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Managed Runtime Environments (MRESs)

Before After
Native Code Abstract Code
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Hardware/OS Hardware/OS

MRE: simulates an abstract hardware/OS

v" Safety: isolate code from the rest of the system

v" Portability: write once, run anywhere
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MREs are efticient
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MREs are everywhere
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But they were not prepared to multicore

Most MREs were designed for a monocore architecture
= Necessary to study their bottlenecks on a multicore architecture
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GC Scalability (Lusearch) [PLO5 11
HotSpot JVM’s Garbage Collectors
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Pause time of the GC increases with GC threads

Gaél Thomas

=> Negative scalability!
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Why suspending the application

The concurrency issue

Pending queue
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Why suspending the application

The concurrency issue
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Why suspending the application

The concurrency issue

Gaél Thomas

Application executes B—>f
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Pending queue
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Why suspending the application

The concurrency i1ssue = G freed while still used

Pending queue
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Common believe

1. Stop-the-world: Application Threads
- Suspend the application (mutators)
+ Simple to implement Stop the world l
safe-point
GC Threads
2. Concurrent: -
fine-grain locking, code instrumentation PT E;‘IJI?}

- Hard to implement b Vv v
- Degrades application performance
+ Do not pause the application

Current believe:
STW are unacceptable for server apps [Iyengar, ISMM 2012]

Long pauses due to larger heaps
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Our hypothesis

Increase in transistor count 1s for both memory and CPU

v' Large heaps come with large core count
v' STW GC should be still useful, provided they scale

Can we make a GC scales with the number of cores
to avoid the price of concurrent collectors?

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

15



Contribution

Identify the bottlenecks of Parallel Scavenge
(the most scalable GC of OpenJDK — used by default)

v Heavy contended locks
v" Lack of NUMA-awareness

Solve the bottlenecks
v Remove all the locks during the collection
v" Propose 3 NUMA -aware heap layouts

s Interleaved: balance memory accesses across the nodes
*»Fragmented: balance + increase memory locality

“*Segregated: balance + perfect memory locality
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1. Background

2. The lock bottleneck

3. The NUMA bottleneck

4. Evaluation

5. Conclusion
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Background: the copying collector

From Space To Space

O O
o ©

Pending queue
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Background: the copying collector

Step 1: 1identify the root objects (globals, stack)

From Space To Space

O O
O

O,

Pending queue
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Background: the copying collector

Step 2: copy an object from the pending queue + update pending queue

From Space To Space

o ©
.
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00

Pending queue
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Background: the copying collector

Step 2: copy an object from the pending queue + update pending queue
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Background: the copying collector

Step 2: copy an object from the pending queue + update pending queue

From Space To Space
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Pending queue
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Background: the copying collector

Step 2: copy an object from the pending queue + update pending queue

From Space To Space
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Background: the copying collector

Step 2: copy an object from the pending queue + update pending queue

From Space To Space
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Background: the copying collector

Step 2: copy an object from the pending queue + update pending queue

From Space

To Space

o

Gaél Thomas

Pending queue
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Background: the copying collector

Step 3: invert the spaces + consider to space empty

To Space From Space

Advantage: spaces are never fragmented
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1. Background

2. The lock bottleneck

3. The NUMA bottleneck

4. Evaluation

5. Conclusion
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Poor Synchronization in Parallel Scavenge

Stop-the-World pause——
//\\ivv,/"\_v/: NN j;;:/"\_iM
== T =

4
Termination
protocol
S 4 AT 4 P 4
Mutators VM Thread GC Threads

Coarse grained synchronization + use of monitors
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Gaél Thomas

Simplify synchronizations

Stop-the-World pause——
N SN SN S SR N £
=~ SN (e =~
Termination
protocol
S 4 AR 4 N
Mutators VM Thread GC Threads
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Impact of a NUMA architecture

Problem 1: unbalanced memory accesses

Interconnect or memory controllers saturate

6100 Interconnects 6100

NUMA node 0 —— | ' ———NUMA node 2

NUMA node 1 ——— L NUMA node 3
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Impact of a NUMA architecture

Problem 2: remote memory accesses

Interconnect saturates

6100 Interconnects 6100

NUMA node 0 —— | ' ———NUMA node 2

NUMA node 1 ——— L NUMA node 3
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Impact of a NUMA architecture
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Inefficient Memory Layout in ParallelScavenge (PS)

The 1nitial thread fixes the mapping of physical pages

Initial Heap
(w/o physical
ages .
pages) The mapping
never changes!
Node 0 Node 1

Physical Memory

SPECjbb2005 allocates ~95% of memory from a single node
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Map the pages on the node in round-robin

= perfect memory balance

Gaél Thomas

Solution 1: Interleaved Space

Node (

Node 1
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Solution 1: Interleaved Space

Idea: map the pages on the node in round-robin

6100

NUMA node 0 —— |}
2
|

Node 0 Node 1

= perfect memory balance but bad memory locality

| |
NUMA node 1 —— ———NUMA node 3
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Solution 2: Fragmented Space

Associate fragments to memory nodes
= node-local allocation

Fragment 0 Fragment 1

Heap

Physical
Memory Node 0 Node 1
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Solution 2: Fragmented Space

