
Software Architecture for
Generic Image Processing Tools

Roland Levillain

Laboratoire de Recherche et Développement de l’EPITA (LRDE)

Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge (LIGM)
Équipe A3SI, ESIEE Paris

Séminaire LRDE
28 avril 2010

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 1



A Generic and Reusable Foreword Slide

What is the problem? Most image processing frameworks not
generic and reusable enough.

Why is it interesting? Genericity = effective reusability.
How can we address this? Using a paradigm of static generic

programming.
What are the benefits? Design, implement and reuse without usual

constraints.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 2



A Generic and Reusable Foreword Slide

What is the problem? Most image processing frameworks not
generic and reusable enough.

Why is it interesting? Genericity = effective reusability.
How can we address this? Using a paradigm of static generic

programming.
What are the benefits? Design, implement and reuse without usual

constraints.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 2



A Generic and Reusable Foreword Slide

What is the problem? Most image processing frameworks not
generic and reusable enough.

Why is it interesting? Genericity = effective reusability.
How can we address this? Using a paradigm of static generic

programming.
What are the benefits? Design, implement and reuse without usual

constraints.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 2



A Generic and Reusable Foreword Slide

What is the problem? Most image processing frameworks not
generic and reusable enough.

Why is it interesting? Genericity = effective reusability.
How can we address this? Using a paradigm of static generic

programming.
What are the benefits? Design, implement and reuse without usual

constraints.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 2



A Generic and Reusable Foreword Slide

What is the problem? Most image processing frameworks not
generic and reusable enough.

Why is it interesting? Genericity = effective reusability.
How can we address this? Using a paradigm of static generic

programming.
What are the benefits? Design, implement and reuse without usual

constraints.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 2



A Few Examples from the Real LifeTM

Value Type
Issue I must process images with 12-bit values, but my

algorithm only handle 8-bit inputs.
Solution 1 Resample 12-bit data onto 8-bit data?

→ Deterioration.
Solution 2 Rewrite all algorithms using the biggest floating-point

value type (e.g., double or long double)?
→ Time and space cost.
→ Does not handle all value types (non-scalars, etc.)
→ No type-checking: e.g. one can mix up binary images

with floating-point value images.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 3



A Few Examples from the Real LifeTM

Value Type
Issue I must process images with 12-bit values, but my

algorithm only handle 8-bit inputs.
Solution 1 Resample 12-bit data onto 8-bit data?

→ Deterioration.
Solution 2 Rewrite all algorithms using the biggest floating-point

value type (e.g., double or long double)?
→ Time and space cost.
→ Does not handle all value types (non-scalars, etc.)
→ No type-checking: e.g. one can mix up binary images

with floating-point value images.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 3



A Few Examples from the Real LifeTM

Value Type
Issue I must process images with 12-bit values, but my

algorithm only handle 8-bit inputs.
Solution 1 Resample 12-bit data onto 8-bit data?

→ Deterioration.
Solution 2 Rewrite all algorithms using the biggest floating-point

value type (e.g., double or long double)?
→ Time and space cost.
→ Does not handle all value types (non-scalars, etc.)
→ No type-checking: e.g. one can mix up binary images

with floating-point value images.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 3



A Few Examples from the Real LifeTM(cont.)

Image Domain
Issue I need to process a subset s of an image (e.g., a region).

Solution 1 Create a new input image (cropping)?
→ May not fit if s is not a box.
→ Image copy (time and space cost).

Solution 2 Rewrite the algorithm to have it take an additional mask
(region of interest)?

→ Clutters code with details related to a specific use case.
→ Only address the case of the considered algorithm.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 4



A Few Examples from the Real LifeTM(cont.)

Image Domain
Issue I need to process a subset s of an image (e.g., a region).

Solution 1 Create a new input image (cropping)?
→ May not fit if s is not a box.
→ Image copy (time and space cost).

Solution 2 Rewrite the algorithm to have it take an additional mask
(region of interest)?

→ Clutters code with details related to a specific use case.
→ Only address the case of the considered algorithm.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 4



A Few Examples from the Real LifeTM(cont.)

Image Domain
Issue I need to process a subset s of an image (e.g., a region).

Solution 1 Create a new input image (cropping)?
→ May not fit if s is not a box.
→ Image copy (time and space cost).

Solution 2 Rewrite the algorithm to have it take an additional mask
(region of interest)?

→ Clutters code with details related to a specific use case.
→ Only address the case of the considered algorithm.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 4



A Few Examples from the Real LifeTM(cont.)

Large Input
Issue My application must process inputs of 10 GB, but my

computer has only 4 GB RAM.
Solution 1 Downsize the input?

→ No longer the same data.
Solution 2 Split the input into several images?

→ Must collate/merge the outputs.
→ The application may not support this.

Solution 3 Change the algorithm to process the input piecewise?
→ Clutters code with details related to a specific use case.
→ Only address the case of the considered algorithm.

Solution 4 Buy more RAM? ;-)
→ But what if the address space is limited to 4 GB?

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 5



A Few Examples from the Real LifeTM(cont.)

Large Input
Issue My application must process inputs of 10 GB, but my

computer has only 4 GB RAM.
Solution 1 Downsize the input?

→ No longer the same data.
Solution 2 Split the input into several images?

→ Must collate/merge the outputs.
→ The application may not support this.

