Le point de vue d'un théoricien sur l'intérêt de la généricité pour le traitement d'images Pourquoi suis-je intéressé par Olena, ou le changement des représentations des images

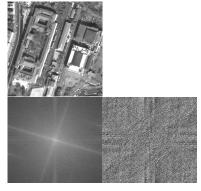
Laurent Najman

Séminaire EPITA - 21 mars 2012

¹Université Paris-Est LIGM A3SI ESIEE Paris, France

Mathematical morphology

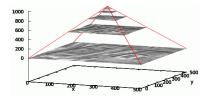
Definition

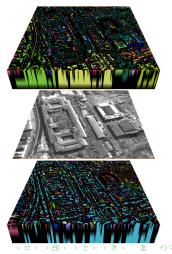

- Lattice: (E, \leq) a space E with an ordering relationship \leq
- for all x and y, a larger element $x \lor y$ and a smaller element $x \land y$.
- Dilation: an operator δ such that $\delta(\bigvee X_i) = \bigvee \delta(X_i)$
- Erosion: an operator ε such that $\varepsilon(\bigwedge X_i) = \bigwedge \delta(X_i)$

Important idea

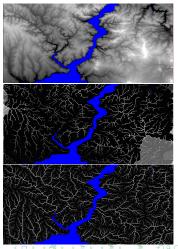
The structure of the space E can be whatever is needed by the applications.

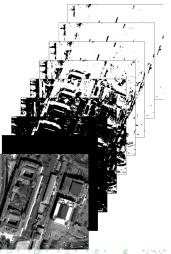
Decomposition into primitive or fundamental elements that can be more easily interpreted:

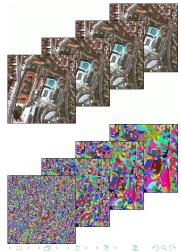

- Functional decomposition;
- Multiresolution decomposition;
- Multi-scale representation;
- Skeleton representation;
- Threshold decomposition;
- Hierarchical representations.


Amplitude

Phase


- Functional decomposition;
- Multiresolution decomposition;
- Multi-scale representation;
- Skeleton representation;
- Threshold decomposition;
- Hierarchical representations.

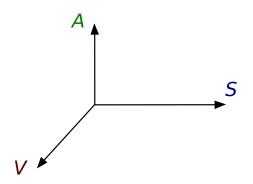

- Functional decomposition;
- Multiresolution decomposition;
- Multi-scale representation;
- Skeleton representation;
- Threshold decomposition;
- Hierarchical representations.

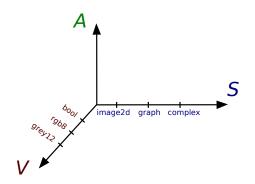

- Functional decomposition;
- Multiresolution decomposition;
- Multi-scale representation;
- Skeleton representation;
- Threshold decomposition;
- Hierarchical representations.

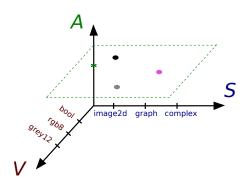
- Functional decomposition;
- Multiresolution decomposition;
- Multi-scale representation;
- Skeleton representation;
- Threshold decomposition;
- Hierarchical representations.

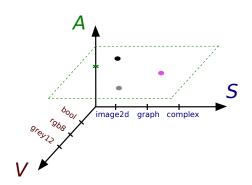
- Functional decomposition;
- Multiresolution decomposition;
- Multi-scale representation;
- Skeleton representation;
- Threshold decomposition;
- Hierarchical representations.

Decomposition into primitive or fundamental elements that can be more easily interpreted:

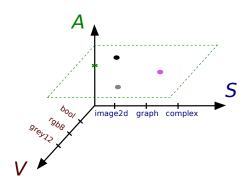

- Functional decomposition;
- Multiresolution decomposition;
- Multi-scale representation;
- Skeleton representation;
- Threshold decomposition;
- Hierarchical representations.


Not mutually exclusive.

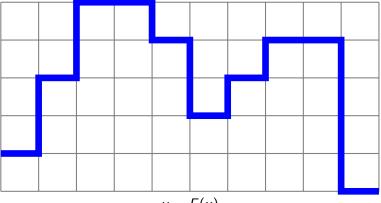

Properties inherited from those of underlying operations.


Choice driven by the application needs.

Introduction

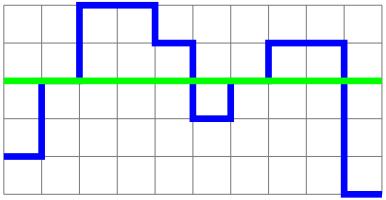


• High combinatorial complexity: $A \times S(\times V)$ implementations.

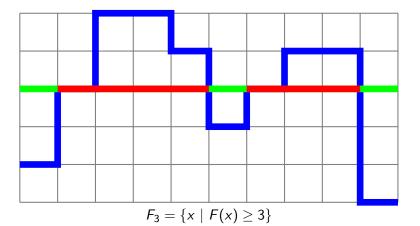

- High combinatorial complexity: $A \times S(\times V)$ implementations.
- The Olena project is a (the?) solution to that problem.

