Morphological Filtering in Shape Spaces : Applications Using Tree-Based Image Representations

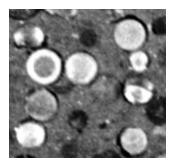
Yongchao Xu^{1,2}

Joint work with Thierry Géraud¹ and Laurent Najman²

¹EPITA Research and Development Laboratory (LRDE) ²Université Paris-Est LIGM A3SI ESIEE Paris, France

July 4th. 2012

Motivation



Input image.

Result.

Question

How to obtain such a result?

Y. Xu: Morphological filtering in shape spaces

<ロト < 団 > < 臣 > < 臣 >

Y. Xu: Morphological filtering in shape spaces

- 4 回 🕨 - 4 巨 🕨 - 4 巨 🕨

⊸∢ ≣⇒

-≺ ≣⇒

1 Introduction

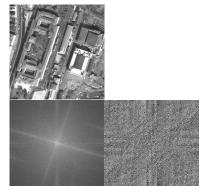
- 2 Shape-based morphology
- 3 Some illustrations

4 Hierarchies

Conclusion and perspectives

Decomposition into primitive or fundamental elements that can be more easily interpreted:

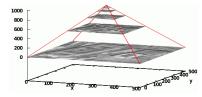
- Functional decompositions;
- Multiresolution decompositions;
- Multi-scale representations;
- Threshold decompositions;
- Hierarchical representations.



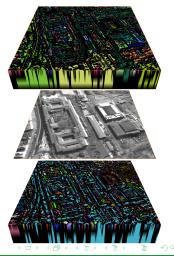
Amplitude

Phase

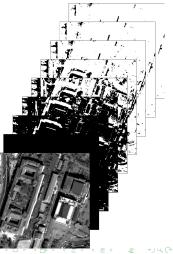
- Functional decompositions;
- Multiresolution decompositions;
- Multi-scale representations;
- Threshold decompositions;
- Hierarchical representations.



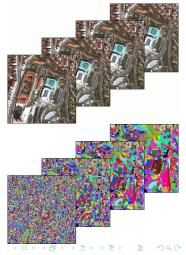
- Functional decompositions;
- Multiresolution decompositions;
- Multi-scale representations;
- Threshold decompositions;
- Hierarchical representations.



- Functional decompositions;
- Multiresolution decompositions;
- Multi-scale representations;
- Threshold decompositions;
- Hierarchical representations.



- Functional decompositions;
- Multiresolution decompositions;
- Multi-scale representations;
- Threshold decompositions;
- Hierarchical representations.



Decomposition into primitive or fundamental elements that can be more easily interpreted:

- Functional decompositions;
- Multiresolution decompositions;
- Multi-scale representations;
- Threshold decompositions;
- Hierarchical representations.

Not mutually exclusive.

Properties inherited from those of underlying operations.

Choice driven by the application needs.

Connected operators

What's connected operators ?

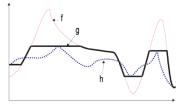
Filtering tools that merge flat zones

Properties

- No new contours
- Keep contours' position

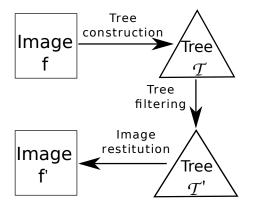
An example : Levelings

Remove details Preserve the \leq and \geq order

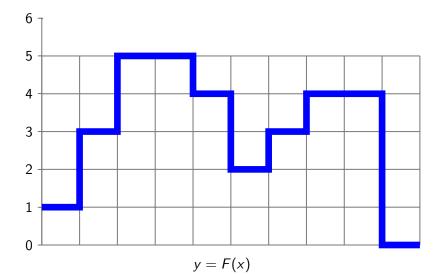


Leveling with marker. f : input h : marker g : result

One popular implementation [Salembier & Wilkinson, SPM, 2009]