Solution 3 Change the algorithm to process the input piecewise?
→ Clutters code with details related to a specific use case.
→ Only address the case of the considered algorithm.

Solution 4 Buy more RAM? ;-)
→ But what if the address space is limited to 4 GB?

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 5



A Few Examples from the Real LifeTM(cont.)

Large Input
Issue My application must process inputs of 10 GB, but my

computer has only 4 GB RAM.
Solution 1 Downsize the input?

→ No longer the same data.
Solution 2 Split the input into several images?

→ Must collate/merge the outputs.
→ The application may not support this.

Solution 3 Change the algorithm to process the input piecewise?
→ Clutters code with details related to a specific use case.
→ Only address the case of the considered algorithm.

Solution 4 Buy more RAM? ;-)
→ But what if the address space is limited to 4 GB?

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 5



A Few Examples from the Real LifeTM(cont.)

Large Input
Issue My application must process inputs of 10 GB, but my

computer has only 4 GB RAM.
Solution 1 Downsize the input?

→ No longer the same data.
Solution 2 Split the input into several images?

→ Must collate/merge the outputs.
→ The application may not support this.

Solution 3 Change the algorithm to process the input piecewise?
→ Clutters code with details related to a specific use case.
→ Only address the case of the considered algorithm.

Solution 4 Buy more RAM? ;-)
→ But what if the address space is limited to 4 GB?

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 5



A Few Examples from the Real LifeTM(cont.)

Large Input
Issue My application must process inputs of 10 GB, but my

computer has only 4 GB RAM.
Solution 1 Downsize the input?

→ No longer the same data.
Solution 2 Split the input into several images?

→ Must collate/merge the outputs.
→ The application may not support this.

Solution 3 Change the algorithm to process the input piecewise?
→ Clutters code with details related to a specific use case.
→ Only address the case of the considered algorithm.

Solution 4 Buy more RAM? ;-)
→ But what if the address space is limited to 4 GB?

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 5



A Few Facts

There are many different images types:
2D images on regular discrete grids
3D images on regular discrete grids
Graph-based (n-dimensional) images
Histograms
Arbitrary data in n-dimensional space (why not!)
Sequences
etc.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 6



A Few Facts

There are many different images types:
2D images on regular discrete grids
3D images on regular discrete grids
Graph-based (n-dimensional) images
Histograms
Arbitrary data in n-dimensional space (why not!)
Sequences
etc.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 6



A Few Facts

There are many different images types:
2D images on regular discrete grids
3D images on regular discrete grids
Graph-based (n-dimensional) images
Histograms
Arbitrary data in n-dimensional space (why not!)
Sequences
etc.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 6



A Few Facts

There are many different images types:
2D images on regular discrete grids
3D images on regular discrete grids
Graph-based (n-dimensional) images
Histograms
Arbitrary data in n-dimensional space (why not!)
Sequences
etc.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 6



A Few Facts

There are many different images types:
2D images on regular discrete grids
3D images on regular discrete grids
Graph-based (n-dimensional) images
Histograms
Arbitrary data in n-dimensional space (why not!)
Sequences
etc.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 6



A Few Facts

There are many different images types:
2D images on regular discrete grids
3D images on regular discrete grids
Graph-based (n-dimensional) images
Histograms
Arbitrary data in n-dimensional space (why not!)
Sequences
etc.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 6



A Few Facts

There are many different images types:
2D images on regular discrete grids
3D images on regular discrete grids
Graph-based (n-dimensional) images
Histograms
Arbitrary data in n-dimensional space (why not!)
Sequences
etc.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 6



A Few Facts (cont.)

Likewise, value types are numerous:
Boolean
Integer values, which are not. . .
Gray levels, which are not. . .
Labels
Floating-point values
Complex values
Colors
Points
Matrices, vectors, tensors, etc.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 7



A Few Facts (cont.)

Likewise, value types are numerous:
Boolean
Integer values, which are not. . .
Gray levels, which are not. . .
Labels
Floating-point values
Complex values
Colors
Points
Matrices, vectors, tensors, etc.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 7



A Few Facts (cont.)

Likewise, value types are numerous:
Boolean
Integer values, which are not. . .
Gray levels, which are not. . .
Labels
Floating-point values
Complex values
Colors
Points
Matrices, vectors, tensors, etc.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 7



A Few Facts (cont.)

Likewise, value types are numerous:
Boolean
Integer values, which are not. . .
Gray levels, which are not. . .
Labels
Floating-point values
Complex values
Colors
Points
Matrices, vectors, tensors, etc.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 7



A Few Facts (cont.)

Likewise, value types are numerous:
Boolean
Integer values, which are not. . .
Gray levels, which are not. . .
Labels
Floating-point values
Complex values
Colors
Points
Matrices, vectors, tensors, etc.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 7



A Few Facts (cont.)

Likewise, value types are numerous:
Boolean
Integer values, which are not. . .
Gray levels, which are not. . .
Labels
Floating-point values
Complex values
Colors
Points
Matrices, vectors, tensors, etc.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 7



A Few Facts (cont.)

Likewise, value types are numerous:
Boolean
Integer values, which are not. . .
Gray levels, which are not. . .
Labels
Floating-point values
Complex values
Colors
Points
Matrices, vectors, tensors, etc.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 7



A Few Facts (cont.)