1 Tree-based representations

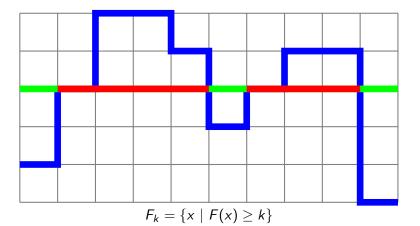
- Max-tree, Min-tree and inclusion tree
- Increasing attributes
- Non-increasing attributes


2 Watersheds and hierarchies

- Watershed-based hierarchical segmentation schemes
- Hierarchical clustering
- Hierarchical image segmentation schemes
- Hierarchical segmentation as a watershed-based scheme

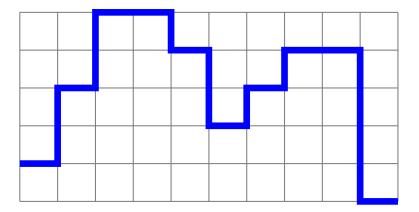

y = F(x)

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

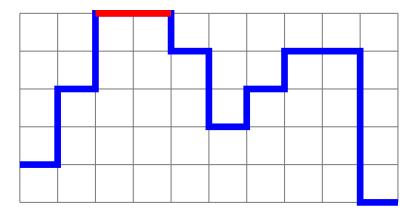


 $F(x) \geq 3$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - わへで

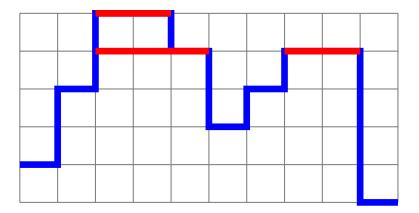


<> E > < E</p>

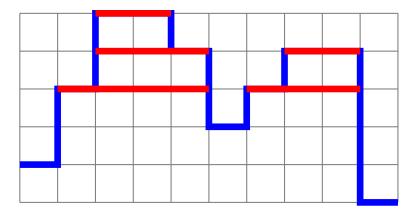


3

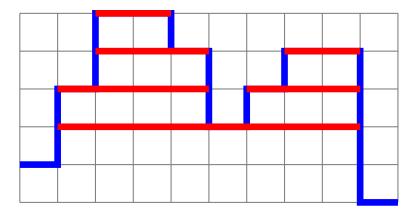
→ E → < E</p>



◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >


 $F_5 = \{x \mid F(x) \ge 5\}$

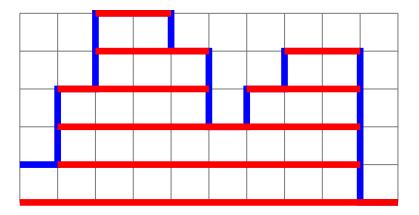
◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで


$$F_4 = \{x \mid F(x) \ge 4\}$$

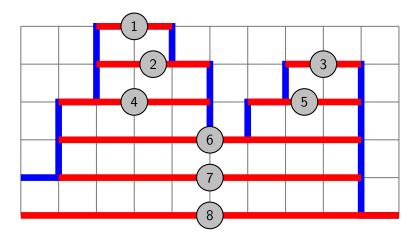
◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへぐ

$$F_3 = \{x \mid F(x) \ge 3\}$$

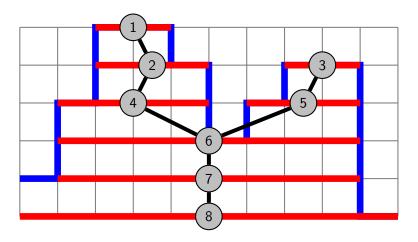
◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへぐ


$$F_2 = \{x \mid F(x) \ge 2\}$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへぐ

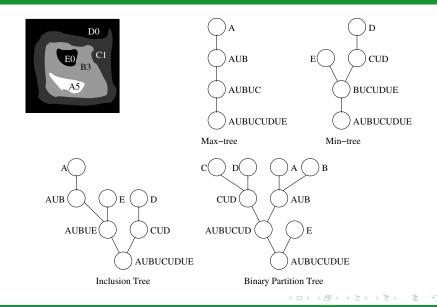

 $F_1 = \{x \mid F(x) \ge 1\}$

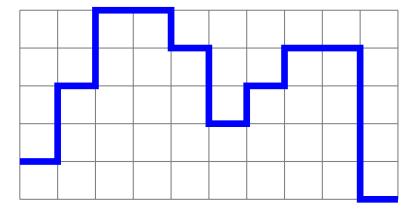
◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで



 $F_0 = \{x \mid F(x) \ge 0\}$

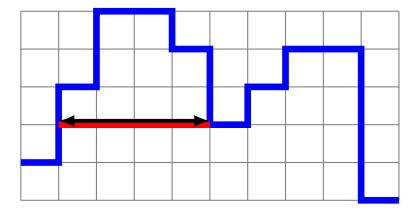
< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

