sophisticated views

73

A straightforward solution

Before performing any operation, save entire state

In the example: text being edited,
current position in text

If user issues “Undo” request, restore entire state as last
saved

But: huge waste of resources, space in particular

Intuition: only save the “diff” between states.

74

Keeping the history of the session

The history list:

history : TWO_WAY_LIST [COMMAND]

Removal SwapInsertion Insertion Insertion

Oldest Most
recent

75

What’s a “command” object?

A command object includes information about one execution
of a command by the user, sufficient to:

 Execute the command
 Cancel the command if requested later

For example, in a Removal command object, we need:

• The position of the line being removed

• The content of that line!

76

General notion of command

deferred class COMMAND feature

execute
-- Carry out one execution of this command.

undo
-- Cancel an earlier execution of this command.

end

deferred

: done
end

deferred
end

done: BOOLEAN
-- Has this command been executed?

ensure
already: done

require
already: done

77

Command class hierarchy

execute*

undo*

…

execute+

undo+

line: STRING
index: INTEGER
...

execute+

undo+

index
...

*
COMMAND

+
REMOVAL

+
INSERTION

* deferred

+ effective

78

Underlying class (from business model)

class EDIT_CONTROLLER feature
text : TWO_WAY_LIST [STRING]
remove

-- Remove line at current position.
require

not off
do

text.remove
end

put_right (line : STRING)
-- Insert line after current position.

require
not after

do
text.put_right (line)

end

... also item, index, go_ith, put_left ...
end

79

A command class (sketch, no contracts)

class REMOVAL inherit COMMAND feature
controller : EDIT_CONTROLLER

-- Access to business model.
line : STRING

-- Line being removed.
index : INTEGER

-- Position of line being removed.

execute
-- Remove current line and remember it.

do line := controller.item ; index := controller.index
controller.remove ; done := True

end

undo
-- Re-insert previously removed line.

do controller.go_i_th (index)
controller.put_left (line)

endend

80

A polymorphic data structure:

history : TWO_WAY_LIST [COMMAND]

Removal SwapInsertion Insertion Insertion

Oldest Most
recent

The history list

81

Reminder: the list of figures
class

LIST [G]
feature

...
last: G do ...
extend (x: G) do ...

end

fl : LIST [FIGURE]
r : RECTANGLE
s : SQUARE
t : TRIANGLE
p : POLYGON
...
fl.extend (p); fl.extend (t); fl.extend (s); fl.extend (r)
fl.last.display

(SQUARE)

(RECTANGLE)

(TRIANGLE)

(POLYGON)

fl

82

Reminder: the list of figures

figs : LIST [FIGURE]
p1, p2 : POLYGON
c1, c2 : CIRCLE
e : ELLIPSE

class LIST [G] feature
extend (v : G) do …

end
last : G
…

end

figs.extend (p1) ; figs.extend (c1) ; figs.extend (c2)
figs.extend (e) ; figs.extend (p2)

(POLYGON) (CIRCLE) (POLYGON)(CIRCLE) (ELLIPSE)

83

A polymorphic data structure:

history : TWO_WAY_LIST [COMMAND]

Removal SwapInsertion Insertion Insertion

Oldest Most
recent

The history list

84

Executing a user command

decode_user_request

if “Request is normal command” then
“Create command object c corresponding to user request”
history.extend (c)
c.execute

elseif “Request is UNDO” then
if not history.before then -- Ignore excessive requests

history.item.undo
history.back

end
elseif “Request is REDO” then

if not history.is_last then -- Ignore excessive requests
history.forth
history. item.execute

end
end

item

Pseudocode, see
implementation next

Removal SwapInsertion Insertion

85

Command class hierarchy

execute*

undo*

…

execute+

undo+

line: STRING
index: INTEGER
...

execute+

undo+

index
...

*
COMMAND

+
REMOVAL

+
INSERTION

* deferred

+ effective

86

Example hierarchy

FIGURE*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE
TRIANGLE

SQUARE

center * display *
rotate*

perimeter *

perimeter +perimeter +

perimeter ++ diagonal

...
...

perimeter ++

+
+

side2

* deferred

+ effective

++ redefined

perimeter ++

side1

87

Enforcing a type: the problem

fl.store (“FN")
...