Likewise, value types are numerous:
Boolean
Integer values, which are not. . .
Gray levels, which are not. . .
Labels
Floating-point values
Complex values
Colors
Points
Matrices, vectors, tensors, etc.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 7



A Few Facts (cont.)

Likewise, value types are numerous:
Boolean
Integer values, which are not. . .
Gray levels, which are not. . .
Labels
Floating-point values
Complex values
Colors
Points
Matrices, vectors, tensors, etc.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 7



A Few Facts (cont.)

Likewise, value types are numerous:
Boolean
Integer values, which are not. . .
Gray levels, which are not. . .
Labels
Floating-point values
Complex values
Colors
Points
Matrices, vectors, tensors, etc.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 7



A Few Facts (cont.)

Likewise, value types are numerous:
Boolean
Integer values, which are not. . .
Gray levels, which are not. . .
Labels
Floating-point values
Complex values
Colors
Points
Matrices, vectors, tensors, etc.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 7



A Few Facts (cont.)

By the way,
What is a point?
How can one define relationships such as

adjacency or neighborhood (between values)?
order (between values)?

How one can take act on
the domain of an image
its dimension
a region of interest

in any algorithm?

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 8



A Few Facts (cont.)

Many image processing software tools available corresponding to
various use cases:

Graphical User Interfaces (GUIs),
Programming libraries
Interpreters
MATLAB toolboxes
Online (Web) services,
etc.

Can we design a unique tool to embrace this diversity?

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 9



More Facts

An image processing practitioner is not necessarily a computer
scientist: its tools should be easy to use and helpful.
Research issues are long-time problems. Will this
program/language/tool be still supported in 5, 10, 15 years? Or
even be available?
Many tools are more machine- than user-friendly.

Implementation details.
Disconnected from the theoretical background.

We need effective solutions.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 10



Our Proposal

Architecture based on:
A Generic C++ Library Generic, efficient, standard and portable core.
Satellite components based on this library Command-line tools,

interpreters (interactive shells), GUIs, etc.
Some In-Between Glue Preserving the benefits of the core (genericity

and efficiency).

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 11



Our Proposal: The Olena Platform

Architecture based on:
A Generic C++ Library: The Milena Library Generic, efficient, standard

and portable core.
Satellite components based on this library Command-line tools,

interpreters (interactive shells), GUIs, etc.
Some In-Between Glue Preserving the benefits of the core (genericity

and efficiency).

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 11



Software Architecture for
Generic Image Processing Tools

1 Genericity in C++

2 Illustrations

3 Leveraging genericity outside C++

4 Conclusion and Future Work

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 12



Genericity in C++

Genericity in C++

1 Genericity in C++

2 Illustrations

3 Leveraging genericity outside C++

4 Conclusion and Future Work

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 13



Genericity in C++

A non generic algorithm

void fill(const image& ima, unsigned char v)
{

for (unsigned int r = 0; r < ima.nrows(); ++r)
for (unsigned int c = 0; c < ima.ncols(); ++c)
ima(r, c) = v;

}

This code makes a few hypotheses:
1 2D Image.
2 Point with nonnegative integers coordinates starting at 0.
3 Values compatible with unsigned char.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 14



Genericity in C++

A non generic algorithm

void fill(const image& ima, unsigned char v)
{

for (unsigned int r = 0; r < ima.nrows(); ++r)
for (unsigned int c = 0; c < ima.ncols(); ++c)
ima(r, c) = v;

}

This code makes a few hypotheses:
1 2D Image.
2 Point with nonnegative integers coordinates starting at 0.
3 Values compatible with unsigned char.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 14



Genericity in C++

A non generic algorithm

void fill(const image& ima, unsigned char v)
{

for (unsigned int r = 0; r < ima.nrows(); ++r)
for (unsigned int c = 0; c < ima.ncols(); ++c)
ima(r, c) = v;

}

This code makes a few hypotheses:
1 2D Image.
2 Point with nonnegative integers coordinates starting at 0.
3 Values compatible with unsigned char.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 14



Genericity in C++

A non generic algorithm

void fill(const image& ima, unsigned char v)
{

for (unsigned int r = 0; r < ima.nrows(); ++r)
for (unsigned int c = 0; c < ima.ncols(); ++c)
ima(r, c) = v;

}

This code makes a few hypotheses:
1 2D Image.
2 Point with nonnegative integers coordinates starting at 0.
3 Values compatible with unsigned char.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 14



Genericity in C++

A non generic algorithm

void fill(const image& ima, unsigned char v)
{

for (unsigned int r = 0; r < ima.nrows(); ++r)
for (unsigned int c = 0; c < ima.ncols(); ++c)
ima(r, c) = v;

}

This code makes a few hypotheses:
1 2D Image.
2 Point with nonnegative integers coordinates starting at 0.
3 Values compatible with unsigned char.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 14



Genericity in C++

Limits of this first non generic algorithm

This code cannot handle (as-is) any of the following variations:

1 3D Image
2 Negative coordinates.
3 Floating-point coordinates.
4 12-bit integer values.
5 Floating-point values.
6 Multivalued image (e.g., a color or n-channel image).

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 15



Genericity in C++

Limits of this first non generic algorithm

This code cannot handle (as-is) any of the following variations:

1 3D Image
2 Negative coordinates.
3 Floating-point coordinates.
4 12-bit integer values.
5 Floating-point values.
6 Multivalued image (e.g., a color or n-channel image).