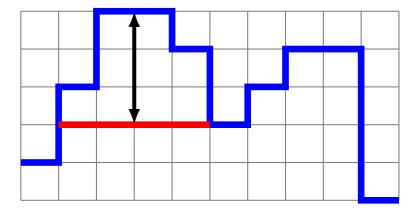

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶



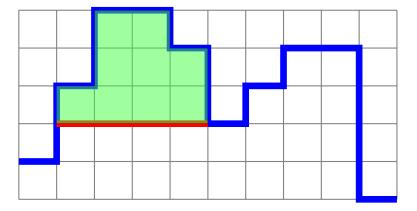

 $Components + inclusion \ relationship = component \ tree$

→ E → < E


Min-tree, max-tree and inclusion tree



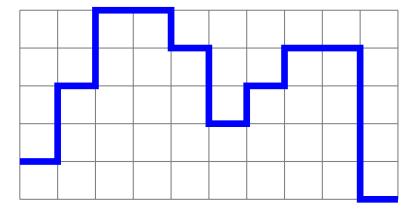
A connected component


Area

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

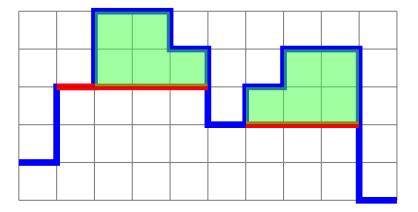
Height

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



Volume

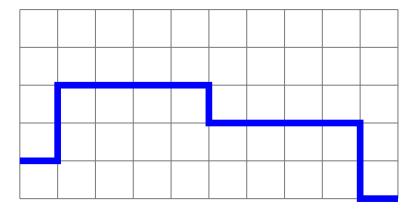
<ロ> <同> <同> < 同> < 同> < 同>


æ

Filtering

<ロト < 回 > < 臣 > < 臣 > < 臣 > の < @</p>

Filtering



 $\mathsf{Volume} \leq 5$

<ロト < 団 > < 臣 > < 臣 >

3

Filtering

Filtered function

<ロト < 団 > < 臣 > < 臣 >

1	1	1	1	1	1	1
1	3	3	2	3	4	1
1	3	3	2	3	4	1
1	1	1	1	1	3	1
1	3	3	2	1	1	1
1	4	3	2	2	2	1
1	1	1	1	1	1	1

A matrix

<ロト <部ト < 注ト < 注

1	1	1	1	1	1	1
1	3	3	2	3	4	1
1	3	3	2	3	4	1
1	1	1	1	1	3	1
1	•	3	2	1	1	1
1		3	2	2	2	1
1		1	1	1	1	1

4-connectivity

(4回) 4 回) 4 回

Tree-based representations

On a 2D image

1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
$F_1 = \{x \mid F(x) \ge 1\}$						

< □ > < □ > < □ > < □ > < □ > < □

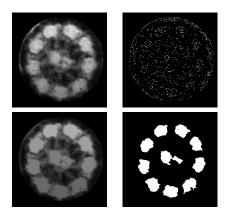
0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	1	1	1	1	0
0	0	0	0	0	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	0	0	0	0	0

$$F_2 = \{x \mid F(x) \ge 2\}$$

< □ > < □ > < □ > < □ > < □ > < □

0	0	0	0	0	0	0
0	1	1	0	1	1	0
0	1	1	0	1	1	0
0	0	0	0	0	1	0
0	1	1	0	0	0	0
0	1	1	0	0	0	0
0	0	0	0	0	0	0

$$F_3 = \{x \mid F(x) \ge 3\}$$


< □ > < □ > < □ > < □ > < □ > < □

0	0	0	0	0	0	0
0	0	0	0	0	1	0
0	0	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	0	0	0	0	0

$$F_4 = \{x \mid F(x) \ge 4\}$$

< □ > < □ > < □ > < □ > < □ > < □

Application

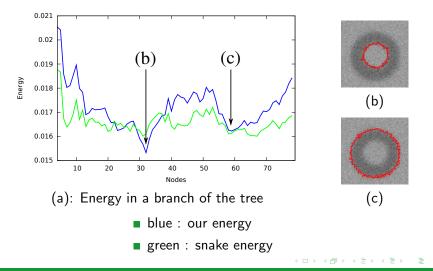
Question

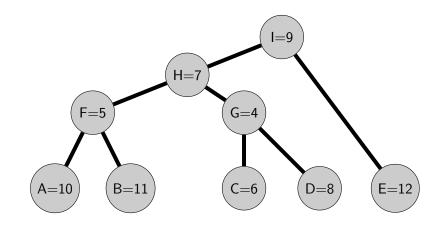
- Increasing criterion (here, volume)
- How to process non-increasing criteria?

An example of a non increasing criterion: Yongchao's energy

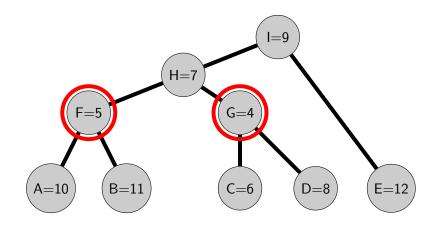
Important idea

$$\mathsf{E}(u,\partial au) = \mathsf{E}_{int}(u,\partial au) + \mathsf{E}_{ext}(u,\partial au) + \mathsf{E}_{con}(u,\partial au)$$

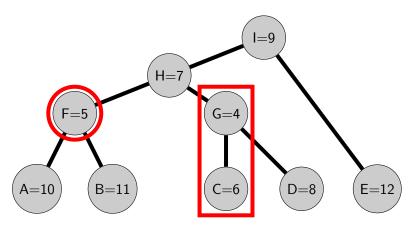

$$V(u, \mathcal{R}) = \sum_{p \in \mathcal{R}} (u(p) - \overline{u}(\mathcal{R}))^{2}$$


$$E_{ext}(u, \partial \tau) = \frac{V(u, \mathcal{R}_{in}^{\varepsilon}(\partial \tau)) + V(u, \mathcal{R}_{out}^{\varepsilon}(\partial \tau))}{V(u, \mathcal{R}_{in}^{\varepsilon}(\partial \tau) \cup \mathcal{R}_{out}^{\varepsilon}(\partial \tau))}.$$

