
LTL model checking of
stuttering-insensitive properties

Ala Eddine BEN SALEM

LRDE/LIP6

04 July 2012

LRDE 04 July 2012 1



Model Checking

LRDE 04 July 2012 2



Automata-Theoretic Approach to Model Checking

Model
M

On the fly
State-space generation

State-space
automaton

AM

LTL formula ϕ

LTL to ω-automaton
translation

Negated formula
automaton A¬ϕ

Synchronized product
L (AM ⊗ A¬ϕ) =
L (AM) ∩ L (A¬ϕ)

Product Automaton
AM ⊗ A¬ϕ

Emptiness check
L (AM ⊗ A¬ϕ)

?
= ∅

LRDE 04 July 2012 3



Automata-Theoretic Approach to Model Checking

There are different
types of Automata:

TGBA: Transition-based
Generalized Büchi
Automata
BA: Büchi Automata
TA: Testing Automata
(stuttering-insensitive)

Model
M

State-space generation

State-space
automaton

AM

LTL formula ϕ

LTL to ω-automaton
translation

Automaton A¬ϕ
¬TGBA BA TA

Synchronized product
L (AM ⊗ A¬ϕ) =
L (AM) ∩ L (A¬ϕ)

Product Automaton
AM ⊗ A¬ϕ

Emptiness check
L (AM ⊗ A¬ϕ)

?
= ∅

LRDE 04 July 2012 4



Approach 1: TGBA

TGBA for the LTL property ϕ = G F a ∧G F b (Weak-fairness)

āb̄

āb

ab

ab̄

Let AP = the set of atomic proposition.
A TGBA over the alphabet K = 2AP is a tuple 〈S, I,R,F 〉:

S is finite set of states,
I ⊆ S is the set of initial states,
F is a finite set of acceptance conditions,
R ⊆ S × 2K × 2F × S is the transition relation.

An infinite run of a TGBA is accepting if it visits each
accepting condition from F ( , ,. . . ) infinitely often.

LRDE 04 July 2012 5



Approach 2: BA

BA recognizing LTL property ϕ = G F a ∧G F b

ab

ab̄, āb̄
āb

ab̄, āb̄
ab

āb
āb, āb̄

ab,ab̄

Obtained from a TGBA by degeneralization

Has only one acceptance condition that is state-based.
A BA over the alphabet K = 2AP is a tuple 〈S, I,R,F 〉:

F ⊆ S is a finite set of acceptance states
R ⊆ S × 2K × S is the transition relation

An infinite run of a BA is accepting if it visits at least one
acceptance state infinitely often.

LRDE 04 July 2012 6



Approach 3: TA (only stuttering-insensitive)

TA recognizing LTL property F G p

Model Execution = p̄ p̄ p p p̄ p p p p . . .

TA Run = 0 0 1 1 0 1 1 1 1 . . . 0 1

{p}

{p}

p̄ p

∅∅

A TA over the alphabet K = 2AP is a tuple 〈S, I,U,R,F ,G〉:
R ⊆ S × K× S: each transition (s, k ,d) is labeled by the
set of atomic propositions that change between s and d ,
F ⊆ S is a set of Büchi acceptance states,
G ⊆ S is a set of livelock acceptance states.

A second way to accept an infinite run: reaches a livelock
acceptance state and from that point only stuttering.

LRDE 04 July 2012 7



Preliminary work: Experimental comparison of the
three approaches

Hypothesis: LTL\X formulas (stuttering-insensitive)

Experimental evaluation comparing the three approaches:
TGBA, BA and TA.

Results [Ben Salem 2011]:
Verified properties (complete exploration of the product):

TA requires two-pass emptiness check
It is therefore better to use the TGBA approach .

Violated properties (partial exploration of the product):
TA approach is the most efficient to detect counterexample

TGBA is more efficient than BA in all cases

LRDE 04 July 2012 8



Contributions

1 Enhancing TA emptiness check to avoids a second pass
when it is possible

2 Single-pass Testing Automata (STA):
a transformation of TA that never requires a second pass
add an artificial livelock state (the only one)

3 Transition-based Generalized Testing Automata (TGTA):
new automaton that combines benefits from TA and TGBA
no two-pass emptiness check like TA
no artificial state like STA

LRDE 04 July 2012 9



Why does TA emptiness check require two passes ?

Two kinds of accepting SCC: Büchi or livelock (accepted if
composed only by stuttering-transitions ∅)
first pass may miss to detect livelock-accepting SCCs
(depending on order to explore the transitions of (3,1))

0,0¬p 3,1

2,11,0

¬p

∅

{p}

∅∅

{p}

Product between a model and a TA of (F G p). The red SCC
is livelock-accepting.

