
tu-logo

ur-logo

A Parallel Algorithm for Compressive Sensing

Alexandre Borghi

Laboratoire de Recherche en Informatique
Universite Paris-Sud 11

July 6 2011

A Parallel Algorithm for Compressive Sensing 1

tu-logo

ur-logo

Idea of Compressive Sensing

Compressive Sensing idea [Candès et al. 2004]:
under some sparsity assumptions one can exactly reconstruct a
signal with few measurements
Sparse signal = most of coefficients are 0 (in some basis).
Measurements need to be taken in an appropriate space.
Example: sparse gradient/measurements in Fourier domain

Frequencies kept: 22 lines passing through the zero frequency
A Parallel Algorithm for Compressive Sensing 2

tu-logo

ur-logo

Compressive Sensing [Candes, Romberg, Tao, . . .]

Wish to minimize {
minu J(u)
s.t .Au = f

with J being l1 (or the Total Variation)
where A is a compressive sensing matrix, and f the observed data

In this part of the talk, we consider a penalization approach (LASSO)

Eµ(u) = J(u) +
µ

2
‖Au − f‖22

Target: minimize Eµ(·)
many available algorithms!
mathematical design→ data structures/algorithm→ implementation
efficiency depends on the available computing technologies
⇒ ” parallel computing” capacities that are specific to each processor
⇒ not all algorithms can take benefit from available features

A Parallel Algorithm for Compressive Sensing 3

tu-logo

ur-logo

l1-Compressive Sensing

Sparsity ≡ minimizing l1-norm.

(CS)

{
minu ‖u‖1
s.t .Au = f

where
u ∈ IRn is the signal to reconstruct
f ∈ IRm is the observed data
A ∈ IRm×n is a Compressive Sensing matrix
m� n

A Parallel Algorithm for Compressive Sensing 4

tu-logo

ur-logo

Outline

1 What kind of ” parallel computing” technologies are widely available?
2 Design of an approached l1-compressive sensing algorithm (sparse

signal)

A Parallel Algorithm for Compressive Sensing 5

tu-logo

ur-logo

Parallel Many-Core Architectures: CPU

Coeur
1

Coeur
2

Coeur
3

Coeur
4

N1 N1 N1 N1

FSB

N2 partagéN2 partagé

Coeur
1

Coeur
2

Coeur
3

Coeur
4

N1+N2 N1+N2 N1+N2 N1+N2

N3 partagé

QPI

Figure: Intel CPU (left: Core 2 Quad; right: Core i7).

A Parallel Algorithm for Compressive Sensing 6

tu-logo

ur-logo

Parallel Many-Core Architectures: Cell

SPE

Locale

SPE

Locale

SPE

Locale

SPE

Locale

SPE

Locale

SPE

Locale

SPE

Locale

SPE

Locale

EIBPPE

N1

N2

Figure: Cell.

A Parallel Algorithm for Compressive Sensing 7

tu-logo

ur-logo

Parallel Many-Core Architectures: GPU

C

L
o
c
a
l
e

N1 partagé

PCI Express

C

C

C

C

C

C

C

C

L
o
c
a
l
e

C

C

C

C

C

C

C

Mémoire

...

...

C

L
o
c
a
l
e

N1 partagé

C

C

C

C

C

C

C

C

L
o
c
a
l
e

C

C

C

C

C

C

C

MémoireMémoireMémoire

C

L
o
c
a
l
e

N1 partagé

PCI Express

C

C

C

C

C

C

C

C

L
o
c
a
l
e

C

C

C

C

C

C

C

C

L
o
c
a
l
e

C

C

C

C

C

C

C
...

C

L
o
c
a
l
e

N1 partagé

C

C

C

C

C

C

C

C

L
o
c
a
l
e

C

C

C

C

C

C

C

C

L
o
c
a
l
e

C

C

C

C

C

C

C

...MémoireMémoire Mémoire MémoireMémoire Mémoire

Figure: NVIDIA GPU (left : G80; right : G200).

A Parallel Algorithm for Compressive Sensing 8

tu-logo

ur-logo

Parallel Many-Core Architectures

Restriction to Parallel Many-Core Architectures (widely available)
• Video card: NVidia→ GPU (> 96 cores)
• PC: Intel processors→ multi-core (> 4 Cores)
• Playstation 3 video game console→ Cell (6-8 cores) cheap!

Specific characteristics: GFLOPS, energy consumption, price. . .

