A Parallel Algorithm for Compressive Sensing

Alexandre Borghi

Laboratoire de Recherche en Informatique Universite Paris-Sud 11

July 6 2011

A Parallel Algorithm for Compressive Sensing

Idea of Compressive Sensing

- Compressive Sensing idea [Candès et al. 2004]: under some sparsity assumptions one can exactly reconstruct a signal with few measurements
- Sparse signal = most of coefficients are 0 (in some basis).
- Measurements need to be taken in an appropriate space.
- Example: sparse gradient/measurements in Fourier domain

Frequencies kept: 22 lines passing through the zero frequency

Compressive Sensing [Candes, Romberg, Tao, ...]

Wish to minimize

$$\begin{cases} \min_u J(u) \\ s.t. Au = f \end{cases}$$

- with J being I_1 (or the Total Variation)
- where A is a compressive sensing matrix, and f the observed data
- In this part of the talk, we consider a penalization approach (LASSO)

$$E_{\mu}(u) = J(u) + rac{\mu}{2} \|Au - f\|_2^2$$

- Target: minimize $E_{\mu}(\cdot)$
 - many available algorithms!
 - $\bullet~$ mathematical design \rightarrow data structures/algorithm \rightarrow implementation
 - efficiency depends on the available computing technologies
 - \Rightarrow " parallel computing" capacities that are specific to each processor
 - \Rightarrow not all algorithms can take benefit from available features

*I*₁-Compressive Sensing

Sparsity \equiv minimizing *l*₁-norm.

$$(CS) \begin{cases} \min_{u} \|u\|_{1} \\ s.t. Au = f \end{cases}$$

where

- $u \in \mathbb{R}^n$ is the signal to reconstruct
- $f \in \mathbb{R}^m$ is the observed data
- $A \in \mathbb{R}^{m \times n}$ is a Compressive Sensing matrix
- m ≪ n

- What kind of "parallel computing" technologies are widely available?
- Obesign of an approached l¹-compressive sensing algorithm (sparse signal)

Parallel Many-Core Architectures: CPU

Figure: Intel CPU (left: Core 2 Quad; right: Core i7).

Parallel Many-Core Architectures: Cell

Figure: Cell.

Parallel Many-Core Architectures: GPU

Figure: NVIDIA GPU (left : G80; right : G200).

Parallel Many-Core Architectures

- Restriction to Parallel Many-Core Architectures (widely available)
 - Video card: NVidia \rightarrow GPU (> 96 cores)
 - PC: Intel processors \rightarrow multi-core (> 4 Cores)
 - Playstation 3 video game console \rightarrow Cell (6-8 cores) cheap!
- Specific characteristics: GFLOPS, energy consumption, price...
- Common features:
 - Parallel: composed of several computing units
 - Shared memory: central memory accessible from computing units
 - System of cache hierarchy to improve data transfer

Features and Requirements

- Coarse parallelism: Several computational units
 - Multi-core, GPU, Cell
 - synchronization issue
- Vectorization (SIMD): Process the data as a vector
 - alignment issue: data must be accessed at specific addresses
 - By far, the most important feature (because several SIMD units/core)
- Memory bandwidth: Amount of data that can be transfered
 - data are transferred back and forth from the memory to the processor
 - Starvation issue: a computing unit is waiting for the data
 - By far, the most important issue
 - \rightarrow A compiler (or Matlab) tries to do that automatically
 - \rightarrow Performance highly depends on a successful code optimization
 - \rightarrow Design algorithms \Rightarrow implementations meet these requirements

- What kind of "parallel" computing technologies are widely available?
- Design of an approached l¹-compressive sensing algorithm (sparse signal)
 - Moreau-Yosida Regularization/Proximal Points
 - Proximal operator choices
 - Algorithm
 - Experiments and implementation

Moreau-Yosida Regularization

• Recall, we wish to minimize

$$E_{\mu}(u) = J(u) + rac{\mu}{2} \|Au - f\|_2^2$$

Moreau-Yosida Regularization [Moreau 65, Yosida 66]:
 Given a metric *M* and any current point u^(k)

$$F_{\mu}(u^{(k)}) = \inf_{u \in \mathbb{R}^n} \left\{ E_{\mu}(u) + \frac{1}{2} \|u - u^{(k)}\|_M^2 \right\}$$

• This defines the proximal point $p_{\mu}(u^{(k)})$ and is characterized by:

$$0\in\partial\left(oldsymbol{E}_{\mu}+rac{1}{2}\|\cdot-u^{(k)}\|_{M}^{2}
ight)\left(oldsymbol{
ho}_{\mu}(u^{(k)})
ight)$$

That is

$$p_{\mu}\left(u^{(k)}
ight) = (M + \partial E_{\mu})^{-1}\left(Mu^{(k)}
ight)$$

- Standard convergence result [Lemarechal 97, Rockafellar 76, ...]: Iterating the proximal point generates a sequence that converges toward a minimizer of *E_μ*
- How to choose *M* for parallel computations? Rewriting $(M + \partial E_{\mu})^{-1}$, we have

 $\partial J(u^{(k+1)}) + (\mu A^{t}A + M)u^{(k+1)} = \mu A^{t}f + Mu^{(k)}$.

