
Operating systems in hardware
Scaling from 10 to 1000 cores

Raphael ‘kena’ Poss
University of Amsterdam, the Netherlands

In cooperation with
Chris Jesshope, Mike Lankamp, Michiel van Tol, and many others

at the CSA group

1zaterdag 20 oktober 2012

Current general-purpose
multi-cores are based on legacy

• Historical focus on single-thread performance
(developments in general-purpose processors: registers, branch prediction,
prefetching, out-of-order execution, superscalar issue, trace caches, etc.)

• Legacy heavily biased towards single threads:
• Symptom: interrupts are the only way to signal

asynchronous external events
• Retro-fitting hardware multithreading is difficult

because of the sequential core’s complexity

• What if...
we redesigned general-purpose processors,
assuming concurrency is the norm in software?

2zaterdag 20 oktober 2012

The Apple-CORE
approach

• Hardware threading is not new... Denelcor
HEP introduced this 30 years ago

• Apple-CORE’s contribution is in the system
interface with a consistent view on concurrency
management whatever resources are available

• from a single thread to many cores

• The goal is to make concurrency the norm and
the processing resource fungible

• like money it must be divisible and interchangeable

3zaterdag 20 oktober 2012

The Apple-CORE
approach

• With massive concurrency predicted, the Apple-CORE
approach is to:

• capture maximal concurrency in the binary interface
• automatically sequentialise it based on resource

availability at run time

Past
approach

Apple-CORE
approach

4zaterdag 20 oktober 2012

Key abstractions

• Dataflow synchronisation on instruction
execution - latency tolerance

• Deterministic programming model based on
multi-way fork/sync - create families of threads

• Memory consistent at fork and sync events
• Handles on resources - places
• Asynchronously execution of families at places
• Capture sequence where necessary by thread- to-

thread dependencies - shared variables

5zaterdag 20 oktober 2012

The D-RISC core

6zaterdag 20 oktober 2012

D-RISC cores

• D-RISC cores:
hardware multithreading +
dynamic dataflow scheduling

• fine-grained threads: 0-cycle
thread switching, <2 cycles
creation overhead

• ISA instructions and NoC
protocol for thread management

• dedicated hardware processes
for bulk creation and
synchronization

• No preemption/interrupts;
events “create” new threads

MEMORY

MEMORY

ACTIVE
MESSAGES

DECODE & REGADDR

RF

ALU

LSU

FETCH & SWITCH

L1D & MCU

ALU
(async)

L1I

WB

TMU &
SCHEDULER

READ & ISSUE

TT & FT NCU

In-order, single-issue RISC: small, cheaper, faster/watt

7zaterdag 20 oktober 2012

• Dataflow is a more effective way to
tolerate latency in instruction execution
- e.g. memory accesses take 100s or even
1000s of cycles

• Prior approaches e.g. HEP/ Niagara
context switch on the hazard-inducing
instruction

• DRISC synchronises on the result of the
hazard, i.e. captures the dependency -
dataflow scheduling

• This requires a synchronising register
file (i-structures) and an efficient
mechanism to store and manage thread
continuations

Dataflow scheduling

8zaterdag 20 oktober 2012

D-RISC continuations

• Continuation comprise a PC and a context comprising from 2 to 32
synchronising registers (optionally some local memory) Memory

9zaterdag 20 oktober 2012

Asynchrony in D-RISC
cores

• Intra-thread - i.e. an instruction that is issued and
synchronised within the same thread:

• Memory references
• FPU operations (NB: shared FPU)
• Functions implemented as logic
• Create a family and Sync on termination of a family

• Inter-thread - read/write to a remote register file
• This asynchronously activates a waiting thread and is

one of two mechanism used for system signalling - the
other is asynchronously creating a family of thread(s)

10zaterdag 20 oktober 2012

Achievements -
D-RISC cores

• Single DRISC core - FPGA
implementation of single core
(SPARC ISA)

• Many-core Microgrid
(Alpha and SPARC ISAs)