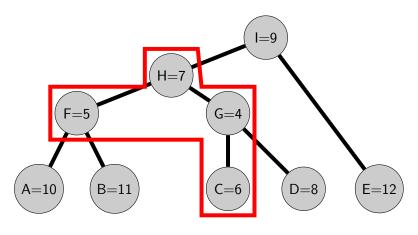
$$E_{int}(u, \partial \tau) = \sum_{e \in \partial \tau} |curv(u)(e)| / L(\partial \tau),$$


$$E_{con}(u, \partial \tau) = 1 / L(\partial \tau).$$

An example of a non increasing criterion: Yongchao's energy

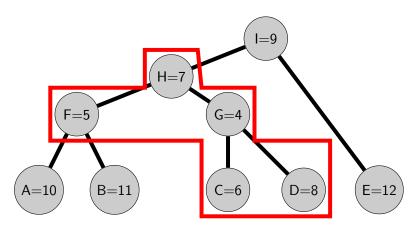


◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▼ のへの


◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▼ のへの

Level 6

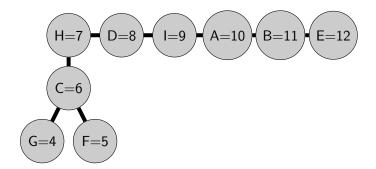
□ ▶ ▲ 臣 ▶ ▲ 臣


э

Level 7

(4回) 4 回) 4 回

э



Level 8

- 4 回 🕨 - 4 注 🖌 4 注

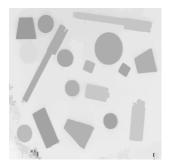
э

Processing non-increasing criterion: through min-tree

Important idea

Computing a Min-Tree on a node-weighted graph instead of a matrix image Easy thanks to Olena!

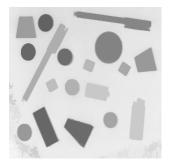
Spotting objects with Yongchao's criterion



Meaningfull minima of the energy

Filtering in space of shapes with Yongchao's criterion

Original image

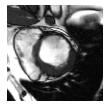


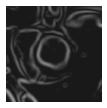
Filter height=0.1

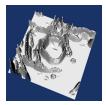
Filtering in space of shapes with Yongchao's criterion

Original image

Filter volume=2

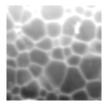

Filtering in space of shapes with Yongchao's criterion



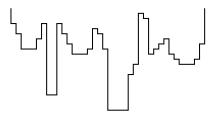

Original image

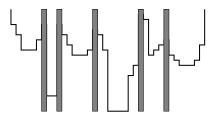

Filter volume=0.9

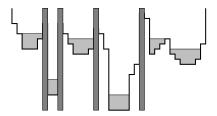



■ 1978: introduction of "the" watershed as a segmentation tool.

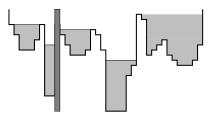
Hypothesis

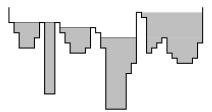

- There exists numerous watershed definitions and algorithms.
- The image is seen as a graph with values on nodes.

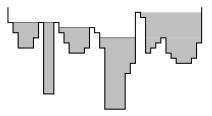

Illustration: topological watershed [Bertrand 2005, Couprie et al. 2005, JMIV]

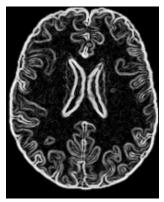


Topological

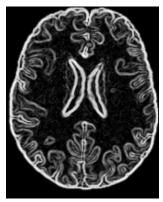




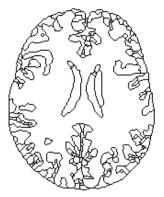




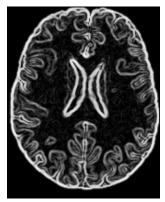
Important idea


- There exists numerous criterions for flooding a surface.
- Flooding can be done through the min-(component-)tree.
- Among those criterions, notably: depth, surface, volume.
- [Beucher, ISMM, 1994 Najman & Schmitt, PAMI, 1996 Meyer et al., An. Telecom, 1997]

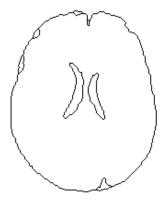
(a) Original image



(b) Some contours

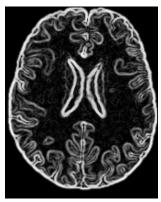

(a) Original image

Watersheds and hierarchies



(b) Some contours

Saliency map


(a) Original image

(b) Some contours

Saliency map

Stacking the contours gives a saliency map [Najman & Schmitt, PAMI, 1996]

