
Reusable Generic Look Ahead
Multi threaded Cache

a case study for a high resolution player

Guillaume Chatelet - MikrosImage

● Meeting Duke

● A few playback issues

● A naive implementation and how to improve

● A briefer history of data sharing

● The current Cache design

● Demo

● Conclusion + Q&A

Menu

Duke

High performance, free, multi-platform player for the VFX industry

https://github.com/mikrosimage/duke

https://github.com/mikrosimage/duke

Context : player features

● fluid playback, quick seeking
● many formats - plugin based

○ file sequences : OpenEXR, DPX, Jpeg2k...
○ movies : h264, mpeg2, ... (in progress)

● stereoscopic & multi tracks (in progress)
● sound sync
● colorimetric & grading capabilities
● cmd line, server mode, integrated

Mission : perfect playback

What are we after ?
● realtime playback (direct to disk or RAM)
● perfectly fluid
How hard is it ?
● big images : 2K, 4K
● high dynamic : 10 bits log, 16 bits float
● many streams : stereoscopic, multi-tracks
● fast : 24, 25, 30 FPS

Mission : perfect playback

Image weight & throughput needed

layout bits / chan definition image weight 25 FPS throughput

RGBA 8 2048x1152 9.44MB 236 MB/s

RGB 10 2048x1152 9.44MB 236 MB/s

RGBA 16 half float 2048x1152 18.9MB 472 MB/s

RGB 10 4096x2304 37.7MB 944 MB/s

RGBA 16 half float 4096x2304 75.5MB 1 887 MB/s

The classical trade-offs

IO versus CPU versus Quality
● Pressure over I/O

○ uncompressed images => (very) fast disks
■ DPX files

● Pressure over decoding power
○ compressed images

■ space lossless : png
■ space : sequences of jpeg, jp2k, openEXR...
■ space + time : mpeg2, h264, ProRes

Context : classical trade-offs

Time versus Space versus Quality

Space Time Container Format

uncompressed uncompressed sequence dpx, tga, pnm...

compressed lossless uncompressed sequence jpeg2K, OpenEXR, png...

compressed lossy uncompressed sequence jpeg, OpenEXR B44, ...

compressed lossy compressed lossy movie Mpeg2, h264, ProRes...

So what kind of machines are we aiming at ?
● 16-cores machine with dedicated storage and plenty of RAM ?
● Simple desktop machine with slow disks or reading over network?

I want it all ! I want it now !

Context : playback issues

● Image synchronization

○ Screen tearing

○ Jerky playback : framerate VS refreshrate

● Are we fast enough ?
○ Depends on the machine

○ IO throughput is limited

○ Latencies lurking everywhere

○ No realtime OS so we have to be foxy

Screen Tearing

Screen Tearing

2 buffer swap within a single raster scan

Screen Tearing

buffer swap should occur
during screen blanking

Jerky playback

Camera panning : slow regular movement
enforce same duration for each single frame

refreshrate must be a multiple of framerate

Jerky playback

Classical framerates : 24, 25, 29.97, 30...
Classical refreshrates : 50, 60, 72, 75...

25 FPS on 50 Hz display : OK
■ 1 frame every 2 blanking

24 FPS on 60 Hz display : KO
■ pattern : 2,2,3,...

24 FPS on 50 Hz display : KO
■ pattern : 2,2,2,2,2,2,2,2,2,2,2,3,...

Loading frames, the naive design

Too much uncertainties, time is unbound for
● file reading

○ FS fragmentation, OS caching, permissions checking
● free store allocation
● frame decoding

0ms 40ms 80ms frame
presentation

blanking
75Hz

load image header
allocate frame memory

decode frame
allocate texture

upload texture
wait for (the right) blanking (spin lock or hardware)

case 1 linux desktop : jpeg file sequence
bottleneck : decoding, some uncontrolled read peaks

Impact of frame load/decode time

case 2 windows desktop : same jpeg file sequence
bottleneck : fragmented file system, a lot of uncontrolled read peaks

Impact of frame load/decode time

Do it faster
● Improve decoding

○ Choose optimized libraries : libjpeg-turbo (3x speedup)

● Use a cache
○ keep recently decoded frame in memory

Do it ahead of time "Use the cores Luck"

● Hide latencies by parallelizing
○ load and decode in parallel

So how to improve?

http://libjpeg-turbo.virtualgl.org/

Influence of I/O and memory

0ms 40ms

load image header
allocate frame memory

decode frame
allocate texture

upload texture
wait for (the right) blanking (spin lock or hardware)

case 3 windows with dedicated high performance storage
dpx file sequence

Influence of I/O and memory allocation

case 3 windows with dedicated high performance storage
dpx file sequence

Influence of I/O and memory allocation

Memory Mapped File (DMA)
2.6x speedup
from 185MB/s to 488MB/s

case 3 windows with dedicated high performance storage
dpx file sequence

Influence of I/O and memory allocation

Custom allocator +32%
from 488MB/s to 646MB/s

Custom allocator +20%
from 185MB/s to 203MB/s

Use OS specialized functions
● Bypass OS I/O caches

○ CreateFile

○ FILE_FLAG_NO_BUFFERING | FILE_FLAG_SEQUENTIAL_SCAN

● Use Memory Mapped Files
○ DMA is your friend

● Create your own allocator if needed
○ When dealing with thousands

of MB/s, malloc simply isn't fast enough

So how to improve?