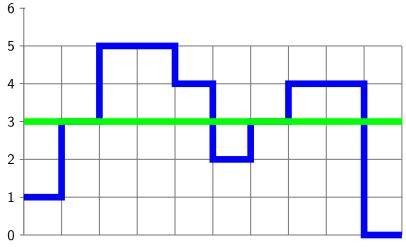


Level sets and components



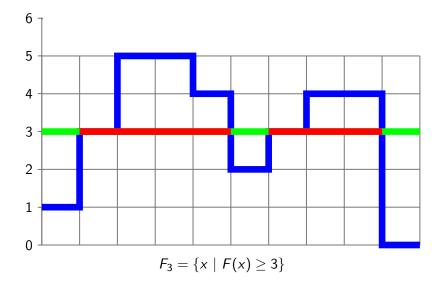
◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ · の < @

Level sets and components

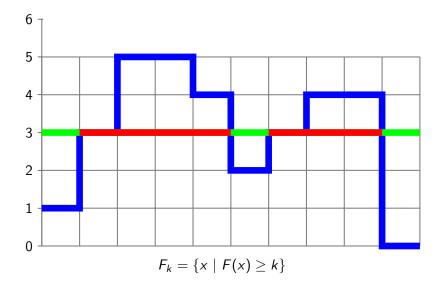


 $F(x) \geq 3$

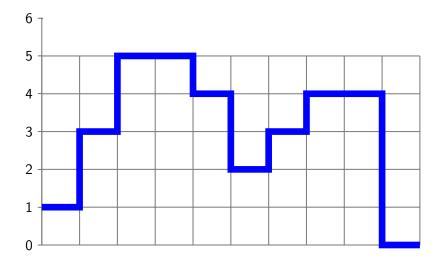
Level sets and components



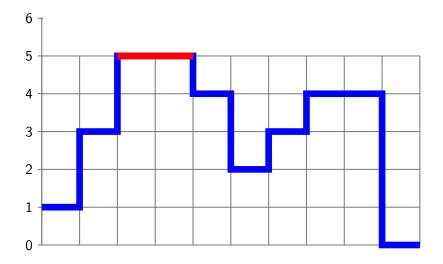
Level sets and components



(Max) component tree

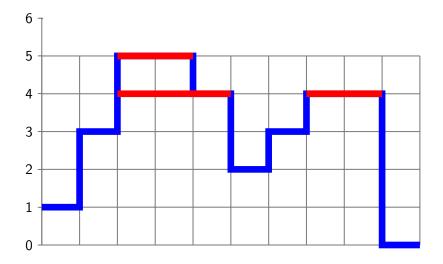


(Max) component tree



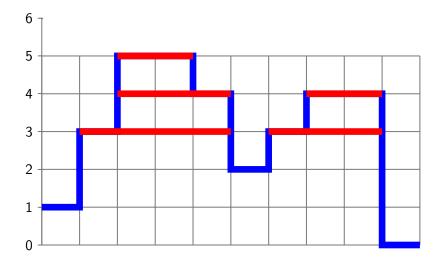
 $F_5 = \{x \mid F(x) \geq 5\}$

(Max) component tree



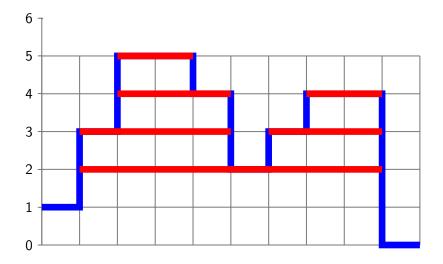
 $F_4 = \{x \mid F(x) \ge 4\}$

(Max) component tree



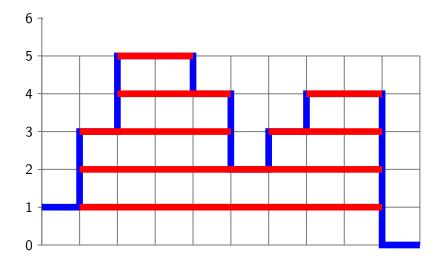
$$F_3 = \{x \mid F(x) \ge 3\}$$

(Max) component tree



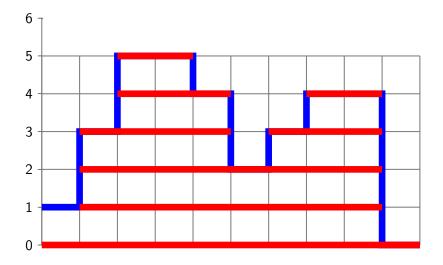
 $F_2 = \{x \mid F(x) \geq 2\} \quad \text{for a product product } F_2 = \{x \mid F(x) \geq 2\}$