(a) Original image

(b) A saliency map

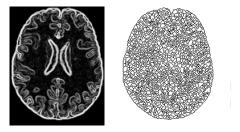
Some examples

Depth driven hierarchy

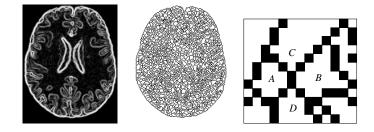
One of the segmentations

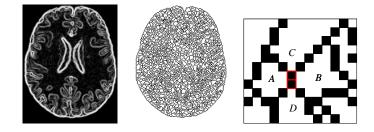
Area driven hierarchy

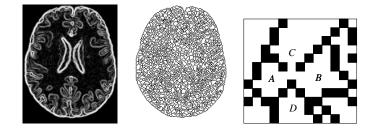
One of the segmentations

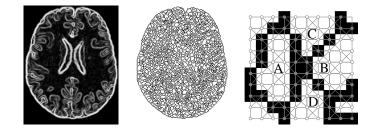


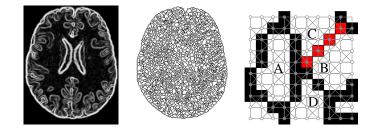
Volume driven hierarchy



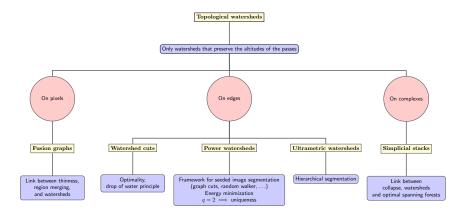

One of the segmentations







Important idea


- On the nodes: Fusion graphs [Cousty et al. JMIV 2008, Cousty et al. DAM 2008]
- Thanks to Olena, this new grid is easy to deal with!

Important idea

- On the nodes: Fusion graphs [Cousty et al. JMIV 2008, Cousty et al. DAM 2008]
- Thanks to Olena, this new grid is easy to deal with!

A family of watersheds

L. Najman: Image representations

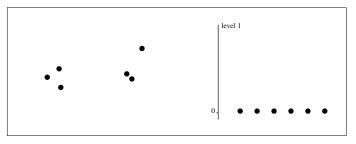
◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Surface segmentation by watershed

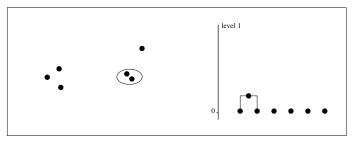
Mesh

Cut

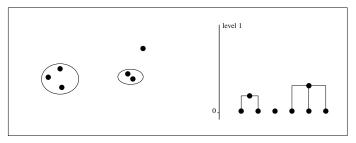
Segmentation

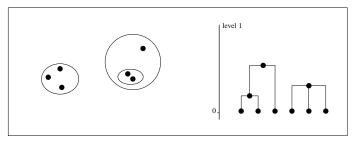

Statue

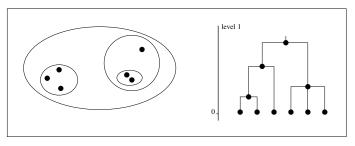
Watershed


Filtered watershed

< □ > < □ > < □ > < □ > < □ > < □


- Sequence of nested clusters such that a cluster at a given level is formed by unioning clusters existing at the previous level;
- The level, denoted by λ, is a non-negative real number controlling the coarseness degree of the clustering;
- Dendrograms (sometimes called taxonomic trees) are commonly used to represent hierarchies [Sokal & Sneath, 1963]:


- Sequence of nested clusters such that a cluster at a given level is formed by unioning clusters existing at the previous level;
- The level, denoted by λ, is a non-negative real number controlling the coarseness degree of the clustering;
- Dendrograms (sometimes called taxonomic trees) are commonly used to represent hierarchies [Sokal & Sneath, 1963]:

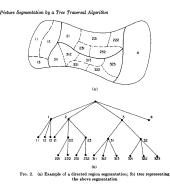

- Sequence of nested clusters such that a cluster at a given level is formed by unioning clusters existing at the previous level;
- The level, denoted by λ, is a non-negative real number controlling the coarseness degree of the clustering;
- Dendrograms (sometimes called taxonomic trees) are commonly used to represent hierarchies [Sokal & Sneath, 1963]:

- Sequence of nested clusters such that a cluster at a given level is formed by unioning clusters existing at the previous level;
- The level, denoted by λ, is a non-negative real number controlling the coarseness degree of the clustering;
- Dendrograms (sometimes called taxonomic trees) are commonly used to represent hierarchies [Sokal & Sneath, 1963]:

- Sequence of nested clusters such that a cluster at a given level is formed by unioning clusters existing at the previous level;
- The level, denoted by λ, is a non-negative real number controlling the coarseness degree of the clustering;
- Dendrograms (sometimes called taxonomic trees) are commonly used to represent hierarchies [Sokal & Sneath, 1963]:

Segmentation tree

[Horowitz & Pavlidis, JACM 1976];

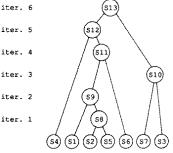

Hierarchical stepwise optimisation

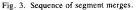
[Beaulieu & Goldberg, PAMI 1986];

Shortest spanning tree segmentation

[Morris et al., IEE Proc. 1986];

- Pyramid of region adjacency graphs [Montanvert et al. 1991];
- Graph weighted hierarchy [Kropatsch & Haximusa, SPIE-5299 2004];
- Scale-sets: cuts minimising an energy based on complexity and distortion measures [Guigues et al, IJCV 2006];
- Constrained connectivity [Soille, PAMI 2008].


Segmentation tree


[Horowitz & Pavlidis, JACM 1976];

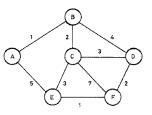
Hierarchical stepwise optimisation

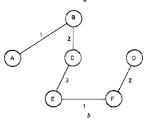
[Beaulieu & Goldberg, PAMI 1986];

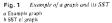
- Shortest spanning tree segmentation ^{iter. 5}
 [Morris et al., IEE Proc. 1986]; iter. 4
- Pyramid of region adjacency graphs iter. 3 [Montanvert et al. 1991];
 iter. 2
- Graph weighted hierarchy [Kropatsch & Haximusa, SPIE-5299 2004];
- Scale-sets: cuts minimising an energy based on complexity and distortion measures [Guigues et al, IJCV 2006];
- Constrained connectivity [Soille, PAMI 2008].

