
Emptiness check for Büchi Automata
based on decomposition

Etienne Renault

LRDE/LIP6

July 5, 2012

1 E. Renault Emptiness check for BA based on decomposition

What is Model Checking?

Check if a given system respects the specified behaviour.

We need:
a system: a microwave owen,
a property:

I The owen doesn’t heat up until the door is closed.
I If start button is pressed, the owen will heat up in the

future.

Objectives
Detect if the specified behaviours are correct otherwise return
a counterexample leading to the violation of the property.

2 E. Renault Emptiness check for BA based on decomposition

What is Model Checking?

Check if a given system respects the specified behaviour.

We need:
a system: a microwave owen,
a property:

I The owen doesn’t heat up until the door is closed.
I If start button is pressed, the owen will heat up in the

future.

Objectives
Detect if the specified behaviours are correct otherwise return
a counterexample leading to the violation of the property.

2 E. Renault Emptiness check for BA based on decomposition

What is Model Checking?

Check if a given system respects the specified behaviour.

We need:
a system: a microwave owen,
a property:

I The owen doesn’t heat up until the door is closed.
I If start button is pressed, the owen will heat up in the

future.

Objectives
Detect if the specified behaviours are correct otherwise return
a counterexample leading to the violation of the property.

2 E. Renault Emptiness check for BA based on decomposition

What is Model Checking?

The owen
doesn’t heat

up until
the door
is closed.

Counterexample

3 E. Renault Emptiness check for BA based on decomposition

Automata-Theoretic LTL Model Checking

High-level
model M

LTL
property ϕ

M |= ϕ or
counterexampleLTL

translation

Negated
property au-
tomaton A¬ϕ

State-space
automaton

AM

Synchronized
product

L (AM ⊗ A¬ϕ) =
L (AM)∩L (A¬ϕ)

Product
Automaton
AM ⊗ A¬ϕ

Emptiness check
L (AM⊗A¬ϕ)

?
= ∅

4 E. Renault Emptiness check for BA based on decomposition

Automata-Theoretic LTL Model Checking

High-level
model M

LTL
property ϕ

M |= ϕ or
counterexampleLTL

translation

Negated
property au-
tomaton A¬ϕ

State-space
automaton

AM

Synchronized
product

L (AM ⊗ A¬ϕ) =
L (AM)∩L (A¬ϕ)

Product
Automaton
AM ⊗ A¬ϕ

Emptiness check
L (AM⊗A¬ϕ)

?
= ∅

4 E. Renault Emptiness check for BA based on decomposition

Automata-Theoretic LTL Model Checking

High-level
model M

LTL
property ϕ

M |= ϕ or
counterexampleLTL

translation

Negated
property au-
tomaton A¬ϕ

State-space
automaton

AM

Synchronized
product

L (AM ⊗ A¬ϕ) =
L (AM)∩L (A¬ϕ)

Product
Automaton
AM ⊗ A¬ϕ

Emptiness check
L (AM⊗A¬ϕ)

?
= ∅

4 E. Renault Emptiness check for BA based on decomposition

Automata-Theoretic LTL Model Checking

High-level
model M

LTL
property ϕ

M |= ϕ or
counterexampleLTL

translation

Negated
property au-
tomaton A¬ϕ

State-space
automaton

AM

Synchronized
product

L (AM ⊗ A¬ϕ) =
L (AM)∩L (A¬ϕ)

Product
Automaton
AM ⊗ A¬ϕ

Emptiness check
L (AM⊗A¬ϕ)

?
= ∅

4 E. Renault Emptiness check for BA based on decomposition

Automata-Theoretic LTL Model Checking

High-level
model M

LTL
property ϕ

M |= ϕ or
counterexampleLTL

translation

Negated
property au-
tomaton A¬ϕ

State-space
automaton

AM

Synchronized
product

L (AM ⊗ A¬ϕ) =
L (AM)∩L (A¬ϕ)

Product
Automaton
AM ⊗ A¬ϕ

Emptiness check
L (AM⊗A¬ϕ)

?
= ∅

4 E. Renault Emptiness check for BA based on decomposition

Transition-based Generalized Büchi Automaton

0

1

2

3

4 5 6

7

ab
d

d

ā

c

b̄ c

ā

b
cd

cbab

Accepting runs are infinite sequences visiting infinitely often
each acceptance conditions

5 E. Renault Emptiness check for BA based on decomposition

Categories of Automata

Terminal Weak Strong

Automaton Automaton Automaton

0

1

2

3

true

a
b

b̄

c
b̄

d

0

1

2

3

a

a true
b

c
b̄

d
ab

ab̄

āb

āb̄

Reachability DFS NDFS

6 E. Renault Emptiness check for BA based on decomposition

Properties of the synchronized product

High-level
model M

LTL
property ϕ

M |= ϕ or
counterexample

State-space
automaton

AM

Synchronized
product

L (AM ⊗ A¬ϕ) =
L (AM)∩L (A¬ϕ)

Product
Automaton
AM ⊗ A¬ϕ

Emptiness check
L (AM⊗A¬ϕ)

?
= ∅

LTL
translation

Negated
property au-
tomaton A¬ϕ

7 E. Renault Emptiness check for BA based on decomposition

Global approach

Approach proposed by Somenzi, Bloem and Ravi
(CAV’99).
Over-approximate class syntactically (from the formula).
Apply the more efficient emptiness check algorithm.

Starting point
Automata can be composed of subautomata of each type, how
can we use this information to perform efficient emptiness
check?

8 E. Renault Emptiness check for BA based on decomposition

Our works

Decide class structurally (from the automaton).
Decompose this automaton.
Each emptiness checks can be launched in parallel.

Strong Aut.

Terminal Aut. Weak Aut.

Our works

9 E. Renault Emptiness check for BA based on decomposition

Our works

Decide class structurally (from the automaton).
Decompose this automaton.
Each emptiness checks can be launched in parallel.

Strong Aut.

Terminal Aut. Weak Aut.

Our works

9 E. Renault Emptiness check for BA based on decomposition

Our works

Decide class structurally (from the automaton).
Decompose this automaton.
Each emptiness checks can be launched in parallel.

Strong Aut.

Terminal Aut. Weak Aut.

Our works

9 E. Renault Emptiness check for BA based on decomposition

Example of Decomposition for (G a→ G b) W c

0 1

2

3

4

5

āc̄

ac̄

abc̄

bc̄

bc

b

ac̄āc̄

ac

a

ā

cāc

true

10 E. Renault Emptiness check for BA based on decomposition

Terminal Aut. Weak Aut. Strong Aut.

0 1

4

5

0 1

2

3

0 1

3

As soon as a counterexample is found, kill other
emptiness checks.
Otherwise, wait for the end of all emptiness checks.

11 E. Renault Emptiness check for BA based on decomposition

Benchs

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000

O
W

C
T

Y

Decomp. OWCTY

Time

empty result
non empty result

x

Models: Ring, Fms,
Kanban, Philo
2600 formulas
427 empty result
2173 counterexamples
found

12 E. Renault Emptiness check for BA based on decomposition

Conclusion and future works

Minimising the original automaton by composing all
minimized subautomata.
Extracting other automata.
Mixing decomposition with symbolic, explicit and hybrid
approaches.
Considering other temporal logics (PSL is already
supported).
Mixing this approach with other type of automata
(Streett, testing automata,...).
Mixing this with other techniques of verification (Partial
Order, SAT,...).

13 E. Renault Emptiness check for BA based on decomposition

That’s all folks...

Questions?

14 E. Renault Emptiness check for BA based on decomposition

