A Parallel Algorithm for Compressive Sensing

Alexandre Borghi

Laboratoire de Recherche en Informatique
Universite Paris-Sud 11

July 6 2011

A Parallel Algorithm for Compressive Sensing 1

ldea of Compressive Sensing

@ Compressive Sensing idea [Candeés et al. 2004]:

under some sparsity assumptions one can exactly reconstruct a
signal with few measurements

@ Sparse signal = most of coefficients are 0 (in some basis).
@ Measurements need to be taken in an appropriate space.
@ Example: sparse gradient/measurements in Fourier domain

@ Frequencies kept: 22 lines passing through the zero frequency

Compressive Sensing [Candes, Romberg, Tao, ...]

@ Wish to minimize

miny J(u)
stAu=f

o with J being /; (or the Total Variation)
o where Ais a compressive sensing matrix, and f the observed data

@ In this part of the talk, we consider a penalization approach (LASSO)
o
Eu(u) = J(u) + 5| Au — fl3

@ Target: minimize E,(-)
e many available algorithms!
e mathematical desigh — data structures/algorithm — implementation
o efficiency depends on the available computing technologies
= " parallel computing” capacities that are specific to each processor
= not all algorithms can take benefit from available features

A Parallel Algorithm for Compressive Sensing 3

li-Compressive Sensing

Sparsity = minimizing /;-norm.

stAu=f

where
@ u € R" is the signal to reconstruct
o f € R™ is the observed data
@ Ae R™" is a Compressive Sensing matrix
o mK«Kn

A Parallel Algorithm for Compressive Sensing 4

@ What kind of " parallel computing” technologies are widely available?

@ Design of an approached /'-compressive sensing algorithm (sparse
signal)

A Parallel Algorithm for Compressive Sensing 5

Parallel Many-Core Architectures: CPU

Coeur | Coeur Coeur | Coeur Coeur | Coeur | Coeur | Coeur
1 2 3 4 1 2 3 4
N1 N1 N1 N1 NI1+N2 | N1+N2 | N1+N2 [N1+N2
N2 partagé N2 partagé N3 partagé
: : \/
FSB QPI

Figure: Intel CPU (left: Core 2 Quad; right: Core i7).

A Parallel Algorithm for Compressive Sensing 6

Parallel Many-Core Architectures: Cell

SPE SPE SPE SPE
Locale Locale Locale Locale
Y Y Y Y
e N
N1
PPE <> EIB
N2
‘ i !
Locale Locale Locale Locale
SPE SPE SPE SPE

Figure: Cell.

A Parallel Algorithm for Compressive Sensi 7

Parallel Many-Core Architectures: GPU

c|t|c||c|t]|c c|l|c||c|t|c c|t|c||c|E|c||c|t|c clt|c||c|E|c||c|t|c
o — o — o — o — o — o — o — o — o — o —
e felle]e el [e]eleqfe]elel [efele[efe e el e [e] fe]eletfe]e el e]<]<]
clajc||c|a|c clajcflc|alc czl\c clalc||c|al|c clajc||clalc]|c|a|c
O Rl e e B e B o B e N e Bl ol i Bl e e Bl e R e Rl e e R e R
clelcllcle|cC clelcl|c|e]|C clelcliclelc]ic]e]|cC clelcliclelc]ic]e]|cC
NI partagé N1 partagé N1 partagé N1 partagé
][] -][] | | D] o]] - [[vroe] e
I PCI Express | l PCI Express |

Figure: NVIDIA GPU (left : G80; right : G200).

A Parallel Algorithm for Compressive Sensing 8

Parallel Many-Core Architectures

@ Restriction to Parallel Many-Core Architectures (widely available)
¢ Video card: NVidia — GPU (> 96 cores)
e PC: Intel processors — multi-core (> 4 Cores)
e Playstation 3 video game console — Cell (6-8 cores) cheap!