-- Two years later:
fl := retrieved (“FN") -- See next
x := fl.last -- [1]
print (x.diagonal) -- [2]

What’s wrong with this?

If x is declared of type RECTANGLE, [1] is invalid.
If x is declared of type FIGURE, [2] is invalid.

88

Object-Test
Local

Enforcing a type: the Object Test

if attached {RECTANGLE} fl.retrieved ("FN") as r then

print (r.diagonal)

… Do anything else with r, guaranteed
… to be non void and of dynamic type RECTANGLE

else
print ("Too bad.")

end

Expression to be
tested

SCOPE of the Object-Test Local

89

Earlier mechanism: assignment attempt

f : FIGURE
r : RECTANGLE
...
fl.retrieve ("FN")
f := fl.last

r ?= f

if r /= Void then
print (r.diagonal)

else
print ("Too bad.")

end

90

Assignment attempt

x ?= y

with

x : A

Semantics:
 If y is attached to an object whose type conforms to

A, perform normal reference assignment.

 Otherwise, make x void.

91

The role of deferred classes

Express abstract concepts independently of
implementation

Express common elements of various implementations

Terminology: Effective = non-deferred
(i.e. fully implemented)

92

In e.g. LIST:

forth

deferred

end

A deferred feature

ensure
index = old index

require
not after

93

Deferred!

In the same class

search (x : G)
-- Move to first position after current
-- where x appears, or after if none.

do
from until after or else item = x loop

forth
end

end

“Programs with holes”

Mixing deferred and effective features

Effective!

94

“Don’t call us, we’ll call you!”

A powerful form of reuse:
 The reusable element defines a general scheme
 Specific cases fill in the holes in that scheme

Combine reuse with adaptation

95

Applications of deferred classes

Analysis and design, top-down

Taxonomy

Capturing common behaviors

96

Deferred classes in EiffelBase

CONTAINER*

BOX* COLLECTION* TRAVERSABLE*

FINITE* INFINITE*

BOUNDED* UNBOUNDED* COUNTABLE*

RESIZABLE*

BAG* SET* HIERARCHICAL* LINEAR*

TABLE* ACTIVE* INTEGER_
INTERVAL

* BILINEAR*

INDEXABLE* CURSOR_
STRUCTURE

* DISPENSER* SEQUENCE*

ARRAY STRING HASH_TABLE STACK* QUEUE*

… …

* deferred

97

Java and .NET solution

Single inheritance only for classes
Multiple inheritance from interfaces

An interface is like a fully deferred class, with no
implementations (do clauses), no attributes (and also no
contracts)

98

Multiple inheritance: Combining abstractions

COMPARABLE NUMERIC

STRING COMPLEX

INTEGER

REAL

<, <=,
>, >=,
…

+, –,
∗, /
…

(total order
relation)

(commutative
ring)

99

How do we write COMPARABLE ?

deferred class COMPARABLE feature

end

less alias "<" (x : COMPARABLE): BOOLEAN
deferred
end

less_equal alias "<=" (x : COMPARABLE): BOOLEAN
do

Result := (Current < x or (Current = x))
end

greater alias ">" (x : COMPARABLE): BOOLEAN
do Result := (x < Current) end

greater_equal alias ">=" (x : COMPARABLE): BOOLEAN
do Result := (x <= Current) end

100

Deferred classes vs Java interfaces

Interfaces are “entirely deferred”:
Deferred features only

Deferred classes can include effective features, which
rely on deferred ones, as in the COMPARABLE example

Flexible mechanism to implement abstractions
progressively

101

Applications of deferred classes

Abstraction

Taxonomy

High-level analysis and design

…

102

Television station example

class SCHEDULE feature
segments : LIST [SEGMENT]

end

Source: Object- Oriented Software
Construction, 2nd edition, Prentice Hall

103

Schedules

note
description :
“ 24-hour TV schedules”

deferred class SCHEDULE feature

segments : LIST [SEGMENT]
-- Successive segments.

deferred
end

air_time : DATE
-- 24-hour period
-- for this schedule.

deferred
end

set_air_time (t : DATE)
-- Assign schedule to
-- be broadcast at time t.

require
t.in_future

deferred
ensure

air_time = t
end

print
-- Produce paper version.