(Max) component tree



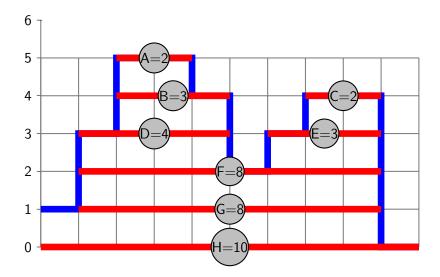
 $F_1 = \{x \mid F(x) \geq 1\}$

(Max) component tree

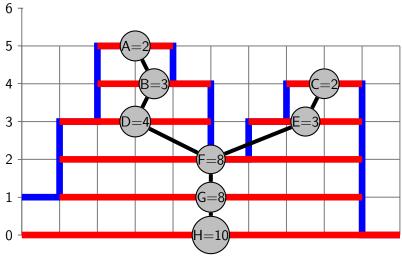


 $F_0 = \{x \mid F(x) \ge 0\}$

(Max) component tree

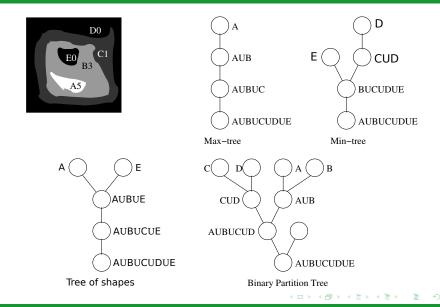


(Max) component tree

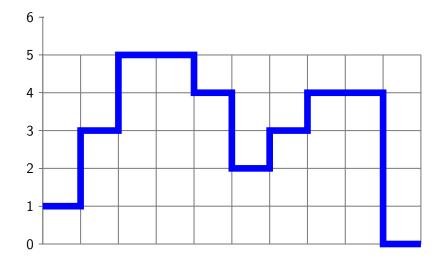


Components + inclusion relationship = component tree

Min-tree, max-tree and tree of shapes [Monasse, ITIP, 2000]



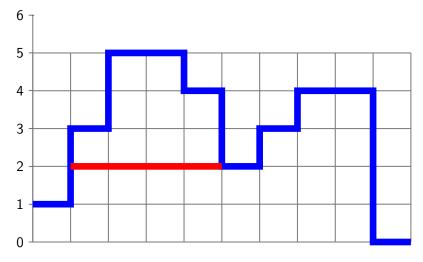
Attributes



◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

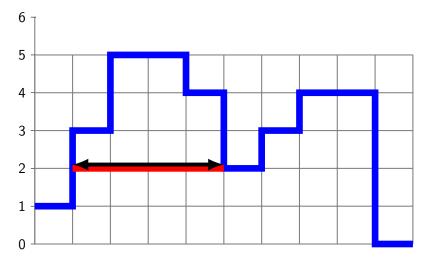
・ロト ・四ト ・ヨト ・ヨト ・ヨ

Attributes

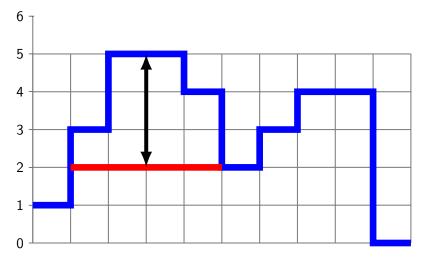


A connected component

Attributes

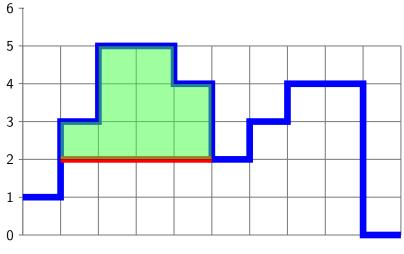


Attributes



Height

Attributes



Volume

< □ > < □ > < □ > < □ > < □ > < □

æ

Attributes

Increasing attributes

Increasing attributes :
$$A \subseteq B \Rightarrow \mathcal{A}(A) \leq \mathcal{A}(B)$$

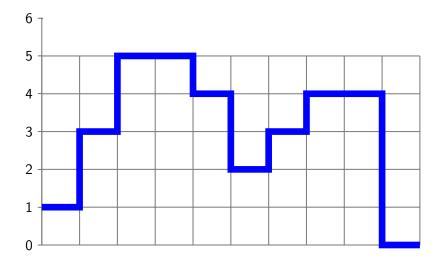
Examples : Area, height, volume.