Segmentation tree

[Horowitz & Pavlidis, JACM 1976];


Hierarchical stepwise optimisation


[Beaulieu & Goldberg, PAMI 1986];


Shortest spanning tree segmentation

[Morris et al., IEE Proc. 1986];

- Pyramid of region adjacency graphs [Montanvert et al. 1991];
- Graph weighted hierarchy [Kropatsch & Haximusa, SPIE-5299 2004];
- Scale-sets: cuts minimising an energy based on complexity and distortion measures [Guigues et al, IJCV 2006];
- Constrained connectivity [Soille, PAMI 2008].

IEE PROCEEDINGS, Vol. 133, Pt. F, No. 2, APRIL 1986

Segmentation tree

[Horowitz & Pavlidis, JACM 1976];

Hierarchical stepwise optimisation

[Beaulieu & Goldberg, PAMI 1986];

Shortest spanning tree segmentation

[Morris et al., IEE Proc. 1986];

Pyramid of region adjacency graphs

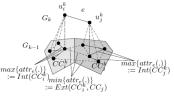
[Montanvert et al. 1991];

- Graph weighted hierarchy [Kropatsch & Haximusa, SPIE-5299 2004];
- Scale-sets: cuts minimising an energy based on complexity and distortion measures [Guigues et al, IJCV 2006];
- Constrained connectivity [Soille, PAMI 2008].

(a)

Segmentation tree

[Horowitz & Pavlidis, JACM 1976];


Hierarchical stepwise optimisation

[Beaulieu & Goldberg, PAMI 1986];

Shortest spanning tree segmentation

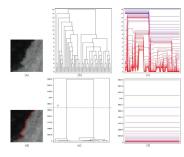
[Morris et al., IEE Proc. 1986];

- Pyramid of region adjacency graphs [Montanvert et al. 1991];
- Graph weighted hierarchy [Kropatsch & Haximusa, SPIE-5299 2004];
- Scale-sets: cuts minimising an energy based on complexity and distortion measures [Guigues et al, IJCV 2006];
- Constrained connectivity [Soille, PAMI 2008].

e) Internal and External contrast.

Segmentation tree

[Horowitz & Pavlidis, JACM 1976];

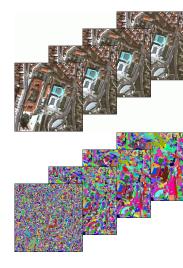

Hierarchical stepwise optimisation

[Beaulieu & Goldberg, PAMI 1986];

Shortest spanning tree segmentation

[Morris et al., IEE Proc. 1986];

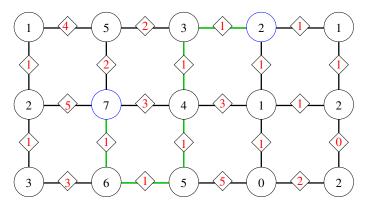
- Pyramid of region adjacency graphs [Montanvert et al. 1991];
- Graph weighted hierarchy [Kropatsch & Haximusa, SPIE-5299 2004];
- Scale-sets: cuts minimising an energy based on complexity and distortion measures [Guigues et al, IJCV 2006];
- Constrained connectivity [Soille, PAMI 2008].


Segmentation tree

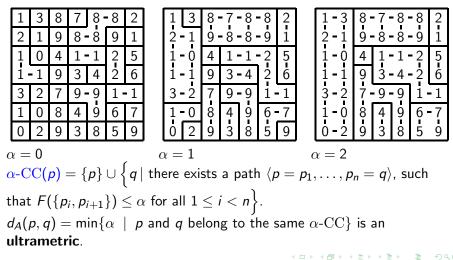
[Horowitz & Pavlidis, JACM 1976];

Hierarchical stepwise optimisation

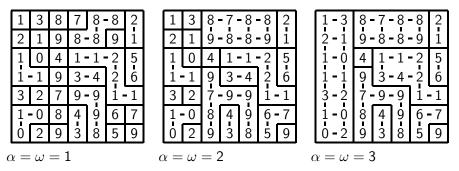
[Beaulieu & Goldberg, PAMI 1986];


- Shortest spanning tree segmentation [Morris et al., IEE Proc. 1986];
- Pyramid of region adjacency graphs [Montanvert et al. 1991];
- Graph weighted hierarchy [Kropatsch & Haximusa, SPIE-5299 2004];
- Scale-sets: cuts minimising an energy based on complexity and distortion measures [Guigues et al, IJCV 2006];
- Constrained connectivity [Soille, PAMI 2008].

α -connectivity (introduction)

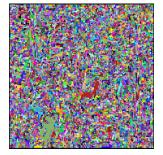

Graph G = (V, E), f for the node weights, F for the edge weights.

Example with $F(\{p,q\} \in E) = |f(p) - f(q)|$:


α -connectivity

example with
$$F(\{p,q\} \in E) = |f(p) - f(q)|$$

Constrained connectivity with global range constraint: ($\alpha,\omega)$ -connectivity $_{\rm [Soille, PAMI 2008]}$


$$(\alpha, \omega)$$
-CC $(p) = \max \left\{ \alpha_i$ -CC $(p) \mid \alpha_i \leq \alpha \text{ and } \mathsf{R}(\alpha_i$ -CC $(p)) \leq \omega \right\}$

 $d_{\Omega}(p,q) = \min\{\mathsf{R}(\alpha \operatorname{-CC}(p)) \mid q \in \alpha \operatorname{-CC}(p)\}\$ is an ultrametric.