Naturally balance the load

v" GC threads uniformly distributed on the nodes
v Efficient work stealing between GC threads
= balance the copies on all the nodes

Node (0

Node 1

299
oo
o

Node (0

oo

Node 1

From Space
Gaél Thomas

To Space
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Solution 2: Fragmented Space

Increase locality for the application
v Mutator mostly accesses recently allocated objects

v’ Recently allocated object is on the mutator’s node

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores
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Solution 2: Fragmented Space

Increase memory locality during copy

Thread on node 1

From Space To Space
Node 0 ° Node 1 ||| Node 0 Node 1
Pending queue

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 41



Solution 2: Fragmented Space

Increase memory locality during copy

From Space To Space Thread on node 1

Node (0 Node 1 Node (0 Node 1

00
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Solution 3: Segregated Space

Fragmented space + node-local scanning
(Send remote references to the owner of the object)

Perfect locality for the GC

But have to pay the price of inter-node message exchanges

Good locality for the mutators
Mutator mostly accesses recently allocated objects

Natural balance of the load if allocation rates of the mutators are similar

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores
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Summary of the spaces

Interleaved Fragmented Segregated
Memory Perfect Good Good
Balance
Mutat.or Bad Good o
Locality
GC' Bad Good Perfect
Locality
Comment Inter-node
messages
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1. Background

2. The lock bottleneck

3. The NUMA bottleneck

4. Evaluation

5. Conclusion
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Evaluation

Hardware:
v' AMD Opteron 6172 sockets
v" 8 nodes and 48 cores

mE- —m
m—{ m
m=m ﬂ=m

25 evaluated applications:
v SPECjbb2005: ~ 3.5 GB M

v' SPECjvm2008: ~ 1 to 2 GB M / ﬂ=m

v DaCapo 9.12: ~ 500

Focus on SPECjbb2005 1in the presentation
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Effect of optimizations on the GC
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Effect of optimizations on the GC

ParallelScavenge —*— Interleaved Space —e— Fragmented Space —+—
Segregated Space Fragmented Space + Lock-free —=—
(a) SPECjbb
25
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GC Throughput (GB/Sec)
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memory imbalance

Number of GC Threads
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Effect of optimizations on the GC

ParallelScavenge —*— Interleaved Space —e— Fragmented Space —+—
Segregated Space Fragmented Space + Lock-free —=—
(a) SPECjbb
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0 Bad locality
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due to locality scalability

marginal Number of GC Threads
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Effect of optimizations on the GC

ParallelScavenge —*— Interleaved Space —e— Fragmented Space —+—

Segregated Space Fragmented Space + Lock-free —=—

(a) SPECjbb

25

20

15

10

GC Throughput (GB/Sec)

Locality required

5 10 15 20 25 30 35 40 45 for scalability
Number of GC Threads
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Effect of optimizations on the GC

ParallelScavenge —*— Interleaved Space —e— Fragmented Space —+—

Segregated Space Fragmented Space + Lock-free —=—

(a) SPECjbb

o 25
)
%)
o 20
S
5 15
Q.
L
> 10
o
= 5
O
O 0
Effect of lock
plectollook 5 10 15 20 25 30 35 40 45 ~becomes
Neghg1ble important with
with few cores Number of GC Threads many cores
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Effect of optimizations on the GC

ParallelScavenge —*— Interleaved Space —e— Fragmented Space —+—
Segregated Space Fragmented Space + Lock-free —=—
(a) SPECjbb
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Too many messages
between the nodes

5 10 15 20 25 30 35 40 45 (12% ofobjects are

still remote)
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Effect of optimizations on the Application

ParallelScavenge —*— Interleaved Space —e— Fragmented Space —+—

Fragmented Space + Lock-free —=—
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Overall effect

ParallelScavenge —*— Interleaved Space —e— Fragmented Space —+—
Segregated Space Fragmented Space + Lock-free —=—
S (a) SPECjbb
7 (Higher is Better)

Optimizations translates into
a x2 on throughput
of SPECjbb

Pause time of 1 collection:
from 105ms to 49ms
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Scalability with the cores

ParallelScavenge —— Fragmented Space + Lock-free —=—
(a) SPECjbb (b) XML Transform (c) Compiler.Sunflow
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Scalability with the cores

ParallelScavenge —*— Fragmented Space + Lock-free —=—

(a) SPECjbb (b) XML Transfg (c) Compiler.Sunflow
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Stop-the-world scales with memory intensive applications
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Scalability with the cores

ParallelScavenge —— Fragmented Space + Lock-free —=—
(a) SPECjbb (b) XML Transform (c) Compiler.Sunflow
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Adding GC threads is useless for non memory-intensive applications
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To take away

STW GCs assumed to be inherently non-scalable 1s probably a mistake
= Stop-the-world GC still well suited for contemporary H/'W

Most important NUMA effects
v’ Balancing memory accesses has the most important impact
v’ Increasing memory locality is required to scale
v' Latency improvement due to locality negligible

Next step
v" Avoiding most of the messages between the nodes

[A Study of the Scalability of Stop-the-world Garbage Collectors on Multicores,
ASPLOS 2013]
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