- $\Rightarrow \text{We wish } \mu A^t A + M \text{ diagonal} \\\Rightarrow \text{ problem of the form } \ell_1 + \| \cdot g \|_2^2$
- So we take $M = (1 + \epsilon)\mu Id \mu A^t A$

With such a metric

$$\boldsymbol{M} = (\mathbf{1} + \epsilon) \mu \boldsymbol{I} \boldsymbol{d} - \mu \boldsymbol{A}^{t} \boldsymbol{A} ,$$

Solution is given by a shrinkage

$$u^{(k+1)} = \frac{1}{(1+\epsilon)\mu} \begin{cases} \mu A^t f + M u^{(k)} - sg\left(\mu A^t f + M u^{(k)}\right) & \text{if } \left|\mu A^t f + M u^{(k)}\right| > 1\\ 0 & \text{otherwise } \end{cases},$$

- Shrinkage has been very well studied [Chambolle, Daubechies, Elad, Figuereido, Yin, ...] and used in many efficient l¹-CS algorithms
- $\rightarrow\,$ Shrinkage is easily and efficiently implemented on many-cores
- \rightarrow Need to perform Au and A^tAu in parallel
 - A is a fast transform \rightarrow good (not great) parallel and vectorized version
 - A is an explicit matrix → great vectorized version but badly parallel (bandwith issue)

• Recall, we wish to minimize (with μ large)

$$E_{\mu}(u) = J(u) + rac{\mu}{2} \|Au - f\|_2^2$$

- How to choose initial µ
 - too small \rightarrow shrinkage yields 0
 - too big \rightarrow slow convergence
 - choose of a good one by a bitonic search
- Algorithm:
 - Start with u = 0
 - 2 Compute the initial value of μ using the above bitonic approach
 - For k=0 to I_{max}
 - Iterate the proximal point until some convergence criteria are met

$$\frac{\|\textit{Au}^k - f\|_2^2}{\|f\|_2^2} < \textit{tolerance}$$

- Compute the basis matrix *B* associated with $u^{(k+1)}$ by choosing the columns of *A* corresponding to the nonzero elements of $u^{(k+1)}$
- 2 Compute $v = B^{-1} \times f$
- Return u^(k+2) in base A from v in base B by adding zeros where necessary

Experiments and Implementation

Implementation:

- shrinkage is parallel, vectorizable
- *Au* is either implemented as an explicit matrix multiplication or a Fast Transform (e.g., DCT)
- $\bullet~$ explicit multiplication \rightarrow huge amount of data to transfer
- Experimental conditions
 - Multi-core: Intel Core 2 Quad Q6600, 76 GFLOPS (theoretical)
 - Multi-core: Intel Core i7 920, 86 GFLOPS (theoretical)
 - Cell: Sony Playstation 3, 159 GFLOPS (theoretical)
 - GPU: NVidia 8800GTS, 345 GFLOPS (theoretical)
 - GPU: NVidia GTX 275, 1010 GFLOPS (theoretical)

Experiments: Errors

Experiments: DCT

Experiments: Orthogonalized Gaussian matrices

- For Intel Core i7 920 (2.66 GHz)
- Signal of size n with m observations and 0.1 m spikes
- Relative error $\frac{\|u_{found} u_{true}\|_2}{\|u_{true}\|_2}$

in		out		time (s)			
m	n	relative	#iter	1 th.	2 th.	4 th.	8 th.
64	512	1.39e-03	1162.0	0.042	0.025	0.017	0.252
128	1024	5.22e-04	1155.5	0.115	0.068	0.046	0.350
256	2048	3.26e-04	1321.5	0.423	0.227	0.132	0.375
512	4096	2.15e-04	1465.8	2.362	1.495	1.130	1.359
1024	8192	1.43e-04	1505.6	9.933	6.035	4.574	4.885
2048	16384	9.62e-05	1604.9	41.842	25.284	19.576	19.997

• Compare to Bregman based approach [Yin, Osher, Goldfarb, Darbon 08] between 5/10 times faster.

Experiments: Approximate versus Exact resolution

Experiments: Versus Matching Pursuit

- So far:
 - Use a proximal operator (to assure convergence)
 - Design the operator to allow parallel programming
 - The compiler will perform the parallel optimization for you
- On Moreau-Yosida/Proximal Point
 - $\bullet~$ Huge literature \rightarrow gave birth to splitting/preconditioning
 - General theoretical properties: convergence, robustness...
 - [Rockafellar 98] or [Hiriart-Urriuty-Lemarechal 94]
- Many similar approaches
 - using shrinkage (linearization for instance)
 - using other Proximal points
- More in [Borghi, Darbon, Peyronnet, Chan, Osher 08] (UCLA Cam report)
- Use similar idea for $J(u) = |\nabla u|_{l^1}$