Optimize even more ?

0ms 40ms

load image header
allocate frame memory

decode frame
allocate texture

upload texture
wait for (the right) blanking (spin lock or hardware)

● Use a texture pool
○ avoid creating new ones each frame

A briefer history of data sharing

Largely inspired by Andrei Alexandrescu's

Concurrency in the D Programming Language

http://erdani.com/
http://www.informit.com/articles/article.aspx?p=1609144

A briefer history of data sharing

back in the 60's : time sharing

OS timer

Process
● CPU State
● Stack

RAM

memory virtualization => process isolation
remember DOS unexpected reboot ?

A briefer history of data sharing

OS timer

Process
● CPU State
● Stack
● Translation

table

RAM

HD DMA Graphic
card

tr
an

sl
at

io
n

la
ye

r

thread => bare lightweight process
share the address space of the process

A briefer history of data sharing

OS timer

RAM

stack
CPU state

HD DMA Graphic
card

tr
an

sl
at

io
n

la
ye

r

Sky is the limit

from A look back at single threaded performance

http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance

Power is the limit actually

but it's another story...

More on this in this brilliant talk
by Bill Dally Chief Scientist at NVidia

you'll need Silverlight though :(

http://mediasite.colostate.edu/Mediasite/SilverlightPlayer/Default.aspx?peid=22c9d4e9c8cf474a8f887157581c458a1d#

Modern CPU design implications

Modern CPU design implications

● CPU frequency >> memory frequency
○ CPU stall, waiting for mem

● cache hierarchy
○ registry, L1, L2, L3, RAM

● CPU features
○ superscalar pipeline
○ out of order execution

● relaxed memory model
○ happens before relationship is now explicit

■ use memory barriers
○ Please forget that volatile keyword at least for C/C++

http://software.intel.com/en-us/blogs/2007/11/30/volatile-almost-useless-for-multi-threaded-programming/
http://software.intel.com/en-us/blogs/2007/11/30/volatile-almost-useless-for-multi-threaded-programming/
http://software.intel.com/en-us/blogs/2007/11/30/volatile-almost-useless-for-multi-threaded-programming/
http://software.intel.com/en-us/blogs/2007/11/30/volatile-almost-useless-for-multi-threaded-programming/

The (surprising) x86 memory model

Initial state
A = 0
B = 0

A = 1
t1 = B

B = 1
t2 = A

timeProcessor P1 Processor P2

The outcome t1 == 0 and t2 == 0 is possible on the x86

from Understanding Violations of Sequential Consistency
post by Bartosz Milewski, credits to Luis Ceze from University of Washington

http://blog.corensic.com/2011/06/13/understanding-violations-of-sequential-consistency

Rule of thumb

All access (write and read) to shared variables
must be protected with memory barriers

OS provide Semaphore and Mutex via C API

POSIX threads and Windows threads

Compiler vendors provide atomic types, eg CAS
● __sync_bool_compare_and_swap (gcc)
● InterlockedCompareExchange (visual)

http://en.wikipedia.org/wiki/Memory_barrier
http://en.wikipedia.org/wiki/POSIX_Threads
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684841(v=vs.85).aspx
http://en.wikipedia.org/wiki/Compare-and-swap

Multi-thread coding is hard...
seriously

threads communication bite beware of
deadlocks and starvation

Use higher level primitives
● Boost Thread
● TBB (Intel threading building blocks)
● Don't share, if you can afford copying around

○ Message Passing a la Erlang...