@ Specific characteristics: GFLOPS, energy consumption, price. ..
@ Common features:
o Parallel: composed of several computing units

e Shared memory: central memory accessible from computing units
e System of cache hierarchy to improve data transfer

A Parallel Algorithm for Compressive Sensing 9

Features and Requirements

@ Coarse parallelism: Several computational units

e Multi-core, GPU, Cell
@ synchronization issue

@ Vectorization (SIMD): Process the data as a vector

e alignment issue: data must be accessed at specific addresses
o By far, the most important feature (because several SIMD units/core)

@ Memory bandwidth: Amount of data that can be transfered
o data are transferred back and forth from the memory to the processor
e Starvation issue: a computing unit is waiting for the data
o By far, the most important issue
— A compiler (or Matlab) tries to do that automatically
— Performance highly depends on a successful code optimization
— Design algorithms =- implementations meet these requirements

A Parallel Algorithm for Compressive Sensing

I'-compressive sensing

@ What kind of ” parallel” computing technologies are widely available?

@ Design of an approached /'-compressive sensing algorithm (sparse
signal)
o Moreau-Yosida Regularization/Proximal Points
o Proximal operator choices
o Algorithm
o Experiments and implementation

A Parallel Algorithm for Compressive Sensing

Moreau-Yosida Regularization

@ Recall, we wish to minimize
I
Eu(u) = J(u) + 5| Au — I3

@ Moreau-Yosida Regularization [Moreau 65, Yosida 66]:
Given a metric M and any current point u(%)

1
Fuu®) = inf {E.(0)+ 3lu— R}

= inf
ueRr”
@ This defines the proximal point p,(uK)) and is characterized by:
1
00 (£t 5l ~uE) (o)

@ Thatis
P (u®) = (M +0E,) ™ (Mu®)

A Parallel Algorithm for Compressive Sensing

Proximal Operator Choices

@ Standard convergence result [Lemarechal 97, Rockafellar 76, ...]:

lterating the proximal point generates a sequence that converges
toward a minimizer of E,

@ How to choose M for parallel computations?
Rewriting (M + 9E,)~', we have

AJ(UHFY 4 (LAA + MYutk+D) = L ALF + MU

= We wish pA!'A+ M diagonal
= problem of the form ¢4 + || - —g||3

@ So we take M = (1 + ¢)uld — pAlA

A Parallel Algorithm for Compressive Sensing

Proximal Operator Choices

@ With such a metric

M= (1+e)uld — nA'A |

@ Solution is given by a shrinkage

Sk 1 pAf + Mut® — sg (pAlf + Mu®) if |nA'f + Mu(k)‘ > 1
S (T+ep |0 otherwise ,

@ Shrinkage has been very well studied [Chambolle, Daubechies, Elad,
Figuereido, Yin, ...] and used in many efficient /'—CS algorithms
— Shrinkage is easily and efficiently implemented on many-cores
— Need to perform Au and A!Au in parallel

o Ais afast transform — good (not great) parallel and vectorized version
e Ais an explicit matrix — great vectorized version but badly parallel
(bandwith issue)

A Parallel Algorithm for Compressive Sensing

Algorithm

@ Recall, we wish to minimize (with p large)
Eu(u) = J(u) + 51Au— |3

@ How to choose initial u

e too small — shrinkage yields 0

e too big — slow convergence

@ choose of a good one by a bitonic search
@ Algorithm:

@ Startwithu=0
@ Compute the initial value of x using the above bitonic approach
© For k=0 10 /pax

@ lterate the proximal point until some convergence criteria are met

|l Au* — £]/3

5 < tolerance
1113

A Parallel Algorithm for Compressive Sensing

Exact solution from approximate solution

@ Compute the basis matrix B associated with u(k*") by choosing the
columns of A corresponding to the nonzero elements of u(k+1)