<ロト < 団 > < 臣 > < 臣 >

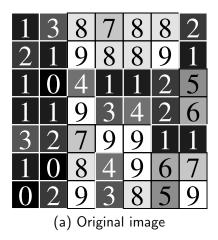
3

Main claim

Important idea

 Any hierarchical segmentation scheme can be seen as a watershed-based hierarchical scheme.

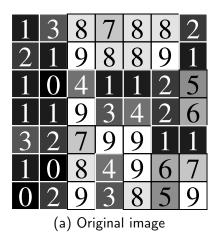
Main claim

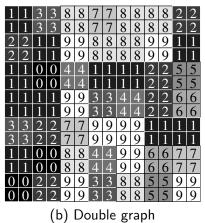

Important idea

- Any hierarchical segmentation scheme can be seen as a watershed-based hierarchical scheme.
- The trick is to consider edge-weighted graphs instead of node-weighted graphs.

Important idea

- Any hierarchical segmentation scheme can be seen as a watershed-based hierarchical scheme.
- The trick is to consider edge-weighted graphs instead of node-weighted graphs.
- Thanks to Olena, any algorithm is easily translated from node-weighted graphs to edge-weighted graphs.

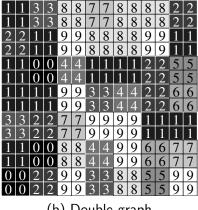

Looking at edges



э

Looking at edges

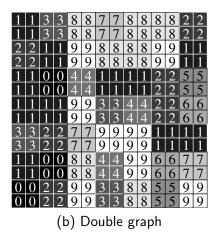
Doubling the graph (I like to split hairs ... and pixels)

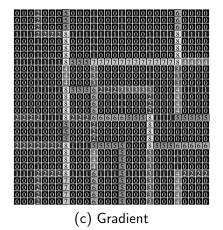


Flat zones == null gradient

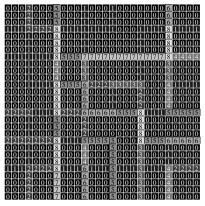
Image: A image: A

Looking at edges



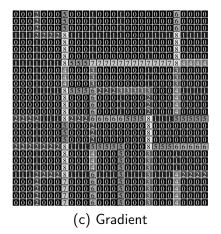

(b) Double graph

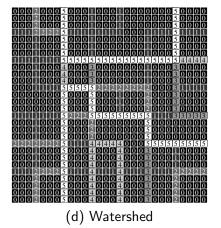
Watersheds and hierarchies


Looking at edges

Doubling the graph again (to visualize the gradient)

Looking at edges

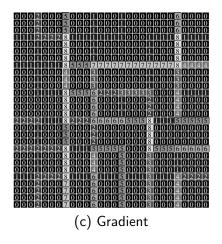


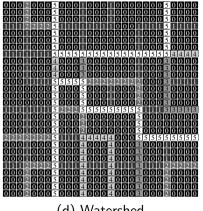

(c) Gradient

<ロト < 団 > < 臣 > < 臣 >

Looking at edges

Watershed: propagate the pass altitude





< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

the watershed is the saliency map of the α -connectivity

(d) Watershed

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Application

Original image

 α -connectivity saliency map

Main result - a new class of watersheds: ultrametric watersheds

Theorem

- Saliency maps can be characterized as ultrametric watersheds
- Ultrametric watersheds have a computable definition
- There exists a bijection between the set of ultrametric watersheds and the set of hierarchical segmentations.

[Najman, ISMM 2009, JMIV 2011]

Ultrametric watersheds: formal definitions

• If
$$S \subset E$$
, $\overline{S} = E \setminus S$.

•
$$F[\lambda] = \{v \in E \mid F(v) \leq \lambda\}.$$

- An edge $u \in \overline{E(X)}$ is said to be *W*-simple (for X) if X has the same number of connected components as X + u.
- An edge u such that F(u) = λ is said to be W-destructible (for F) with lowest value λ₀ if there exists λ₀ such that, for all λ₁, λ₀ < λ₁ ≤ λ, u is W-simple for F[λ₁] and if u is not W-simple for F[λ₀].
- A topological watershed (on G) is a map that contains no W-destructible edges.
- A map F is an *ultrametric watershed* if F is a topological watershed, and if furthemore, for any minimum X of F, F(X) = 0.

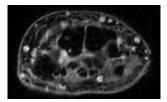
Ultrametric watersheds: some properties

The *connection value* is the number $F(x, y) = \min_{\pi \in \Pi(x, y)} \max\{F(u) | u \in \pi\}$, where $\Pi(x, y)$ is the set of all paths linking x to y in G. If X and Y are two subgraphs of G, we set $F(X, Y) = \min\{F(x, y) | x \in X, y \in Y\}$.

Theorem

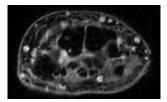
A map F is a topological watershed if and only if:

- (i) Its minima form a segmentation of G;
- (ii) for any edge $v = \{x, y\}$, if there exist X and Y in $\mathcal{M}(F)$, $X \neq Y$, such that $x \in V(X)$ and $y \in V(Y)$, then F(v) = F(X, Y).