Non-increasing attributes

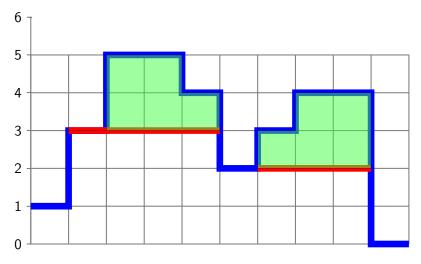
Shape attributes.

- I/A^2 minimum for a round object
- Circularity : $1 L_{min}/L_{max}$
- Elongation : L_{max}/L_{min}

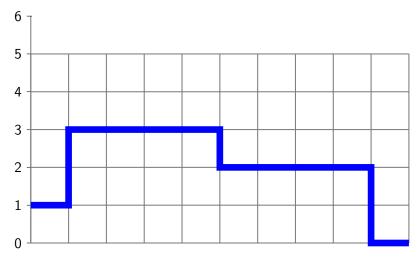
 L_{min} and L_{max} : Length of the two main axes of the best fitting ellipse



◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶



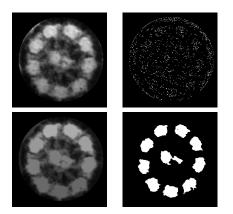
 $\mathsf{Volume} \leq 5$



Filtered function

Introduction

Application: Filtering with increasing attribute



Question

- Increasing criterion (here, volume)
- How to process non-increasing criteria?

Pruning the trees

 $\mathcal{A}\uparrow$, Pruning the leaves = Attribute thresholding

Non-increasing attributes

How to process the filtering?

Filtering with non-increasing attributes [Salembier & Wilkinson, SPM, 2009]

Pruning strategies

- Min
- Max
- Viterbi

Remove the sub-tree rooted in the node

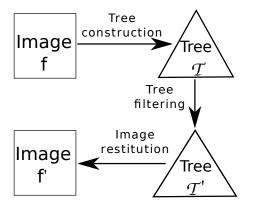
Attribute thresholding strategies

- Direct
- Subtractive

Remove the nodes under the threshold

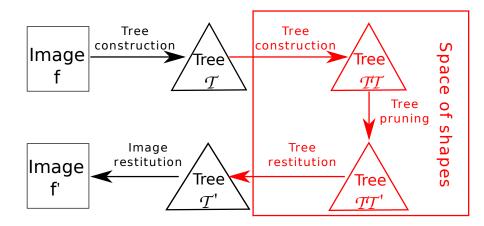
Introduction

Our proposed framework



17/49

Our proposed framework [Xu & Géraud & Najman, ICPR, 2012]