• Low-level C-based compiler, operating
system and run-time environment for both
platforms

11zaterdag 20 oktober 2012

Example 128-core
Microgrid

• 32000+ hw threads

• 5MB distributed cache

• shared MMU
= single virtual address
space, protection using
capabilities

• Weak cache coherency

• no support for global
memory atomics –
instead synchronization
using point-to-point
messaging

Root directory

DDR Channel
Root directory

DDR Channel

Root directory

DDR Channel
Root directory

DDR Channel

Off-chip
I/O network

Off-chip
I/O network

Area estimates with CACTI: 100mm2 @ 35nm

Approximate size of one Nehalem (i7) core
for comparison

12zaterdag 20 oktober 2012

Microthreaded
programming

13zaterdag 20 oktober 2012

Functions as threads

• Events are create/sync and remote
register read/writes

• register writes are synchronising

• asynchronous parameter passing

• create executed early and parent
and child execute concurrently

foo(A)
{...
...A...
}...

...
create() foo(P)
... P:=... ...
sync

14zaterdag 20 oktober 2012

Loops as threads

foo(A)
{...
...A...
}...

...
create(i=0..3)
 foo(P)
... P:=... ...
sync

15zaterdag 20 oktober 2012

Sequence as threads

foo(A)
{...
 A := ...A...
}...

...
create(i=0..3)
 foo(P)
... P:=... ...
sync

16zaterdag 20 oktober 2012

Why capture sequence
as threads?

• Still need local concurrency for latency tolerance.
e.g. naive inner product

• sum:=sum+A[i]*B[i]
• compiles to a six instruction thread in Alpha

• A+i, B+i, load, load, fmul are all independent

• only one instruction: fadd $S1 $D1 $L1 is constrained to
be executed sequentially

• No speedup, but independent instructions can be scheduled
concurrently on a single core

• This allows multiple concurrent memory loads and floating
point multiplies to be executed concurrently on a single core

17zaterdag 20 oktober 2012

Programming
environment

• C with extensions - µTC for documentation, SL in
implementations

• New language primitives for concurrency creation,
synchronization

• A thread program is like a C function with special
constructs for dataflow channels

• No model assymmetry (like with CUDA/OpenCL):
any thread program can use any library service

• To be targeted by higher-level compilers

18zaterdag 20 oktober 2012

A perspective shift

CORE I7

Function call

with 4 registers spilled

30-100 cycles

Predictable loop

requires branch predictor
+ cache prefetching

to maximize utilization

1+ cycles / iteration overhead

D-RISC
WITH TMU

IN HARDWARE

Bulk thread creation

of 1 thread,
31 “fresh” registers

~15 cycles
(7c sync, ~8c async)

Thread family

1 thread / “iteration”
reuses common TMU

and pipeline
no BP nor prefetch needed

0+ iteration overhead

19zaterdag 20 oktober 2012

Operating systems
for microgrids

20zaterdag 20 oktober 2012

Evolution or
revolution?

• Looks like a revolution:

• Can’t (shouldn’t) reuse existing OS code as-is

• Can’t reuse existing low-level techniques
based on preemption and software schedulers
eg. signals, interrupt handlers, “callbacks”

• Must use ISA concurrency in code generation to
exploit; requires language extensions
and shakes compiler assumptions

• Can we really afford this?

21zaterdag 20 oktober 2012

An evolution, really
(1)

• Low-level machine code generation:

• Lift loop bodies as separate functions
- reuses techniques from GPU/accelerator world

• A thread is really a virtual processor
– threading is well-know in compilers already

• Higher-level compilers can generate threaded
low-level code from “productivity” languages

• Really a convergence of mature technology

22zaterdag 20 oktober 2012

An evolution, really
(2)

• Managing asynchrony of “external” events
– I/O, traps, remote “syscalls”

• An event handler is really a thread
– reuse as is, just entry/exit is different

• Requires mutual exclusion of shared state
– already accepted in OS/library design

