LTL model checking of

stuttering-insensitive properties

Ala Eddine BEN SALEM

LRDE/LIP6

04 July 2012

LRDE 04 July 2012

Model Checking

LTL formula

A

q /
L7

finite-state model

Model
Checker

counterexample

LRDE 04 July 2012

Automata-Theoretic Approach to Model Checking

Model LTL formula ¢

LTL to w-automaton
translation

Negated formula
automaton A-,

On the fly
State-space generation

State-space
automaton
Am

Synchronized product
Z(An © Ap) =
Z(An) N ZL(A-,)

Product Automaton
AM ® Aﬁg,

Emptiness check
L(Au©Ay) L0

Automata-Theoretic Approach to Model Checking

Model

LTL formula ¢

State-space generation

LTL to w-automaton

translation

State-space
automaton

Automaton A-,

Aum TGBA

Synchronized product
ZL(An® Ay) =
Z(An) N Z(A,)

Product Automaton
Ay ® Awp

Emptiness check
LA A L0

BA TA

There are different
types of Automata:

@ TGBA: Transition-based
Generalized Blchi
Automata

@ BA: Biichi Automata

@ TA: Testing Automata
(stuttering-insensitive)

Approach 1: TGBA

TGBA for the LTL property ¢ = GF aA GF b (Weak-fairness)

ab

@ Let AP = the set of atomic proposition.
@ A TGBA over the alphabet K = 24P is a tuple (S, I, R, F):
e Sis finite set of states,
e | C Sis the set of initial states,
e F is afinite set of acceptance conditions,
e R C S x 2K x 2F x Sis the transition relation.
@ An infinite run of a TGBA is accepting if it visits each
accepting condition from F (®, © ,...) infinitely often.

LRDE 04 July 2012

Approach 2: BA
BA recognizing LTL property o = GFaAnGFb

Obtained from a TGBA by degeneralization

@ Has only one acceptance condition that is state-based.
@ A BA over the alphabet K = 247 is a tuple (S, I, R, F):
e F C Sis a finite set of acceptance states
e R C S x 2K x Sis the transition relation
@ Aninfinite run of a BA is accepting if it visits at least one
acceptance state infinitely often.

LRDE 04 July 2012

Approach 3: TA (only stuttering-insensitive)

TA recognizing LTL property FG p
e BT y

Model Execution=ppppppppp... Lk

TA Run =001101111 ... (p} v 1)

A TA over the alphabet K = 24P is a tuple (S, 1, U, R, F, G):
@ R C S x K x S: each transition (s, k, d) is labeled by the
set of atomic propositions that change between s and d,

@ F C Sis a set of Blichi acceptance states,
@ G C Sis a set of livelock acceptance states.

A second way to accept an infinite run: reaches a livelock
acceptance state and from that point only stuttering.

LRDE 04 July 2012

Preliminary work: Experimental comparison of the

three approaches

Hypothesis: LTL\ X formulas (stuttering-insensitive)

Experimental evaluation comparing the three approaches:
TGBA, BA and TA.

Results [Ben Salem 2011]:
@ Verified properties (complete exploration of the product):

o TA requires two-pass emptiness check
o It is therefore better to use the TGBA approach .

@ Violated properties (partial exploration of the product):
e TA approach is the most efficient to detect counterexample

@ TGBA is more efficient than BA in all cases

LRDE 04 July 2012

Contributions

@ Enhancing TA emptiness check to avoids a second pass
when it is possible

© Single-pass Testing Automata (STA):
e a transformation of TA that never requires a second pass
e add an artificial livelock state (the only one)

© Transition-based Generalized Testing Automata (TGTA):
e new automaton that combines benefits from TA and TGBA
@ no two-pass emptiness check like TA
e no artificial state like STA

LRDE 04 July 2012

Why does TA emptiness check require two passes ?

@ Two kinds of accepting SCC: Buichi or livelock (accepted if
composed only by stuttering-transitions ()

@ first pass may miss to detect livelock-accepting SCCs
(depending on order to explore the transitions of (3, 1))

Product between a model and a TA of (F G p). The red SCC
is livelock-accepting.