Common features:
Parallel: composed of several computing units
Shared memory: central memory accessible from computing units
System of cache hierarchy to improve data transfer

A Parallel Algorithm for Compressive Sensing 9

tu-logo

ur-logo

Features and Requirements

Coarse parallelism: Several computational units
Multi-core, GPU, Cell
synchronization issue

Vectorization (SIMD): Process the data as a vector
alignment issue: data must be accessed at specific addresses
By far, the most important feature (because several SIMD units/core)

Memory bandwidth: Amount of data that can be transfered
data are transferred back and forth from the memory to the processor
Starvation issue: a computing unit is waiting for the data
By far, the most important issue

→ A compiler (or Matlab) tries to do that automatically
→ Performance highly depends on a successful code optimization
→ Design algorithms⇒ implementations meet these requirements

A Parallel Algorithm for Compressive Sensing 10

tu-logo

ur-logo

l1-compressive sensing

1 What kind of ” parallel” computing technologies are widely available?
2 Design of an approached l1-compressive sensing algorithm (sparse

signal)
Moreau-Yosida Regularization/Proximal Points
Proximal operator choices
Algorithm
Experiments and implementation

A Parallel Algorithm for Compressive Sensing 11

tu-logo

ur-logo

Moreau-Yosida Regularization

Recall, we wish to minimize

Eµ(u) = J(u) +
µ

2
‖Au − f‖22

Moreau-Yosida Regularization [Moreau 65, Yosida 66]:
Given a metric M and any current point u(k)

Fµ(u(k)) = inf
u∈IRn

{
Eµ(u) +

1
2
‖u − u(k)‖2M

}
.

This defines the proximal point pµ(u(k)) and is characterized by:

0 ∈ ∂
(

Eµ +
1
2
‖ · −u(k)‖2M

)
(pµ(u(k)))

That is
pµ

(
u(k)

)
= (M + ∂Eµ)

−1
(

Mu(k)
)
.

A Parallel Algorithm for Compressive Sensing 12

tu-logo

ur-logo

Proximal Operator Choices

Standard convergence result [Lemarechal 97, Rockafellar 76, . . .]:
Iterating the proximal point generates a sequence that converges
toward a minimizer of Eµ

How to choose M for parallel computations?
Rewriting (M + ∂Eµ)

−1, we have

∂J(u(k+1)) + (µAtA + M)u(k+1) = µAt f + Mu(k) .

⇒We wish µAtA + M diagonal
⇒ problem of the form `1 + ‖ · −g‖22

So we take M = (1 + ε)µId − µAtA

A Parallel Algorithm for Compressive Sensing 13

tu-logo

ur-logo

Proximal Operator Choices

With such a metric

M = (1 + ε)µId − µAtA ,

Solution is given by a shrinkage

u(k+1) =
1

(1 + ε)µ

{
µAt f + Mu(k) − sg

(
µAt f + Mu(k)

)
if
∣∣µAt f + Mu(k)

∣∣ > 1 ,

0 otherwise ,

Shrinkage has been very well studied [Chambolle, Daubechies, Elad,
Figuereido, Yin, . . .] and used in many efficient l1−CS algorithms

→ Shrinkage is easily and efficiently implemented on many-cores
→ Need to perform Au and AtAu in parallel

A is a fast transform→ good (not great) parallel and vectorized version
A is an explicit matrix→ great vectorized version but badly parallel
(bandwith issue)

A Parallel Algorithm for Compressive Sensing 14

tu-logo

ur-logo

Algorithm

Recall, we wish to minimize (with µ large)

Eµ(u) = J(u) +
µ

2
‖Au − f‖22

How to choose initial µ
too small→ shrinkage yields 0
too big→ slow convergence
choose of a good one by a bitonic search

Algorithm:
1 Start with u = 0
2 Compute the initial value of µ using the above bitonic approach
3 For k=0 to lmax

Iterate the proximal point until some convergence criteria are met

‖Auk − f‖2
2

‖f‖2
2

< tolerance

A Parallel Algorithm for Compressive Sensing 15

tu-logo

ur-logo

Exact solution from approximate solution

1 Compute the basis matrix B associated with u(k+1) by choosing the
columns of A corresponding to the nonzero elements of u(k+1)

2 Compute v = B−1 × f

3 Return u(k+2) in base A from v in base B by adding zeros where
necessary

A Parallel Algorithm for Compressive Sensing 16

tu-logo

ur-logo

Experiments and Implementation

Implementation:
shrinkage is parallel, vectorizable
Au is either implemented as an explicit matrix multiplication or a Fast
Transform (e.g., DCT)
explicit multiplication→ huge amount of data to transfer