Outline

1 Introduction

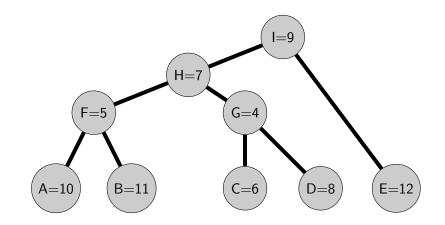
2 Shape-based morphology

3 Some illustrations

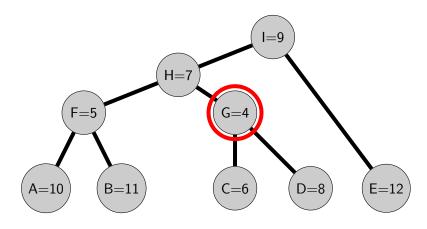
4 Hierarchies

Conclusion and perspectives

Y. Xu: Morphological filtering in shape spaces

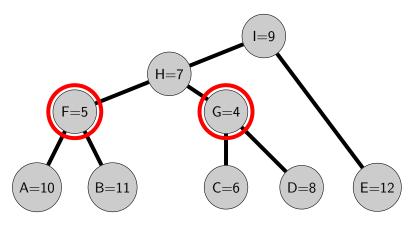


▲ロ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ → ▲ □ →

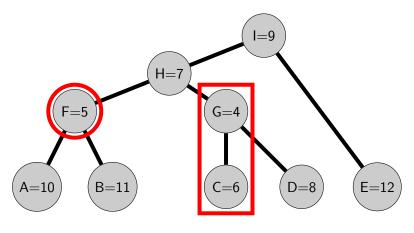


Level $\{x|A(x) \leq 4\}$

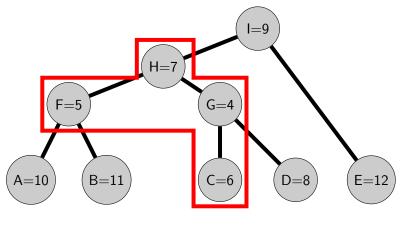
▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > のへで



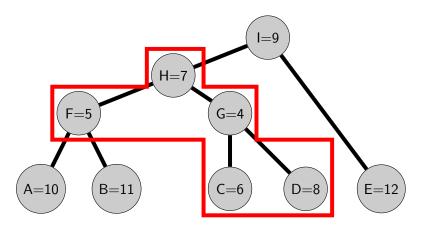
Level $\{x|A(x) \leq 5\}$



Level $\{x|A(x) \leq 6\}$

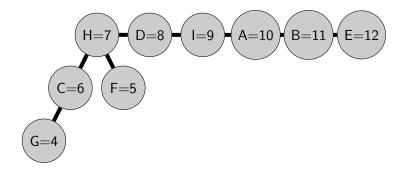


Level $\{x|A(x) \leq 7\}$



Level $\{x|A(x) \leq 8\}$

Min-tree of a tree-based image representation



Important idea

Computing a Min-Tree on a node-weighted graph instead of a matrix image Easy thanks to Olena [Levillain & Géraud & Najman, ICIP, 2010], the generic image processing platform http://olena.lrde.epita.fr

Encompassing classical attribute filtering strategies

Increasing attribute \mathcal{A}

 $\mathcal{T}\mathcal{T} = \mathcal{T}$ No need to check if the attribute is increasing or not

Attribute thresholding for non-increasing ${\cal A}$

 $\mathcal{AA} = \mathcal{A}$ \mathcal{AA} is the current level of \mathcal{TT} **Pruning** $\mathcal{TT} =$ **Attribute thresholding.**

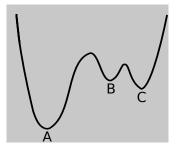
Shape-based levelings and Morphological shapings

Shape-based levelings

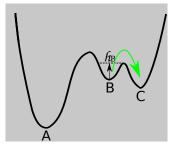
 \mathcal{T} : Min-tree or Max-tree The order \leq and \geq are preserved \Rightarrow f' is a leveling of f. \Rightarrow **Shape-based levelings NEW**!

Morphological shapings

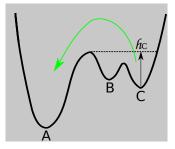
 $\begin{aligned} \mathcal{T}: \text{ Tree of shapes} \\ \text{The order} &\leq \text{and} \geq \text{no more guaranteed, not levelings} \\ \Rightarrow \textbf{Self-dual morphological shapings NEW!} \end{aligned}$



Given a strict order for the set of minima : $A \prec C \prec B$



B merges with C



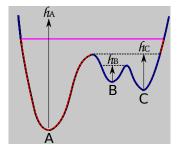
C merges with A

Strategy

Preserve the **blobs of minima** whose extinction value > a given value

Advantage

Only the shapes being meaningful enough compared with their context are preserved.



Extinction value of three minima.

Outline

1 Introduction

2 Shape-based morphology

3 Some illustrations

4 Hierarchies

Conclusion and perspectives

Y. Xu: Morphological filtering in shape spaces

Some illustrations

Shape-based levelings

Input image

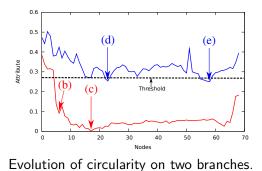
Round objects based leveling

Some illustrations

Shape-based levelings

Difference of input image and the shape-based leveling

Morphological shapings

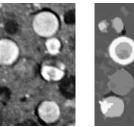


Our shaping.