deferred
end

end

104

Segment

note
description : "Individual
fragments of a schedule "

deferred class SEGMENT feature
schedule : SCHEDULE

deferred end
-- Schedule to which
-- segment belongs.
index : INTEGER deferred end
-- Position of segment in
-- its schedule.
starting_time, ending_time :

INTEGER deferred end
-- Beginning and end of
-- scheduled air time.
next: SEGMENT deferred end
-- Segment to be played
-- next, if any.

sponsor : COMPANY deferred end
-- Segment’s principal sponsor.

rating : INTEGER deferred end
-- Segment’s rating (for
-- children’s viewing etc.).

… Commands such as
change_next, set_sponsor,
set_rating, omitted …

Minimum_duration : INTEGER = 30
-- Minimum length of segments,
-- in seconds.

Maximum_interval : INTEGER = 2
-- Maximum time between two
-- successive segments, in seconds.

105

Segment (continued)

invariant

in_list: (1 <= index) and (index <= schedule.segments.count)

in_schedule: schedule.segments.item (index) = Current
next_in_list: (next /= Void) implies

(schedule.segments.item (index + 1) = next)

no_next_iff_last: (next = Void) = (index = schedule.segments.count)
non_negative_rating: rating >= 0
positive_times: (starting_time > 0) and (ending_time > 0)
sufficient_duration:

ending_time – starting_time >= Minimum_duration
decent_interval :

(next.starting_time) - ending_time <= Maximum_interval
end

106

Commercial

note
description:

"Advertizing segment "
deferred class COMMERCIAL
inherit

SEGMENT
rename sponsor as advertizer end

feature
primary : PROGRAM deferred

-- Program to which this
-- commercial is attached.

primary_index : INTEGER
deferred
-- Index of primary.

set_primary (p : PROGRAM)
-- Attach commercial to p.

require
program_exists: p /= Void
same_schedule:

p.schedule = schedule
before:

p.starting_time <= starting_time
deferred
ensure

index_updated:
primary_index = p.index

primary_updated: primary = p
end

107

Commercial (continued)

invariant
meaningful_primary_index: primary_index = primary.index
primary_before: primary.starting_time <= starting_time
acceptable_sponsor: advertizer.compatible (primary.sponsor)
acceptable_rating: rating <= primary.rating

end

108

deferred class
VAT

inherit
TANK

feature
in_valve, out_valve : VALVE

-- Fill the vat.
require

in_valve.open
out_valve.closed

deferred
ensure

in_valve.closed
out_valve.closed
is_full

end

empty, is_full, is_empty, gauge, maximum, ... [Other features] ...

invariant
is_full = (gauge >= 0.97 * maximum) and (gauge <= 1.03 * maximum)

end

Chemical plant example

109

Contracts and inheritance

Issue: what happens, under inheritance, to

 Class invariants?

 Routine preconditions and postconditions?

110

Invariants

Invariant Inheritance rule:
 The invariant of a class automatically includes the

invariant clauses from all its parents,
“and”-ed.

Accumulated result visible in flat and interface forms.

111

Contracts and inheritance

r
require
γ

ensure
δ

r
require
α

ensure
β

a1 : A
a1.r (…)
…

Correct call in C:
if a1.α then

a1.r (...)
-- Here a1.β holds

end

r ++

C A

D B

client of

inherits from

++ redefinition

112

Assertion redeclaration rule

When redeclaring a routine, we may only:

 Keep or weaken the precondition

 Keep or strengthen the postcondition

113

A simple language rule does the trick!

Redefined version may have nothing (assertions kept by
default), or

require else new_pre
ensure then new_post

Resulting assertions are:
 original_precondition or new_pre

 original_postcondition and new_post

Assertion redeclaration rule in Eiffel

114

What we have seen

Deferred classes and their role in software analysis and
design

Contracts and inheritance

Finding out the “real” type of an object

115

Combining abstractions

Given the classes

 TRAIN_CAR, RESTAURANT

how would you implement a DINER?