Experimental conditions
Multi-core: Intel Core 2 Quad Q6600, 76 GFLOPS (theoretical)
Multi-core: Intel Core i7 920, 86 GFLOPS (theoretical)
Cell: Sony Playstation 3, 159 GFLOPS (theoretical)
GPU: NVidia 8800GTS, 345 GFLOPS (theoretical)
GPU: NVidia GTX 275, 1010 GFLOPS (theoretical)

A Parallel Algorithm for Compressive Sensing 17

tu-logo

ur-logo

Experiments: Errors

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

T
o

le
ra

n
c
e

G
ro

u
n

d
 t

ru
th

Number of iterations

Tolerance

Ground truth

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 400 800 1200 1600

 0

 0.01

 0.02

 0.03

 0.04

 0.05

Figure: Partial DCT

A Parallel Algorithm for Compressive Sensing 18

tu-logo

ur-logo

Experiments: DCT

 0

 60

 120

 180

 240

 300

 360

 420

 480

 540

 600

 660

 720

 780

 840

 900

 960

512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

W
al

l c
lo

ck
 ti

m
e

(s
)

Signal size (n)

Core 2 Quad (4 threads)

Core i7 (4 threads)

PS3 Cell

NVIDIA 8800 GTS GPU

NVIDIA GTX 275 GPU

 0

 2

 4

 6

 8

 10

 12

512 1K 2K 4K 8K 16K 32K

Figure: Partial DCT

A Parallel Algorithm for Compressive Sensing 19

tu-logo

ur-logo

Experiments: Orthogonalized Gaussian matrices

For Intel Core i7 920 (2.66 GHz)
Signal of size n with m observations and 0.1m spikes

Relative error ‖ufound−utrue‖2
‖utrue‖2

in out time (s)
m n relative #iter 1 th. 2 th. 4 th. 8 th.
64 512 1.39e-03 1162.0 0.042 0.025 0.017 0.252
128 1024 5.22e-04 1155.5 0.115 0.068 0.046 0.350
256 2048 3.26e-04 1321.5 0.423 0.227 0.132 0.375
512 4096 2.15e-04 1465.8 2.362 1.495 1.130 1.359

1024 8192 1.43e-04 1505.6 9.933 6.035 4.574 4.885
2048 16384 9.62e-05 1604.9 41.842 25.284 19.576 19.997

Compare to Bregman based approach [Yin, Osher,
Goldfarb,Darbon 08] between 5/10 times faster.

A Parallel Algorithm for Compressive Sensing 20

tu-logo

ur-logo

Experiments: Approximate versus Exact resolution

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

512 1K 2K 4K 8K 16K

T
em

p
s

(s
)

n

Approx (1 thread)

Approx (4 threads)

Exact (1 thread)

Exact (4 threads)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

512 1K 2K

Figure: Comparaison entre les temps d’exécution de notre méthode approchée
et de sa variante exacte avec des matrices Gaussiennes orthogonalisées et un
processeur Intel Core i7 920.

A Parallel Algorithm for Compressive Sensing 21

tu-logo

ur-logo

Experiments: Versus Matching Pursuit

 5

 10

 15

 20

 25

 30

 35

 40

1K 2K 4K 8K 16K

T
em

p
s

(s
)

n

Prox

MP

 0

 0.5

 1

 1.5

1K 2K 4K

Figure: Comparaison GPU entre notre méthode (Prox) et l’algorithme Matching
Pursuit (MP) sur une carte NVIDIA GTX 275 GPU avec des matrices de DCT
partielles (représentées explicitement). m

n = 1
4 et paramètres amenant à la

même erreur de tolérance pour les deux méthodes.

A Parallel Algorithm for Compressive Sensing 22

tu-logo

ur-logo

Conclusion

So far:
Use a proximal operator (to assure convergence)
Design the operator to allow parallel programming
The compiler will perform the parallel optimization for you

On Moreau-Yosida/Proximal Point
Huge literature→ gave birth to splitting/preconditioning
General theoretical properties: convergence, robustness. . .

• [Rockafellar 98] or [Hiriart-Urriuty-Lemarechal 94]
Many similar approaches

using shrinkage (linearization for instance)
using other Proximal points

More in [Borghi, Darbon, Peyronnet, Chan, Osher 08] (UCLA Cam
report)

Use similar idea for J(u) = |∇u|l1

A Parallel Algorithm for Compressive Sensing 23