@ Problem: mixing of non-stuttering and stuttering transitions
in the same SCC

LRDE 04 July 2012

Single-pass Testing Automata (STA)

We transform a TA into a STA by:
@ adding a unique livelock-acceptance state g and

@ adding a transition (s, k, g) for any transition (s, k, s’) that goes
into a livelock-acceptance state s’ in TA

-p p p -p p
{p} l {p}
/4 h \\| 'I" - ‘\I
b $o (1D
{p} {p}

Transfomation of TA (F G p) into STA

LRDE 04 July 2012

Single-pass Testing Automata (STA)
We transform a TA into a STA by:

@ adding a unique livelock-acceptance state g and

@ adding a transition (s, k, g) for any transition (s, k, s’) that goes
into a livelock-acceptance state s’ in TA

-p

Impact of STA on the product: single-pass emptiness check

LRDE

04 July 2012

STA optimization

During the TA to STA transformation:
@ don'’t add transition (s, k, g) for transition (s, k, ') where s’
is both livelock and Bichi accepting,
@ because in the product, any SCC containing s’ is accepting

{6}

Transformation of TA (recognizing aU G b) into optimized STA.
The state 4 is both livelock and Blichi accepting

LRDE 04 July 2012

TGTA a new kind of automaton

TGTA combines ideas from TGBA and TA:

@ From TGBA:
e transition-based generalized acceptance conditions,
e and a one-pass emptiness-check (the same algorithm)
@ From TA:
e reduction of stuttering-transitions
e without adding livelock-acceptance (because two passes)

TGTA of (aUGb) :

ab, ab

LRDE 04 July 2012

Reduction of stuttering-transitions in TGTA

TGTA reduction does not add livelock-accepting states (like a
TA reduction).

ofons

Reduction of stuttering-transitions in TA.

%2 >
n A\
o Sn e
©» L4

==

\\

So ”

LRDE 04 July 2012

Reduction of stuttering-transitions in TGTA

TGTA reduction does not add livelock-accepting states (like a
TA reduction).

ofons

%2 >
n A\
o Sn R
©» L4

==

\\

So ”

Reduction of stuttering-transitions in TGTA.

LRDE 04 July 2012

Experimental evaluation of TGTA against TGBA

1E+08
* violated

verified

1E+07 |
|<£ 1E+06 o °
15} o
=4 °
1E+05
1E+04
7
&
)(0(9

Number of transitions explored by the emptiness check of TGTA
against TGBA. Axes in logarithmic scale

@ Verified properties (green crosses): TGTA is more efficient
@ Violated properties (black circles): harder to interpret

LRDE 04 July 2012

Experimental evaluation of TGTA against TA

1E+08
violated
verified
1E+07 |
'<£ 1E+06
15}
=
1E+05 | g°
1E+04 | &2
Y
&
)(0&

Number of transitions explored by the emptiness check of TGTA
against TA. (Axes in logarithmic scale)

@ Verified properties: TGTA more efficient, because TA requires
two-pass

@ Violated properties: same problem as for TGTA against TGBA

LRDE 04 July 2012

Conclusion

@ We improved the model cheking of stuttering-insensitive
properties

@ with some contributions: enhancing TA emtiness check,
proposing STA and TGTA

@ TGTA is our most significant contribution [Ben Salem 2012]
@ Our benchmarks show that TGTA outperform TA and
TGBA
We plan additional work to:
@ enable symbolic model checking with TGTA
@ provide direct conversion of LTL to TGTA
@ combine partial order reduction with TGTA

LRDE 04 July 2012

Publications

- [Ben Salem 2011] A.-E. B. Salem, A. Duret-Lutz, and F. Kordon.
Generalized Biichi automata versus testing automata for model
checking. In Proc. of SUMo’11 , vol. 726, pp. 65-79. CEUR.

- [Ben Salem 2012] A. E. Ben Salem, A. Duret-Lutz, and F. Kordon.
Model Checking using Generalized Testing Automata. Transactions
on Petri Nets and Other Models of Concurrency (ToPNoC) , ?:?,
2012. (a paraitre)

Questions

LRDE 04 July 2012