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 15



Genericity in C++

Limits of this first non generic algorithm

This code cannot handle (as-is) any of the following variations:

1 3D Image
2 Negative coordinates.
3 Floating-point coordinates.
4 12-bit integer values.
5 Floating-point values.
6 Multivalued image (e.g., a color or n-channel image).

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 15



Genericity in C++

Limits of this first non generic algorithm

This code cannot handle (as-is) any of the following variations:

1 3D Image
2 Negative coordinates.
3 Floating-point coordinates.
4 12-bit integer values.
5 Floating-point values.
6 Multivalued image (e.g., a color or n-channel image).

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 15



Genericity in C++

Limits of this first non generic algorithm

This code cannot handle (as-is) any of the following variations:

1 3D Image
2 Negative coordinates.
3 Floating-point coordinates.
4 12-bit integer values.
5 Floating-point values.
6 Multivalued image (e.g., a color or n-channel image).

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 15



Genericity in C++

Limits of this first non generic algorithm

This code cannot handle (as-is) any of the following variations:

1 3D Image
2 Negative coordinates.
3 Floating-point coordinates.
4 12-bit integer values.
5 Floating-point values.
6 Multivalued image (e.g., a color or n-channel image).

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 15



Genericity in C++

Limits of this first non generic algorithm

This code cannot handle (as-is) any of the following variations:

1 3D Image
2 Negative coordinates.
3 Floating-point coordinates.
4 12-bit integer values.
5 Floating-point values.
6 Multivalued image (e.g., a color or n-channel image).

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 15



Genericity in C++

Rephrasing the issue

With symbolic notations:

∀p ∈ D ima(p)← v

where D is the domain of ima.
That is, in pseudocode :

for_all(p) ima(p) = v;

Where p is an object traversing ima’s domain.
And a few more details due to C++’s idiosyncrasies.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 16



Genericity in C++

Rephrasing the issue

With symbolic notations:

∀p ∈ D ima(p)← v

where D is the domain of ima.
That is, in pseudocode :

for_all(p) ima(p) = v;

Where p is an object traversing ima’s domain.
And a few more details due to C++’s idiosyncrasies.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 16



Genericity in C++

Rephrasing the issue

With symbolic notations:

∀p ∈ D ima(p)← v

where D is the domain of ima.
That is, in code :

for_all(p) ima(p) = v;

Where p is an object traversing ima’s domain.
And a few more details due to C++’s idiosyncrasies.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 16



Genericity in C++

Rephrasing the issue

With symbolic notations:

∀p ∈ D ima(p)← v

where D is the domain of ima.
That is, in code :

for_all(p) ima(p) = v;

Where p is an object traversing ima’s domain.
And a few more details due to C++’s idiosyncrasies.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 16



Genericity in C++

A generic version

template <typename I, typename V>
void fill(Image<I>& ima_, const V& v)
{

I& ima = exact(ima_);
mln_piter(I) p(ima.domain());
for_all(p)
ima(p) = v;

}

Not dependency regarding characteristics of the input image type.
Small yet readable.
Compatible with all previously mentioned cases.

→ A generic implementation.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 17



Genericity in C++

A generic version

template <typename I, typename V>
void fill(Image<I>& ima_, const V& v)
{

I& ima = exact(ima_);
mln_piter(I) p(ima.domain());
for_all(p)
ima(p) = v;

}

Not dependency regarding characteristics of the input image type.
Small yet readable.
Compatible with all previously mentioned cases.

→ A generic implementation.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 17



Genericity in C++

A generic version

template <typename I, typename V>
void fill(Image<I>& ima_, const V& v)
{

I& ima = exact(ima_);
mln_piter(I) p(ima.domain());
for_all(p)
ima(p) = v;

}

Not dependency regarding characteristics of the input image type.
Small yet readable.
Compatible with all previously mentioned cases.

→ A generic implementation.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 17



Genericity in C++

A generic version

template <typename I, typename V>
void fill(Image<I>& ima_, const V& v)
{

I& ima = exact(ima_);
mln_piter(I) p(ima.domain());
for_all(p)
ima(p) = v;

}

Not dependency regarding characteristics of the input image type.
Small yet readable.
Compatible with all previously mentioned cases.

→ A generic implementation.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 17



Genericity in C++

A generic version

template <typename I, typename V>
void fill(Image<I>& ima_, const V& v)
{

I& ima = exact(ima_);
mln_piter(I) p(ima.domain());
for_all(p)
ima(p) = v;

}

Not dependency regarding characteristics of the input image type.
Small yet readable.
Compatible with all previously mentioned cases.

→ A generic implementation.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 17



Genericity in C++

Generic Programming in a Nutshell

Types can become parameters of data structures and routines:
template <typename T>

class image2d<T>

template <typename I, typename V>

void fill(I& ima, const V& v)

Static (compile-time) mechanism: no run-time overhead.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 18



Genericity in C++

Generic Programming in a Nutshell (cont.)

Templates can be seen as generators:

template <typename T> T f(T x) { . . . } ≡ fT :

{
T → T
x 7→ . . .

Actually, C++ compilers implement them by generating the code of
given routine or data structure for each used combination of
parameters (“template instantiation”).