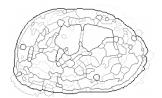

Property

A map F is an ultrametric watershed if and only if for all $\lambda \ge 0$, $F[\lambda]$ is a segmentation of G.

- ・ 同 ト ・ ヨ ト - - ヨ

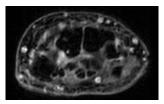

Novel potential methodology

Novel potential methodology

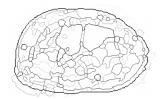


(a) Original image

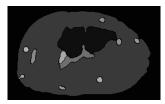
Novel potential methodology



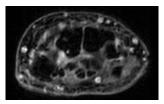
(a) Original image



(b) Ultrametric watershed


Novel potential methodology

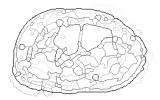
(a) Original image

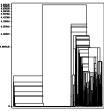


(b) Ultrametric watershed



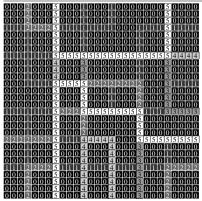
(c) One of the segmentations

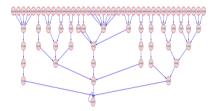

Novel potential methodology


(a) Original image

(c) One of the segmentations

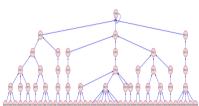
(b) Ultrametric watershed


(d) Dendrogram


Result

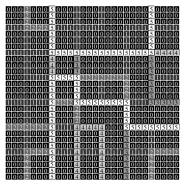
Main theorem: the dendrogram can be replaced by an ultrametric watershed

Looking at min-tree of edge-maps


The min-tree of a saliency map : the connected components of all the thresholds of a saliency map

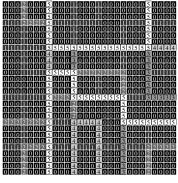
Looking at min-tree of edge-maps

It is a dendrogram (with more information) 0 0 0 1 <u>|0005000100000000100050000</u> 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0


• The range constraint is increasing on the min-tree of the gradient

The range constraint is increasing on the min-tree of the gradient

The range constraint is a flooding criterion


- The range constraint is increasing on the min-tree of the gradient
- The range constraint is a flooding criterion
- By flooding a watershed of the gradient with the range constraint, we obtain the constrained connectivity saliency map

- The range constraint is increasing on the min-tree of the gradient
- The range constraint is a flooding criterion
- By flooding a watershed of the gradient with the range constraint, we obtain the constrained connectivity saliency map

 α -connectivity

- The range constraint is increasing on the min-tree of the gradient
- The range constraint is a flooding criterion
- By flooding a watershed of the gradient with the range constraint, we obtain the constrained connectivity saliency map

 α -connectivity

	0 0
	0 0
	1 1
	0 0
	56
	0 0
	00
	11
	<u>u u</u>
	7191
$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	
1 1 3 3 3 3 9 2 2 2 6 1 1 1 6 1 1 4 2 2 2 4 4 4 0 0 0 3 0 0 0 9 0 0 0 6 0 0 0 6 0 0 0 4 0 0 0 4 0 0 0 0 0 0 3 0 0 0 9 0 0 0 6 0 0 0 6 0 0 0 4 0 0 0 4 0 0 0 0 0 0 3 0 0 0 9 0 0 0 6 0 0 0 6 0 0 0 4 0 0 0 4 0 0 0 	
0 0 0 6 0 0 0 9 0 0 0 6 0 0 0 6 0 0 0 4 0 0 0 4 0 0 0 0	
0 0 0 5 0 0 0 9 0 0 0 6 0 0 0 6 0 0 0 4 0 0 0 0 4 0 0 0 0 4 0 0 0 0 4 0	
000300090006000600040004000	
0 0 0 3 0 0 0 9 0 0 0 6 0 0 0 6 0 0 0 4 0 0 0 4 0 0 0	

Constrained connectivity

Application

 α -connectivity

Constrained connectivity

- Different (hierarchical) image representations
- Choose what is best adapted to the problem at hand
- Change the space of image representations
- Use Olena to alleviate the burden of programmation

- Different (hierarchical) image representations
- Choose what is best adapted to the problem at hand
- Change the space of image representations
- Use Olena to alleviate the burden of programmation
- Component tree / dendrogram == to know when regions are merging

- Different (hierarchical) image representations
- Choose what is best adapted to the problem at hand
- Change the space of image representations
- Use Olena to alleviate the burden of programmation
- Component tree / dendrogram == to know when regions are merging
- Minimum spanning tree / Binary partition tree == to give an order in the merging of regions

- Different (hierarchical) image representations
- Choose what is best adapted to the problem at hand
- Change the space of image representations
- Use Olena to alleviate the burden of programmation
- Component tree / dendrogram == to know when regions are merging
- Minimum spanning tree / Binary partition tree == to give an order in the merging of regions
- Ultrametric watersheds / saliency maps == to visualize the hierarchy and to know the neighborhood graph of the regions

- Different (hierarchical) image representations
- Choose what is best adapted to the problem at hand
- Change the space of image representations
- Use Olena to alleviate the burden of programmation
- Component tree / dendrogram == to know when regions are merging
- Minimum spanning tree / Binary partition tree == to give an order in the merging of regions
- Ultrametric watersheds / saliency maps == to visualize the hierarchy and to know the neighborhood graph of the regions
- Ultrametric watersheds / saliency maps == to see any hierarchy as an image