116

Examples of multiple inheritance

Combining separate abstractions:

 Restaurant, train car
 Calculator, watch
 Plane, asset
 Home, vehicle
 Tram, bus

117

Warning

Forget all you have heard!
Multiple inheritance is not the works of the devil
Multiple inheritance is not bad for your teeth

(Even though Microsoft Word apparently does not like it:

)

118

This is repeated, not just multiple inheritance

A

D

B C

A

D

Not the basic case!
(Although it does arise often; why?)

119

Another warning

The language part of this lecture are Eiffel-oriented

Java and C# mechanisms (single inheritance from classes,
multiple inheritance from interfaces) will also be discussed

C++ also has multiple inheritance, but I will not try to
describe it

120

Composite figures

121

Multiple inheritance: Composite figures

A composite figure

Simple figures

122

Defining the notion of composite figure

COMPOSITE_
FIGURE

center
display
hide
rotate
move
…

count
put
remove
…

FIGURE
LIST

[FIGURE]

123

In the overall structure

COMPOSITE_
FIGURE

FIGURE LIST
[FIGURE]

OPEN_
FIGURE

CLOSED_
FIGURE

SEGMENT POLYLINE POLYGON ELLIPSE

RECTANGLE

SQUARE

CIRCLE
TRIANGLE

perimeter+

perimeter*

perimeter++

diagonal

perimeter++

perimeter++

perimeter+

124

A composite figure as a list

Cursor

item

forth

after

125

Composite figures

class COMPOSITE_FIGURE inherit
FIGURE
LIST [FIGURE]

feature
display

-- Display each constituent figure in turn.
do

acrossCurrent as c loop

c.item.display
endend

... Similarly for move, rotate etc. ...
end

Requires dynamic
binding

126

Going one level of abstraction higher

A simpler form of procedures display, move etc. can be
obtained through the use of iterators

Use agents for that purpose

127

Multiple inheritance: Combining abstractions

COMPARABLE NUMERIC

STRING COMPLEX

INTEGER

REAL

<, <=,
>, >=,
…

+, –,
∗, /
…

(total order
relation)

(commutative
ring)

128

The Java-C# solution

No multiple inheritance for classes

“Interfaces”: specification only (but no contracts)
 Similar to completely deferred classes (with no

effective feature)

A class may inherit from:
 At most one class
 Any number of interfaces

129

Multiple inheritance: Combining abstractions

COMPARABLE NUMERIC

STRING COMPLEX

INTEGER

REAL

<, <=,
>, >=,
…

+, –,
∗, /
…

(total order
relation)

(commutative
ring)

130

How do we write COMPARABLE?

deferred class COMPARABLE [G] feature

end

less alias "<" (x : COMPARABLE [G]): BOOLEAN
deferred
end

less_equal alias "<=" (x : COMPARABLE [G]): BOOLEAN
do

Result := (Current < x or (Current = x))
end

greater alias ">" (x : COMPARABLE [G]): BOOLEAN
do Result := (x < Current) end

greater_equal alias ">=" (x : COMPARABLE [G]): BOOLEAN
do Result := (x <= Current) end

131

Lessons from this example

Typical example of program with holes

We need the full spectrum from fully abstract (fully
deferred) to fully implemented classes

Multiple inheritance is there to help us combine
abstractions

132

A common Eiffel library idiom

class ARRAYED_LIST [G] inherit
LIST [G]
ARRAY [G]

feature
… Implement LIST features using ARRAY features …

end

For example:
i_th (i : INTEGER): G

-- Element of index `i’.
do

Result := item (i)
end

Feature of ARRAY

133

Could use delegation instead

class ARRAYED_LIST [G] inherit
LIST [G]

feature
rep : LIST [G]
… Implement LIST features using ARRAY features

applied to rep …

end For example:
i_th (i : INTEGER): G

-- Element of index `i’.
do

Result := rep  item (i)
end

134

Non-conforming inheritance

class
ARRAYED_LIST [G]

inherit
LIST [G]

ARRAY [G]

feature
… Implement LIST features using ARRAY features

…
end

inherit {NONE }

ARRAYLIST

ARRAYED
_LIST

Non-conforming
inheritance

135

Multiple inheritance: Name clashes

f

C

f A B

?

136

Resolving name clashes

f

rename f as A_f

C

f A B

A_f, f

137

Consequences of renaming

a1 : A
b1 : B
c1 : C
...
c1.f
c1.A_f
a1.f
b1.f

rename f as A_f

C

f A B

A_f, f

f

Invalid:
 a1.A_f
b1.A_f

138

Are all name clashes bad?