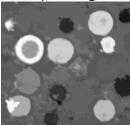
(e)

Thresholding.

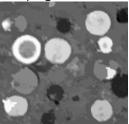
Morphological shapings



Input image.



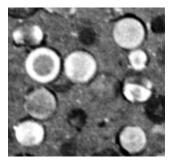
Shaping based on ${\mathcal A}$



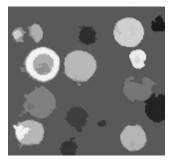
Low threshold of \mathcal{A} . Higher threshold of \mathcal{A} .

Some illustrations

Morphological shapings



Input image.



Our shaping 2.

Using a combination of attributes ${\cal A}$

Context-based estimator for object detection

[Xu & Géraud & Najman, ICIP, 2012]

Important idea

$$E(u, \partial \tau) = E_{int}(u, \partial \tau) + E_{ext}(u, \partial \tau) + E_{con}(u, \partial \tau)$$

$$V(u,\mathcal{R}) = \sum_{p \in \mathcal{R}} (u(p) - \overline{u}(\mathcal{R}))^{2}$$

$$E_{ext}(u,\partial\tau) = \frac{V(u,\mathcal{R}_{in}^{\varepsilon}(\partial\tau)) + V(u,\mathcal{R}_{out}^{\varepsilon}(\partial\tau))}{V(u,\mathcal{R}_{in}^{\varepsilon}(\partial\tau) \cup \mathcal{R}_{out}^{\varepsilon}(\partial\tau))}.$$

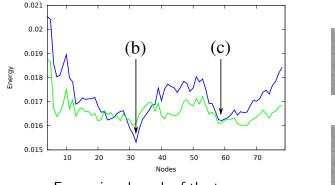
$$E_{int}(u,\partial\tau) = \sum_{e \in \partial\tau} |curv(u)(e)| / L(\partial\tau),$$

$$E_{con}(u,\partial\tau) = 1 / L(\partial\tau).$$

(b)

(c)

Context-based estimator for object detection

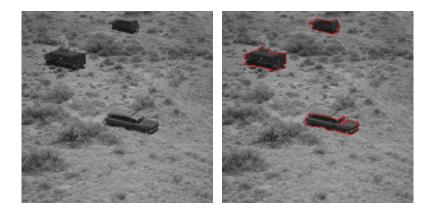


Energy in a branch of the tree; blue : our energy; green : snake energy

Object detection principle

Significant minima \Leftrightarrow Objects

Object detection results



Input image

Objects detected

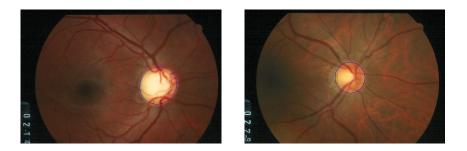
Some illustrations

Object detection results

Objects detected using shape attribute Red ones : circularity-based; Green ones : Inverse elongation-based

Some illustrations

Object detection results



Object detected using designed shape attirbute by combining roundness, area and position information

Outline

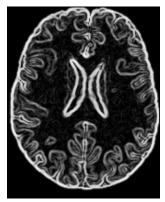
1 Introduction

- 2 Shape-based morphology
- 3 Some illustrations

4 Hierarchies

5 Conclusion and perspectives

Saliency map

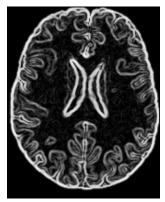


(a) Original image

(b) Some contours

Hierarchies

Saliency map

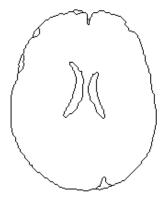


(a) Original image

(b) Some contours

Saliency map

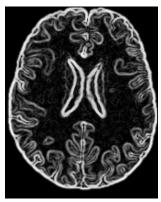
(a) Original image



(b) Some contours

Saliency map

Stacking the contours gives a saliency map [Najman & Schmitt, PAMI, 1996]