→ Compile-time (and space) cost, but...
→ Dedicated code, enabling optimizations!

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 19



Genericity in C++

Generic-Aware Solutions to Previous Problems

Value Type
Issue I must process images with 12-bit values, but my

algorithm only handle 8-bit inputs.
Solution Write algorithms not bound to a specific a value type.

Example template <typename I, typename V>
void fill(I& ima, const V& val)
{

mln_piter(I) p(ima.domain());

for_all(p)

ima(p) = val;

}

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 20



Genericity in C++

Generic-Aware Solutions to Previous Problems (cont.)

Image Domain
Issue I need to process a subset s of an image (e.g., a region).

Solution Create a “proxy” image type (a “view”) altering the domain
of the underlying image.

Example masked = ima | s; // Masked input.

fill(masked, 51); // Fill ‘ima’ on ‘s’ only.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 21



Genericity in C++

Generic-Aware Solutions to Previous Problems (cont.)

Large Input
Issue My application must process inputs of 10 GB, but my

computer has only 4 GB RAM.
Solution Create a tiled image type storing its data in the file system

and hiding the task of loading and writing data.

Example tiled_image2d <int_u8> ima;

load(ima, "input.dicom"); // No data loaded here.

process(ima); // Data loaded/stored piecewise.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 22



Genericity in C++

Beyond C++ Genericity: Abstractions and Interfaces

With Generic Programming (GP):
Algorithms are no longer defined in terms of features specific to
an image type.

for (unsigned int r = 0; r < input.nrows(); ++r)
for (unsigned int c = 0; c < input.ncols(); ++c)
...

Instead, abstractions are used.

mln_piter(I) p(input.domain()); // ‘p’ is a site iterator.
for_all(p) // ∀p . . .
...

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 23



Genericity in C++

The Image Abstraction

The interface of an image type includes:
Associated types.

typedef domain_t; // Type of the domain (site set).

typedef site; // Type of a site.

typedef piter; // Associated iterator type.

typedef value; // Type of a value.

typedef vset; // Type of the set of values.

Methods (services provided by the image).

value operator()(site p); // ‘ima(p)’ → value

bool has(site p); // Does ‘p’ belongs to ‘ima’?

vset values(); // Return the domain (D).
domain_t domain(); // Return the value set (V).

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 24



Genericity in C++

Other Abstractions

Site Set Sets of sites must respect this interface.

typedef site; // The type of the sites.

typedef fwd_piter; // Forward iterator on the set’s sites.

typedef bkd_piter; // Backward iterator on the set’s sites.

bool has(psite p); // Does ‘p’ belongs to this set?

Also: Point Site, Delta Point Site, Site Iterator, Value,
Value Set, Value Iterator, Neighborhood, Window,
Weighted Window, Accumulator, Function, . . .

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 25



Genericity in C++

Constrained Genericity

Adding constraints on parameters.

template <typename I>
void fill(Image<I>& ima_); // ‘I’ must be an image type.

Accessing specific features of I.

// ...

I& ima = exact(ima_);

unsigned nr = ima.nrows(); // ‘I’ provides ‘nrows’.

// ...

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 26



Genericity in C++

Beyond C++ Genericity: Efficiency

Compiled Code (C++)
Fast
Safe

Specialization mechanism and static dispatch based on properties
attached to each type.

More expressive than bare overloading.
More efficient than (dynamic) polymorphic methods.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 27



Genericity in C++

A Generic Algorithm

namespace generic
{

template <typename I, typename V>
void fill(Image<I>& ima_, const V& v)
{

I& ima = exact(ima_);

mln_piter(I) p(ima.domain());

for_all(p)

ima(p) = v;

}

}

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 28



Genericity in C++

A Specialized Algorithm

template <typename I, typename V>
inline
void fill_one_block(Image<I>& ima_, const V& v)
{

I& ima = exact(ima_);

data::memset_(ima, ima.point_at_index(0), v,

opt::nelements(ima));

}

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 29



Genericity in C++

Property-Based Selection

How one can help the compiler find the best (a better) algorithm?

1. Introducing a function (“facade”) checking the input type’s
properties and delegating to the best version based on them.

// Facade.

template <typename I, typename V>
inline
void fill(Image<I>& ima, const V& val)
{

// Dispatch following the ‘‘value storage’’ property.

fill_dispatch(mln_trait_image_value_access(I)(),

ima, val);

}

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 30



Genericity in C++

Property-Based Selection (cont.)

2. Providing a default delegation calling the generic version.

// Generic, slow version.

template <typename I, typename V>
void fill_dispatch(trait::image::value_access::any,

Image<I>& ima, const V& val)
{

generic::fill(ima, val);

}

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 31



Genericity in C++

Property-Based Selection (cont.)