A name clash must be removed unless it is:
 Under repeated inheritance (i.e. not a real clash)

 Between features of which at most one is effective
(i.e. others are deferred)

139

Another application of renaming

Provide locally better adapted terminology.
Example: child (TREE); subwindow (WINDOW)

140

Renaming to improve feature terminology

‘‘Graphical’’ features: height, width, change_height, change_width,
xpos, ypos, move...
‘‘Hierarchical’’ features: superwindow, subwindows,
change_subwindow, add_subwindow...

class WINDOW inherit
RECTANGLE
TREE [WINDOW]

rename
parent as superwindow,
children as subwindows,
add_child as add_subwindow
…

end
feature

...
end

BUT: see style
rules about

uniformity of
feature names

141

Feature merging

A B C

D

f +f * f *

∗ Deferred
+ Effective

142

Feature merging: with different names

A B C

D

h +g * f *

∗ Deferred
+ Effective

Renaming

g f h f

class
D

inherit
A

rename
g as f

end
B
C

rename
h as f

end
feature

...
end

143

Feature merging: effective features

A B C

D

f +f + f +

∗ Deferred
+ Effective
-- Undefine

f --
f --

144

Undefinition

deferred class
T

inherit
S

undefine v end

feature

...

end

145

Merging through undefinition

class
D

inherit
A

undefine f end
B
C

undefine f end
feature

...
end

A B C

D

f +f + f +

f --
f --

∗ Deferred
+ Effective
-- Undefine

146

Merging effective features with different names

A B C

D

h +f + g +

f --

f --

class
D

inherit
A
undefine f end

B
rename

g as f
undefine f
end

C
rename

h as f
end

feature ... end

h f

g f

147

Acceptable name clashes

If inherited features have all the same names, there is no
harmful name clash if:
 They all have compatible signatures
 At most one of them is effective

Semantics of such a case:
 Merge all features into one
 If there is an effective feature, it imposes its

implementation

148

Feature merging: effective features

a1: A b1: B c1: C d1: D
a1.g b1.f c1.h d1.f

A B C

D

g+ f+ h+

g f h f
f- f-

149

A special case of multiple inheritance

Allow a class to have two or
more parents.

Examples that come to mind:
ASSISTANT inherits from
TEACHER and STUDENT. TEACHER STUDENT

ASSISTANT

UNIVERSITY
_MEMBER id

This is a case of repeated inheritance

????

????

150

Indirect and direct repeated inheritance

A

D

B C

A

D

151

Multiple is also repeated inheritance

A typical case:

copy ++

is_equal ++

copy
is_equal

??

copy C_copy
is_equal C_is_equal

CLIST

D

ANY

152

Acceptable name clashes

If inherited features have all the same names, there is no
harmful name clash if:

 They all have compatible signatures
 At most one of them is effective

Semantics of such a case:
 Merge all features into one
 If there is an effective feature, it imposes its

implementation

153

Sharing and replication

Features such as f, not renamed along any of the
inheritance paths, will be shared.
Features such as g, inherited under different names, will be
replicated.

A

B C

D

f
g

g g_b g g_c

154

The need for select

A potential ambiguity arises because of polymorphism and
dynamic binding:

a1 : ANY
d1 : D

…

a1 := d1
a.copy (…)

copy ++

is_equal ++

copy C_copy
is_equal C_is_equal

CLIST

D

copy
is_equalANY

155

Removing the ambiguity

class
D

inherit
LIST [T]

select
copy,
is_equal

end

C
rename

copy as C_copy,
is_equal as C_is_equal,

...
end

156

When is a name clash acceptable?

(Between n features of a class, all with the same name,
immediate or inherited.)

 They must all have compatible signatures.

 If more than one is effective, they must all come
from a common ancestor feature under repeated
inheritance.