Q Computev=B"1xf

@ Return u**2) in base A from v in base B by adding zeros where
necessary

A Parallel Algorithm for Compressive Sensing

Experiments and Implementation

@ Implementation:
o shrinkage is parallel, vectorizable
o Auis either implemented as an explicit matrix multiplication or a Fast
Transform (e.g., DCT)
o explicit multiplication — huge amount of data to transfer
@ Experimental conditions
Multi-core: Intel Core 2 Quad Q6600, 76 GFLOPS (theoretical)
Multi-core: Intel Core i7 920, 86 GFLOPS (theoretical)
Cell: Sony Playstation 3, 159 GFLOPS (theoretical)
GPU: NVidia 8800GTS, 345 GFLOPS (theoretical)
GPU: NVidia GTX 275, 1010 GFLOPS (theoretical)

A Parallel Algorithm for Compressive Sensing

1r o1
Tolerance
Ground truth =«==+=++ 19°
08 |3 4 08
B 0.05 .. 4 0.05
07} % ; 407
E - 004
4 06
s
3 4 0.03 E
g E
g 405 2
g 4 0.02 g
- S
4 04
4 0.01
403
: 0
1600 d 02
4 01
A 0
800 1000 1200 1400 1600 1800

Number of iterations

A Parallel Algorithm for Compressive Sensi

Wall clock time (s)

A Parallel Algorithm for Compressive Sensi

960
900
840
780
720
660
600
540
480
420
360
300
240
180
120

60

Core 2 Quad (4 threads) = =
Core i7 (4 threads) =rerses
PS3 Cell

NVIDIA 8800 GTS GPU

NVIDIA GTX 275 GPU

o N M O ®

pemaa”
B
T T T

512 1K 2K 4K 8K 16K

0
512

64K

1K 2K 4K 8K 16K

Signal size (n)

128K 256K 512K

M

Experiments: Orthogonalized Gaussian matrices

@ For Intel Core i7 920 (2.66 GHz)

@ Signal of size n with m observations and 0.1m spikes

@ Relative error 7”“f°‘|‘|"d_“”“e”2

Utruel|2

in out time (s)

m n relative #iter 1 th. 2 th. 4 th. 8 th.

64 512 1.39e-03 | 1162.0 | 0.042 0.025 0.017 0.252
128 1024 | 5.22e-04 | 11555 | 0.115 0.068 0.046 0.350
256 2048 | 3.26e-04 | 1321.5 | 0.423 0.227 0.132 0.375
512 4096 | 2.15e-04 | 1465.8 | 2.362 1.495 1.130 1.359
1024 | 8192 | 1.43e-04 | 1505.6 | 9.933 6.035 4.574 4.885
2048 | 16384 | 9.62e-05 | 1604.9 | 41.842 | 25.284 | 19.576 | 19.997

@ Compare to Bregman based approach [Yin, Osher,

Goldfarb,Darbon 08] between 5/10 times faster.

A Parallel Algorithm for Compressive Sensing

Experiments: Approximate versus Exact resolution

451 7
Approx (1 thread) - -
40 1 Approx (4 threads) -+ |
35t Exact (1 thread) -~ - .
Exact (4 threads) — ,
30+ S
@ 0.5 7 I
\é 25F 04
0.3
E 200)
s .
15} 0.1 -
ol 91
5 L
43 K

A Parallel Algorithm for Compressive Sensing

Experiments: Versus Matching Pursuit

40 1

Prox — /
35H MP - - ,/f
30+ ;A

20

Temps (s)

15

A Parallel Algorithm for Compressive Sensing

Conclusion

@ So far:

o Use a proximal operator (to assure convergence)

e Design the operator to allow parallel programming

o The compiler will perform the parallel optimization for you
@ On Moreau-Yosida/Proximal Point

e Huge literature — gave birth to splitting/preconditioning
o General theoretical properties: convergence, robustness. . .
o [Rockafellar 98] or [Hiriart-Urriuty-Lemarechal 94]

@ Many similar approaches

@ using shrinkage (linearization for instance)
@ using other Proximal points

@ More in [Borghi, Darbon, Peyronnet, Chan, Osher 08] (UCLA Cam
report)

@ Use similar idea for J(u) = |Vulp

A Parallel Algorithm for Compressive Sensing