3. Introducing delegations for images having certain properties.

// Fast version (for images with direct access to values).

template <typename I, typename V>
void fill_dispatch(trait::image::value_access::direct,

Image<I>& ima, const V& val)
{

fill_one_block(ima, val);

}

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 32



Genericity in C++

Beyond C++ Genericity: Morphers

Morphers: lightweight objects producing an image from an image
(or from several images).
Example: filling an image:
fill(ima, 42);

Likewise, but restricting the domain of ima to the subset s:
fill(ima | s, 42);

Filling (only) the red channel of an RGB color image:
fill(red << rgb_ima, 42);

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 33



Genericity in C++

Beyond C++ Genericity: Morphers

Morphers: lightweight objects producing an image from an image
(or from several images).
Example: filling an image:
fill(ima, 42);

Likewise, but restricting the domain of ima to the subset s:
fill(ima | s, 42);

Filling (only) the red channel of an RGB color image:
fill(red << rgb_ima, 42);

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 33



Genericity in C++

Beyond C++ Genericity: Morphers

Morphers: lightweight objects producing an image from an image
(or from several images).
Example: filling an image:
fill(ima, 42);

Likewise, but restricting the domain of ima to the subset s:
fill(ima | s, 42);

Filling (only) the red channel of an RGB color image:
fill(red << rgb_ima, 42);

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 33



Genericity in C++

Beyond C++ Genericity: Morphers

Morphers: lightweight objects producing an image from an image
(or from several images).
Example: filling an image:
fill(ima, 42);

Likewise, but restricting the domain of ima to the subset s:
fill(ima | s, 42);

Filling (only) the red channel of an RGB color image:
fill(red << rgb_ima, 42);

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 33



Genericity in C++

More Morphers

Many morphers provided by Milena:
Wrapping an image (cylinder, torus, etc.).
Stacking several images.
Taking a slice from a 3D volume and seeing it as a 2D image.
Applying a geometrical transformation.
Adding tracing, logging or profiling mechanisms.
“Synthetic” images computed on-the-fly.
. . .

These morphers are themselves generic.
Compose and reuse at will.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 34



Genericity in C++

More Morphers

Many morphers provided by Milena:
Wrapping an image (cylinder, torus, etc.).
Stacking several images.
Taking a slice from a 3D volume and seeing it as a 2D image.
Applying a geometrical transformation.
Adding tracing, logging or profiling mechanisms.
“Synthetic” images computed on-the-fly.
. . .

These morphers are themselves generic.
Compose and reuse at will.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 34



Genericity in C++

Beyond C++ Genericity: SCOOP

→ A new programming paradigm: Static C++ Object Oriented
Programming (SCOOP) based on template metaprogramming
(i.e., “programs” executed by the C++ compiler)
[Burrus et al., 2003, Géraud and Levillain, 2008].

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 35



Genericity in C++

Alternatives to Static Genericity

Hand-made Code Duplication Error prone, does not scale.
Dynamic Genericity Using polymorphic methods (virtual

functions): run-time cost, many
limitations.

Dangerous Genericity Using void* instead of T (type erasure):
error prone, no possible specialization.

No genericity If you only need algorithms working on
a single data structure (doubtful!).

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 36



Illustrations

Illustrations

1 Genericity in C++

2 Illustrations

3 Leveraging genericity outside C++

4 Conclusion and Future Work

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 37



Illustrations

A Simple Milena Processing Chain

A generic code [Levillain et al., 2009]:

closed = morpho::closing::area(ima, nbh, lambda);
wshed = morpho::watershed::flooding(closed, nbh, nb);

Go to full code

Inputs:
ima Input image (e.g, image2d<int>, image3d<float>,

graph image, etc.).
nbh Neighborhood (e.g., c4, c26,

adjacent vertices neighborhood, etc.).
lambda Value of the criterion (integer).

Applicable to many different image types as-is.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 38



Illustrations

Results (2D Image)

Figure: “Classical”
image, with
4-connectivity.

Figure: Magnitude of the
gradient.

Figure: Result of the
image processing chain
on the magnitude of the
gradient.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 39



Illustrations

Results (3D Mesh)

Figure: Triangle mesh,
seen as a simplicial
2-complex.

Figure: Curvature
computed on the edges.

Figure: Result of the
image processing chain
on the curvature
computed on the edges.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 40



Illustrations

Results (Graph)

Example of data clustering using mathematical morphology methods.

Figure: Vertices of a
graph.

Figure: Distance-based
magnitude computed on
the edges of the
triangulation of the
graph.

Figure: Result of the
image processing chain
on this magnitude.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 41



Leveraging genericity outside C++

Leveraging genericity outside C++

1 Genericity in C++

2 Illustrations

3 Leveraging genericity outside C++

4 Conclusion and Future Work

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 42



Leveraging genericity outside C++

Limitations of the C++ Library Model

To benefit from this expressive power of genericity, one has to
write C++ code.
Not necessarily easy.
Each change requires recompiling.
Each use case (combination of parameters) requires recompiling.
Applying a filter to an image⇒Writing and compiling (and
possibly debugging) a (small) C++ program each time.
Constraints acceptable for a big application, but not for a small
prototype.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 43



Leveraging genericity outside C++

Using Milena Outside the C++ World: Issues

Principle: building GUI, command-line tools, interpreters on top of
the Milena library.
Classical approaches: based on library linking or dynamic module
loading.
But. . . Milena does not provide a classical library or dynamic
modules (files ending in ‘.a’, ‘.so’, ‘.lib’, ‘.dll’, ‘.dylib’,
‘.bundle’, etc.)!
Milena is composed of headers only (‘.hh’ files), since the
compilation of templates is dependent on their use.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 44



Leveraging genericity outside C++

Using Milena Outside the C++ World: Issues

Principle: building GUI, command-line tools, interpreters on top of
the Milena library.
Classical approaches: based on library linking or dynamic module
loading.
But. . . Milena does not provide a classical library or dynamic
modules (files ending in ‘.a’, ‘.so’, ‘.lib’, ‘.dll’, ‘.dylib’,
‘.bundle’, etc.)!
Milena is composed of headers only (‘.hh’ files), since the
compilation of templates is dependent on their use.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 44



Leveraging genericity outside C++

Using Milena Outside the C++ World: Solutions

Instantiated Genericity Generating a set of all interesting combinations
to produce a library, and build tools on them.