157

What we have seen

A number of games one can play with inheritance:
 Multiple inheritance
 Feature merging
 Repeated inheritance

	Genericity & Inheritance����Bertrand Meyer�ETH Zurich, Switzerland�Eiffel Software, Santa Barbara��Epita, Paris, 31 March 2010
	On the menu
	Extending the basic notion of class
	Extending the basic notion of class
	Genericity
	Genericity: ensuring type safety
	Possible approaches
	A generic class
	Using generic derivations
	Static typing
	Using genericity
	What is a type?
	A generic class
	Reminder: the dual nature of classes
	Reminder: how the two views match
	Extending the basic notion of class
	Inheritance basics
	Terminology
	Example hierarchy (from Traffic)
	Features in the example
	Inheriting features
	Inherited features
	Definitions: kinds of feature
	Polymorphic assignment
	Assignments
	Polymorphism is also for argument passing
	Definitions: Polymorphism
	Definitions (Static and dynamic type)
	Static and dynamic type
	Basic type property
	Static typing
	Inheritance and static typing
	Conformance: full definition
	Static typing (reminder)
	Another example hierarchy
	Redefinition 1: polygons
	Redefinition 2: rectangles
	Inheritance, typing and polymorphism
	Dynamic binding
	Definitions (Dynamic binding)
	Binding and typing
	Without dynamic binding?
	With inheritance and associated techniques
	Inheritance: summary 1
	Redefinition
	Redefinition 2: LINE_VEHICLE
	Dynamic binding
	Dynamic binding
	Extending the basic notion of class
	Extending the basic notion of class
	Conformance
	Polymorphic data structures
	Definition (Polymorphism, adapted)
	What we have seen
	Our program for the second part
	Genericity (reminder)
	A generic class (reminder)
	Using generic derivations (reminder)
	Genericity: summary 1
	Definition: Type
	Combining genericity with inheritance
	Genericity + inheritance 1: Constrained genericity
	Adding two vectors
	Constrained genericity
	The solution
	Improving the solution
	Combining genericity with inheritance
	Genericity + inheritance 2: Polymorphic data structures
	Example hierarchy
	Another application: undoing-redoing
	The problem
	Our working example: a text editor
	A straightforward solution
	Keeping the history of the session
	What’s a “command” object?
	General notion of command
	Command class hierarchy
	Underlying class (from business model)
	A command class (sketch, no contracts)
	The history list
	Reminder: the list of figures
	Reminder: the list of figures
	The history list
	Executing a user command
	Command class hierarchy
	Example hierarchy
	Enforcing a type: the problem
	Enforcing a type: the Object Test
	Earlier mechanism: assignment attempt
	Assignment attempt
	The role of deferred classes
	A deferred feature
	Mixing deferred and effective features
	“Don’t call us, we’ll call you!”
	Applications of deferred classes
	Deferred classes in EiffelBase
	Java and .NET solution
	Multiple inheritance: Combining abstractions
	How do we write COMPARABLE ?
	Deferred classes vs Java interfaces
	Applications of deferred classes
	Television station example
	Schedules
	Segment
	Segment (continued)
	Commercial
	Commercial (continued)
	Chemical plant example
	Contracts and inheritance
	Invariants
	Contracts and inheritance
	Assertion redeclaration rule
	Assertion redeclaration rule in Eiffel
	What we have seen
	Combining abstractions
	Examples of multiple inheritance
	Warning
	This is repeated, not just multiple inheritance
	Another warning
	Composite figures
	Multiple inheritance: Composite figures
	Defining the notion of composite figure
	In the overall structure
	A composite figure as a list
	Composite figures
	Going one level of abstraction higher
	Multiple inheritance: Combining abstractions
	The Java-C# solution
	Multiple inheritance: Combining abstractions
	How do we write COMPARABLE?
	Lessons from this example
	A common Eiffel library idiom
	Could use delegation instead
	Non-conforming inheritance
	Multiple inheritance: Name clashes
	Resolving name clashes
	Consequences of renaming
	Are all name clashes bad?
	Another application of renaming
	Renaming to improve feature terminology
	Feature merging
	Feature merging: with different names
	Feature merging: effective features
	Undefinition
	Merging through undefinition
	Merging effective features with different names
	Acceptable name clashes
	Feature merging: effective features
	A special case of multiple inheritance
	Indirect and direct repeated inheritance
	Multiple is also repeated inheritance
	Acceptable name clashes
	Sharing and replication
	The need for select
	Removing the ambiguity
	When is a name clash acceptable?
	What we have seen