• The benefit of extra bandwidth and lower
latency will justify the req. adaptation, if any

23zaterdag 20 oktober 2012

An evolution, really
(3)

• Sometimes legacy OS and library code cannot be adapted
– typically device drivers, proprietary interfaces

• Solution: integrate a “compatibility” core on the same chip
using same NoC protocol for concurrency management,
then delegate syscalls behind library entry points

• With same ISA and shared memory APIs can be kept as-is

• The “accelerator pattern”, transposed! – similar to Cray XMT, on chip

Compatibility core

D-RISC D-RISC

D-RISC D-RISC

D-RISC D-RISC

D-RISC D-RISC

D-RISC D-RISC

D-RISC D-RISC

24zaterdag 20 oktober 2012

Foreground produced

• Technology:
• various emulators/simulators for a many-core chip with

hardware concurrency management (Microgrid)
• MGOS: OS and library components to drive the hardware

architecture, including resource allocators and API bridges
• compilation tools to/from the SVP intermediate language
• software run-time systems

for commodity multi-cores using SVP semantics
• Tests and benchmarks to validate and evaluate

fine-grained concurrency management
• + Accompanying documentation & know-how

25zaterdag 20 oktober 2012

OS Summary

• A true perspective shift for the basic OS/compiler
abstractions:

• from sequence to concurrency
• from loops to microthreads
• from function calls to family creation
• new focus on placement and locality

• Revolution in hardware, yet only an evolution in software
• Middle ground: a common set of primitives in ISA

= a concurrency management protocol on chip
• This is generalized from D-RISC towards portable SVP

26zaterdag 20 oktober 2012

The “main” issues
uncovered in Apple-CORE

• Validation: how to detect detect errors, then
compare with existing systems
– need reference / base lines

• Resource management:
cores, but also memory and NoC channels
– how to reduce management overheads

• NB: these issues are general to all many-core
processors, but exarcerbated in Apple-CORE

27zaterdag 20 oktober 2012

Validation

• Solution:
1. Choose a subset of the ISA that can be emulated in

legacy platforms
2. Design the intermediate language SL to use only this

subset to constrain programs
3. Implement compilation to both the new platform and

legacy systems and perform comparative testing
• This subset resembles fork/join with families and forward-

only dataflow synchronization
• It is deadlock-free, deterministic if race-free

and can be serialized (cf Cilk, Chapel)

28zaterdag 20 oktober 2012

Validation

Parallelizing
C compiler

(partner UOI)

SAC
compiler

(partner UH)

Core compiler
(UvA)

Assembler
(UvA)

Reference
implementation
(UvA & UTIA)

Sequential execution
via legacy tool chain on

legacy architecture

Assembly
regression

tests

Interface-
level unit &
regression

tests

Automated testing via multiple
execution over various points
in the hardware design space

SL

This is our
(constrained)

intermediate language

It is constrained
to enable

translation to existing platforms

Of course more flexibility
is available in the ISA,

ready to use
by future OS and run-time systems

29zaterdag 20 oktober 2012

Resource management

• At the finest grain:
provide TLS to threads created by TMU
Solution: pre-allocate and partition statically

• Concurrency resources: let programs define
more concurrency than available, serialize
on demand

• Algorithms: distributed memory allocator,
garbage collection using reference counting

30zaterdag 20 oktober 2012

Resource management

• Application components:
OS allocates and deallocates cores,
memory and network links for top-level
family entry points
– this is called SEP and is distributed

• Either explicit allocation in programs

Or annotated static requirements, aggregated
at run-time by RTS/OS

31zaterdag 20 oktober 2012

!!"

#$%&'(

() * + (, -) ,*

.

(....

)....

-....

*....

/....

,....

"....

011&2345

6$789:;8&8'<!