Might be costly: with A algorithms, I image types and V
values types
⇒ Instantiating and compiling A × I × V templates!
Not all these combinations might be interesting.
Limited Genericity: does not grow beyond the initial set of
chosen parameters.

→ Still a static approach, with compile-time limitations.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 45



Leveraging genericity outside C++

The Moving “IN”

Static approaches based on compiled languages (like C++) are
Efficient Many checks and optimizations are performed at

compile time.
But INflexible Once compiled, the code cannot change.

Dynamic approaches based on interpreted languages (like Python) are
Flexible E.g., class introspection, eval keyword, etc.

But INefficient Run-time checks are costly and prevent optimizations.

Yet, we want an efficient and flexible solution.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 46



Leveraging genericity outside C++

Using Milena Outside the C++ World: Solutions (cont.)

Concealed Genericity General idea: produce the desired code
on-the-fly.

Hide parameterized routines and classes behind opaque
types (proxys): the latter delegates to the former.
On-the-fly generation, instantiation, compiling and loading of
C++ code.
Only the required (interesting) code is instantiated and
compiled.
Compilation costs can be amortized by using a cache.
The use of a proxy introduces a very small run-time
overhead.

→ A static/dynamic bridge based on C++ Just-In-Time (JIT) compiling
[Duret-Lutz, 2000, Pouillard and Thivolle, 2006].

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 47



Leveraging genericity outside C++

Static/Dynamic Bridge: Just-In-Time (JIT) Compiling
and Cache

Only template code used in the program is compiled.
Each compiled function is stored into a repository (or cache).
Each time a function is needed, it is looked up in the repository (to
avoid recompiling).
Compilation costs become negligible in the long run.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 48



Leveraging genericity outside C++

Static/Dynamic Bridge: Example

dyn::include("mln/core/image/image2d.hh");

dyn::include("mln/data/fill.hh");

ctor mk_image2d_int("mln::image2d<int>");

fun fill("mln::data::fill");

var ima = mk_image2d_int(3, 3);

fill(ima, 0);

Declarative approach, but hand-made wrapping (currently).
Each routine and data structure is represented by an object.
Calling a wrapped routine triggers the JIT compiling, and caches
the products.
Not tied to Milena nor Olena: reusable technology.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 49



Leveraging genericity outside C++

Static/Dynamic Bridge: Applications

Can be used from C++ (e.g., “using Milena without seeing the
templates”).
Or from an application linked to it.
Bindings to other languages (for instance Python) can also benefit
from this approach.

dyn.include("mln/core/image/image2d.hh")

dyn.include("mln/data/fill.hh")

mk_image2d_int = dyn.ctor("mln::image2d<int>")

fill = dyn.fun("mln::data::fill")

ima = mk_image2d_int(dyn.data(3), dyn.data(3))

fill(ima, dyn.data(0))

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 50



Leveraging genericity outside C++

The Olena Platform

Olena

Static approach Static/dynamic approach

Full genericity "Instantiated"
genericity

Full "concealed" genericity

Milena

C++ environment

C++ application

SWIG bindings
(Swilena)

Python script

Static/dynamic bridge (JIT compiling)

C++ application

SWIG bindings

Python script

Command line tools Interpreters GUIs

Algorithms Data structures Value types Image types Utilities

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 51



Conclusion and Future Work

Conclusion and Future Work

1 Genericity in C++

2 Illustrations

3 Leveraging genericity outside C++

4 Conclusion and Future Work

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 52



Conclusion and Future Work

The State of the Project
Milena

Much of the efforts have been put into the Milena library.
The most advanced component of the platform so far.
Needs some polishing, but usable.
Need more documentation.
Fairly portable: GNU/Linux, Mac OS X, and should compile fine
under Cygwin and MinGW. ;-)

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 53



Conclusion and Future Work

The State of the Project (cont.)
Swilena

We provide a few Python bindings covering a small fraction of
Milena, and for a few combinations only.
Uses the Simplified Wrapper and Interface Generator (SWIG).
Relies on pre-instantiated templates.
Can be used from the Python interactive interpreter (Swilena
Python Shell)
Easily extensible.
Still, bound by the limits of the static world.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 54



Conclusion and Future Work

The State of the Project (cont.)