Debugging is super hard
● every execution is different
● load sensitive (debug & release)
● mixed output

http://www.boost.org/doc/libs/1_49_0/doc/html/thread.html
http://threadingbuildingblocks.org/

Back to our cachelookaheadthingy

We aim at perfect playback, so :

● load images fast

● scrub the timeline smoothly

● prefetch according to playback

○ both ways when paused, forward or reverse

● cache for reuse

My last 7 previous designs

● Can't scale with the machine
○ Load/decode up to X predetermined frames

■ we might have GBs of RAM
○ Max of 2 threads : 1 decode & 1 load

■ we might have 16 cores
○ Only one file per frame

■ we might have several tracks or stereo
○ More threads would mean more contention

● Highly specialized => not reusable
● Too complicated and buggy

pushJob

The new design

Thread pool

Smart Cache
Look ahead cache

pending

pause

cue

play

BlockAccessor

waitAndPop

put

ConcurrentQueue
JOB

get

Priority cache

timeline scrubbing

* orange means safe to access from different Threads

pushJob

Thread pool

Smart Cache
Look ahead cache

pending

pause

cue

play

BlockAccessor

waitAndPop

put

ConcurrentQueue
JOB

get

Priority cache

timeline scrubbing

The new design

passive part
active
part

active
part

Thread pool

Smart Cache
Look ahead cache

waitAndPop

put

ConcurrentQueue
JOB

get

Priority cache

The new design

pushJob pending

pause

cue

play

BlockAccessor

timeline scrubbing

A Job is a forward iterator on the pictures to put in the cache thus
we can abstract how to fill it (tracks, direction)

struct Job {
 void clear();
 bool empty() const;
 id_type next();
};

Thread pool

Smart Cache
Look ahead cache

waitAndPop

put

ConcurrentQueue
JOB

get

Priority cache

The new design

pause

cue

playtimeline scrubbing

pushJob pending BlockAccessor

BlockingAccessor is a single templated slot with thread safe
access from multiple threads

template<typename T>
struct BlockingAccessor {

void terminate(bool value = true);
void set(const T& object);
void waitGet(T& value);
bool tryGet(T& holder);

};

pushJob

Thread pool

Smart Cache
Look ahead cache

pending

pause

cue

play

BlockAccessor

put

ConcurrentQueue
JOB

get

Priority cache

timeline scrubbing

The new design

waitAndPop

All Worker Threads will waitAndPop for a new WorkUnit until
receiving a cache::terminate exception.

pushJob

Thread pool

Smart Cache
Look ahead cache

pending

pause

cue

play

BlockAccessor

waitAndPop

put

ConcurrentQueue

get

timeline scrubbing

The new design

JOB

Priority cache
The priority cache is responsible for maintaining an order
relationship between the WorkUnits and keep track of an
associated cost. If limit is reached we can discard lower
priority WorkUnits or give up saying the cache is full.

pushJob

Thread pool

Smart Cache
Look ahead cache

pending

pause

cue

play

BlockAccessor

waitAndPop

put

ConcurrentQueue

get

timeline scrubbing

The new design

JOB

Priority cache

Within a worker thread waitAndPop will
● check if there's a pending job, if so :

○ pending workUnits are cleared from PriorityCache
○ pending job is now the current job

● current job is iterated
○ If empty, block until next pending Job
○ if not empty

■ set this workUnit as pending in the cache
■ update its priority
■ if cache is full, block until next pending Job
■ if not full

● give workUnit to worker thread

pushJob

Thread pool

Smart Cache
Look ahead cache

pending

pause

cue

play

BlockAccessor

waitAndPop
ConcurrentQueue

JOB

get

Priority cache

timeline scrubbing

The new design

put

Worker threads will check the concurrent queue for an image to
decode, if none, it will waitAndPop to get some more work to do,
pushing the result back into the LookAheadCache

pushJob

Thread pool

Smart Cache
Look ahead cache

pending

pause

cue

play

BlockAccessor

waitAndPop

put

JOB

get

Priority cache

timeline scrubbing

The new design

Depending on the image format, WorkerThread might only load
the file and put it in a queue for other thread to decode

ConcurrentQueue

pushJob

Thread pool

Smart Cache
Look ahead cache

pending

pause

cue

play

BlockAccessor

waitAndPop

put

ConcurrentQueue
JOB

Priority cache

timeline scrubbing

The new design

get

Depending on the position and tracks in the timeline, the main
thread may ask one or more frames. If not available, load and
decode will take place in the main thread, we're out of luck now...

Demo
let's rock and roll !

So, how does it perform ?

Remember those ?

jpeg sequence on windows

jpeg sequence on linux

So, how does it perform ?

Using the load/decode timings from sequence of jpeg (slide 17/18)

Scales almost linearly with the number of threads

disclaimer : this simulation does not account for I/O contention which may will occur

Worst case improvement is 15.7 speedup for 16 cores

Look Ahead Cache
● good scalability (small contention)
● still need some work
● reusable in different contexts

Conclusions

Library design, one of the noblest goal for a developer
● hard but pays off in the long run
● takes time to find a good design

Duke
● Open Source, free, multiplatform (lin, win, mac)
● binaries to be released (lin/win for the moment)
● much, much more to say about ...

Thanks for your attention :)

Q&A