<0=

#$>$44&4?@&8'=

<&AB&7C?$4'='
;7'4&%$:5'
D4$CE;>2

FB23&>';E':;>&1'B1&8

F
$
7
;
1
&
:
;
7
8
1

Results:
memory-bound kernels

Legacy platform = MacBook Pro, Core 2 Duo @ 2.4GHz
area(1 Core 2 Duo core) ~ area(32 Microgrid cores)

Equation of state fragment
Time to result

32zaterdag 20 oktober 2012

Results:
throughput workloads

!"# $"# %&' %&()*+,-./0 1$"! %&2 #"!3 4$' #5!67

7

78

788

7888

19:7;88 19:;288 19:;<88 4.=>+?>.@6#AB 4.=>+?>.@64C

C
0
>+
D
?
0
E
D
FG
H4
I
.F
/
J/
K

Intel IXP = embedded processor specialized for cryptographic workloads

Main results: Microgrids are general-purpose, ie not specialized
yet compete on throughput with state-of-the art specialized hardware

33zaterdag 20 oktober 2012

Results, what’s next?

• Internal issues: memory consistency,
scalable cache protocols, ISA semantics,
etc.

• External issues from outside
architecture: platform virtualization,
space scheduling, I/O device drivers

• Fundamental issues: concurrent
complexity theory

34zaterdag 20 oktober 2012

Thank you!

• More information:

• http://www.apple-core.info/
• http://www.svp-home.org/

35zaterdag 20 oktober 2012

36zaterdag 20 oktober 2012

SVP Concurrency
management protocol

allocate
$Place ⟶ $F

Allocate a family context

setstart/setlimit/setstep/
setblock

$F, $V ⟶ ∅
Prepare family creation

create
$F, $PC ⟶ $ack Start bulk creation of threads

rput $F, R, $V ⟶ ∅
rget $F, R ⟶ $V Read/write dataflow channels remotely

sync
$F ⟶ $ack Bulk synchronize on termination

release
$F ⟶ ∅ De-allocate a family context

37zaterdag 20 oktober 2012

Extra -
A perspective shift

CORE I7
LINUX

Thread creation

(pre-allocated stack)

>10000 cycles
in pipeline

Context switch

syscalls, thread
switch, trap, interrupt

>10000 cycles
in pipeline

Thread cleanup

>10000 cycles
in pipeline

D-RISC
WITH TMU

IN HARDWARE

Bulk creation
(metadata allocation

for N threads)
~15 cycles

(7c sync, ~8c async)

Thread creation
1 cycle, async

Context switch

at every waiting
instruction,

also I/O events

<1 cycles

Thread cleanup
1 cycle, async

Bulk synchronizer
cleanup

2 cycles, async

38zaterdag 20 oktober 2012

Foreground produced

Microgrid hardware model

HLSim MGSim

MGOS

Common C language primitives

Distributed memory
hw multithreaded

multi-cores

Hydra ptl

UTLEON3

39zaterdag 20 oktober 2012

MGOS: Software
interfaces

Benchmark code

C lib+RT: assert, ctype,
float, inttypes, limits,

math, stdio*, stdlib,
stddef, string, time*

Benchmarking API SEPCustom
MG malloc

Microgrid hardware (simulated or FPGA)

SV
P

in
st

ru
ct

io
ns

“FIXME” - hardware drivers
and system event management

40zaterdag 20 oktober 2012

��������� ����	
����

��������	�
����� �� � �����

��� ��� �����
�����
����� �� �� ����
��������	���� � �� ����

�����
����� �� �� ����
�������
� � �� ���
������ � � ����

������������	��
 � ���
�������� � � ���

������	������� � � ���
���
����
� � �� ��

������ ���������

������	��

!�"����	�#$���%�����

&��	��'�$
�(�

��������	�
����� ������	�� �����
����� ��������	����

�����
����� �������
� ������ ������������	��

�������� ������	������� ���
����
�

Inside the MGOS

... but only one import tree: FreeBSD
And comparatively little MG-specific code!

BSD

Sun

BSD

BSD

Lucent

Many copyright holders...

PD

41zaterdag 20 oktober 2012