Milena and Swilena have been released June 14, 2009 within the
Olena 1.0 platform.

http://olena.lrde.epita.fr

We invite you to download and try it.
Olena is Free Software released under the GNU General Public
License (GNU GPL).
There is much more to say about Milena, in particular about
efficiency.
You can send questions and comments to: olena@lrde.epita.fr.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 55

http://olena.lrde.epita.fr
mailto:olena@lrde.epita.fr


Conclusion and Future Work

The State of the Project (cont.)
The Dynamic/Static Bridge

The dynamic/static bridge is still a prototype.
Tested successfully on Debian GNU/Linux 5.0 and Mac OS X 10.5
on IA-32.
A foundation for satellite components.
Goal: writing simple GUIs or image processing tools.
A promising way towards more C++ dynamic services.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 56



Conclusion and Future Work

An Improved Dynamic/Static Bridge
Wrappers Generation

Replace wrapping of each routine and data structure by a list of
declaration (e.g., as annotations in the wrapped code).
Better: generate these annotations from the code itself.
Fully automated tool.
Tricky task: requires to parse C++ code.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 57



Conclusion and Future Work

An improved dynamic/static bridge
Beyond Routines Wrapping

The dynamic/static bridge really wraps only routines: the
interfaces of classes is no taken into account.
Wrapping classes paves the way for powerful features
[Vollmann, 2000].

Class introspection/reflexion.
Dynamic class generation and more C++ JIT compiling.
Meta-Object Protocols (MOPs).

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 58



Conclusion and Future Work

A Last Word

An interesting paradox of the Olena platform:
Executing programs at compile time

Template metaprograms at the heart of Milena
(generating efficient code).

Compiling programs at run time
JIT compiling of Milena routine by the static/dynamic
bridge (to address dynamic needs).

Unusual but effective uses of the C++ language.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 59



Conclusion and Future Work

Olena Contributors

Alexandre Abraham
Alexis Angelidis
Nicolas Ballas
Christophe Berger
Sylvain Berlemont
Vincent Berruchon
Frédéric Bour
Nicolas Burrus
Edwin Carlinet
Jean Chalard
Rémi Coupet
Tristan Croiset
Jérôme Darbon
Réda Dehak
Akim Demaille
Guillaume Duhamel
Alexandre Duret-Lutz
Yoann Fabre

Étienne Folio
Renaud François
Fabien Freling
Matthieu Garrigues
Ignacy Gawedzki
Thierry Géraud
Quentin Hocquet
Yann Jacquelet
Ugo Jardonnet
Guillaume Lazzara
David Lesage
Roland Levillain
Julien Marquegnies
Thomas Moulard
Jean-Sébastien Mouret
Simon Nivault
Simon Odou
Giovanni Palma

Dimitri Papadopoulos-
Orfanos

Ludovic Perrine
Quôc Peyrot
Anthony Pinagot
Raphaël Poss
Nicolas Pouillard
Yann Régis-Gianas
Michaël Strauss
Pierre-Yves Strub
Damien Thivolle
Emmanuel Turquin
Niels Van Vliet
Astrid Wang
Nicolas Widynski
Heru Xue

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 60



Conclusion and Future Work

Thank You For Your Attention!

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 61



Conclusion and Future Work

Software Architecture for
Generic Image Processing Tools

1 Genericity in C++

2 Illustrations

3 Leveraging genericity outside C++

4 Conclusion and Future Work

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 62



Conclusion and Future Work

References I

Burrus, N., Duret-Lutz, A., Géraud, Th., Lesage, D., and Poss, R.
(2003).
A static C++ object-oriented programming (SCOOP) paradigm
mixing benefits of traditional OOP and generic programming.
In Proceedings of the Workshop on Multiple Paradigm with
Object-Oriented Languages (MPOOL), Anaheim, CA, USA.

Duret-Lutz, A. (2000).
Olena: a component-based platform for image processing, mixing
generic, generative and OO programming.
In Proceedings of the 2nd International Symposium on Generative
and Component-Based Software Engineering (GCSE)—Young
Researchers Workshop; published in “Net.ObjectDays2000”,
pages 653–659, Erfurt, Germany.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 63



Conclusion and Future Work

References II

Géraud, Th. and Levillain, R. (2008).
Semantics-driven genericity: A sequel to the static C++
object-oriented programming paradigm (SCOOP 2).
In Proceedings of the 6th International Workshop on
Multiparadigm Programming with Object-Oriented Languages
(MPOOL’08), Paphos, Cyprus.

Levillain, R., Géraud, Th., and Najman, L. (2009).
Milena: Write generic morphological algorithms once, run on many
kinds of images.
In Springer-Verlag, editor, Proceedings of the Ninth International
Symposium on Mathematical Morphology (ISMM), Lecture Notes
in Computer Science Series, Groningen, The Netherlands.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 64



Conclusion and Future Work

References III

Pouillard, N. and Thivolle, D. (2006).
Dynamization of C++ static libraries.
Technical Report 0602, EPITA Research and Development
Laboratory (LRDE).

Vollmann, D. (2000).
Metaclasses and reflection in C++.
http://www.vollmann.com/pubs/meta/meta/meta.html.

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 65

http://www.vollmann.com/pubs/meta/meta/meta.html


Conclusion and Future Work

Actual Code of the Illustrations

template <typename L, typename I, typename N>
mln_ch_value(I, L)
chain(const I& ima, const N& nbh, int lambda, L& nb)
{

mln_concrete(I) closed =
morpho::closing::area(ima, nbh, lambda);

return morpho::watershed::flooding(closed, nbh, nb);
}

Go to simplified code

Roland Levillain (EPITA, UPE) Software Architecture for Generic Image Processing Tools 28/04/2010 66


	Genericity in C++
	Illustrations
	Leveraging genericity outside C++
	Conclusion and Future Work