Problem: mixing of non-stuttering and stuttering transitions
in the same SCC

LRDE 04 July 2012 10



Single-pass Testing Automata (STA)
We transform a TA into a STA by:

adding a unique livelock-acceptance state g and

adding a transition (s, k ,g) for any transition (s, k , s′) that goes
into a livelock-acceptance state s′ in TA

0

¬p¬p

1

pp

¬p

{p}

{p}

0

¬p¬p

1

pp

g

pp

¬p

{p}

{p}
{p}

Transfomation of TA (F G p) into STA

LRDE 04 July 2012 11



Single-pass Testing Automata (STA)
We transform a TA into a STA by:

adding a unique livelock-acceptance state g and

adding a transition (s, k ,g) for any transition (s, k , s′) that goes
into a livelock-acceptance state s′ in TA

0

¬p¬p

1

pp

¬p

{p}

{p}

0

¬p¬p

1

pp

g

pp

¬p

{p}

{p}
{p}

0,0¬p 3,1

2,11,0

¬p

∅

{p}

∅∅

{p}
0,0¬p 3,1

2,11,0

¬p

3,g

2,g

∅

{p}{p}

∅∅

{p}

∅∅

Impact of STA on the product: single-pass emptiness check

LRDE 04 July 2012 12



STA optimization

During the TA to STA transformation:
don’t add transition (s, k ,g) for transition (s, k , s′) where s′

is both livelock and Büchi accepting,
because in the product, any SCC containing s′ is accepting

1ab̄

2ab

3āb

4

{b}

{a,b}

{b}

{a}

{a}

{a}

{a}

1ab̄

2ab

3āb

4

g ab, āb

{b}

{a,b}

{b}

{a,b}

{b}

{a}
{a}

{a}

{a}

{a}

Transformation of TA (recognizing a U G b) into optimized STA.
The state 4 is both livelock and Büchi accepting

LRDE 04 July 2012 13



TGTA a new kind of automaton

TGTA combines ideas from TGBA and TA:
From TGBA:

transition-based generalized acceptance conditions,
and a one-pass emptiness-check (the same algorithm)

From TA:
reduction of stuttering-transitions
without adding livelock-acceptance (because two passes)

TGTA of (a U G b) :

1ab̄

2ab

3āb

4 ab, āb

{b}

{b}
∅

{a,b}

{a,b}
{b}

{a}

{a}

∅

{a}

∅

{a}

∅

[

] TGTA for a U G b, with F = { }.

LRDE 04 July 2012 14



Reduction of stuttering-transitions in TGTA

TGTA reduction does not add livelock-accepting states (like a
TA reduction).

s s0 · · · sn

sF...

. . .k ∅ ∅
∅

∅

∅

s s0 sn

...

. . .k

Reduction of stuttering-transitions in TA.

LRDE 04 July 2012 15



Reduction of stuttering-transitions in TGTA

TGTA reduction does not add livelock-accepting states (like a
TA reduction).

s s0 · · · sn

sF...

. . .k ∅ ∅
∅

∅

∅

s s0 sn

...

. . .k

Reduction of stuttering-transitions in TA.

s s0 · · · sn

...

. . .k ∅ ∅
∅

∅

∅
s s0 sn

...

. . .k

k

∅

Reduction of stuttering-transitions in TGTA.

LRDE 04 July 2012 16



Experimental evaluation of TGTA against TGBA

1E+04

1E+05

1E+06

1E+07

1E+08

1E
+04

1E
+05

1E
+06

1E
+07

1E
+08

T
G

T
A

TGBA

violated
verified

Number of transitions explored by the emptiness check of TGTA
against TGBA. Axes in logarithmic scale

Verified properties (green crosses): TGTA is more efficient

Violated properties (black circles): harder to interpret

LRDE 04 July 2012 17



Experimental evaluation of TGTA against TA

1E+04

1E+05

1E+06

1E+07

1E+08

1E
+04

1E
+05

1E
+06

1E
+07

1E
+08

T
G

T
A

TA

violated
verified

Number of transitions explored by the emptiness check of TGTA
against TA. (Axes in logarithmic scale)

Verified properties: TGTA more efficient, because TA requires
two-pass

Violated properties: same problem as for TGTA against TGBA

LRDE 04 July 2012 18



Conclusion

We improved the model cheking of stuttering-insensitive
properties
with some contributions: enhancing TA emtiness check,
proposing STA and TGTA
TGTA is our most significant contribution [Ben Salem 2012]
Our benchmarks show that TGTA outperform TA and
TGBA

We plan additional work to:
enable symbolic model checking with TGTA
provide direct conversion of LTL to TGTA
combine partial order reduction with TGTA

LRDE 04 July 2012 19



Publications

- [Ben Salem 2011] A.-E. B. Salem, A. Duret-Lutz, and F. Kordon.
Generalized Büchi automata versus testing automata for model
checking. In Proc. of SUMo’11 , vol. 726, pp. 65–79. CEUR.

- [Ben Salem 2012] A. E. Ben Salem, A. Duret-Lutz, and F. Kordon.
Model Checking using Generalized Testing Automata. Transactions
on Petri Nets and Other Models of Concurrency (ToPNoC) , ?:?,
2012. (à paraitre)

Questions

LRDE 04 July 2012 20