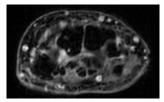


(a) Original image

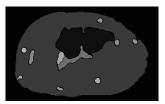
(b) A saliency map

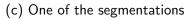
Different representations

[L. Najman - JMIV - 2011] Mathematical definitions, equivalence between ultrametric watersheds, saliency maps and trees of segmentations

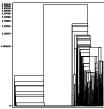


(a) Original image





(b) Ultrametric watershed



(d) Dendrogram

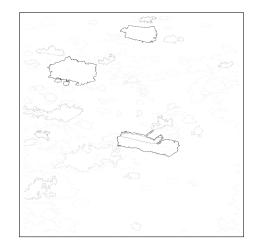
38/49

Saliency maps from shape-based filterings

Principle

Extinction value for minima \Leftrightarrow Persistence of objects $\stackrel{\mathcal{W}}{\Rightarrow}$ Saliency maps.

$$\label{eq:W} \begin{split} \mathcal{W} &: \mbox{ Weight the object } \\ \mbox{ contour with the } \\ \mbox{ maximum persistence of } \\ \mbox{ object that the contour } \\ \mbox{ belongs to. } \end{split}$$



Saliency map

Mumford-Shah energy with cartoon model

$$E_{\mathcal{T}} = \sum_{\partial \tau \in \mathcal{T}} \left(\sum_{p \in \mathcal{R}(\partial \tau)} \left(u(p) - \overline{u}(\mathcal{R}(\partial \tau)) \right)^2 + \nu L(\partial \tau) \right)$$

Attribute

 ν measures the simplification level.

Original Saliency map Simplified

Original

Saliency map

Original

Saliency map

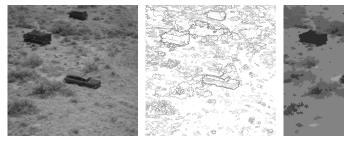
Hierarchical simplification based on Mumford-Shah

Original

Saliency map

Original

Saliency map



Original

Saliency map

$Felzens walb \ and \ Huttenlocher's \ algorithm \ {\ [Felzenswalb \ \& \ Huttenlocher], \ IJCV,}$

2004

- **1** Compute a minimum spanning tree (MST) of a dissimilarity
- 2 For each edge ∈ MST linking two vertices x and y, in increasing order of their weights:
 - (i) Find the region X that contains x.
 - (ii) Find the region Y that contains y.
 - (iii) Merge X and Y if

$$Diff(X, Y) < \min\{Int(X) + \frac{k}{|X|}, Int(Y) + \frac{k}{|Y|}\}$$

Question

Is k a scale parameter?

Causality principle

- A contour present at a scale k₁ should be present at any scale k₂ < k₁
- Not true with Felzenswalb and Huttenlocher's algorithm

Original

k = 7500 (8 regions) k = 9000 (14 regions)

Application of our framework with attribute k

Answer

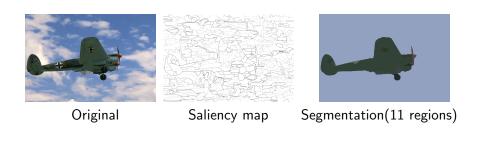
k is not a scale parameter.

Attribute from k

$$k = \max\left\{\left(\textit{Diff}(X,Y) - \textit{Int}(X)\right) imes |X|, \left(\textit{Diff}(X,Y) - \textit{Int}(Y)\right) imes |Y|
ight\}$$

∃ >

Saliency maps using the attribute k



45/49

Saliency maps using the attribute k

Saliency maps using the attribute k

Original

Saliency map

Segmentation(20 regions)

Outline

1 Introduction

- 2 Shape-based morphology
- 3 Some illustrations

4 Hierarchies

5 Conclusion and perspectives

Y. Xu: Morphological filtering in shape spaces

Conclusion

Object filtering

- $1\,$ Encompass the state of art
- 2 Shape-based levelings
- 3 Morphological shapings
- Object detection
- 1 Context-based estimator
- 2 Saliency map

- \blacksquare Attributes ${\cal A}$ and ${\cal A}{\cal A}$
- Learning the attributes
- \blacksquare Strategies of dealing with second tree \mathcal{TT}
- Properties of the morphological shapings
- Saliency maps

Thanks for your attention !

