
Improving the Design and the Performance of
Managed Runtime Environments

Gaël Thomas

INRIA/LIP6

Exploiting Multicores in
Managed Runtime Environments

Lokesh Gidra, Gaël Thomas, Julien Sopena Marc Shapiro

INRIA/LIP6

Managed Runtime Environments (MREs)

MRE: simulates an abstract hardware/OS
ü  Safety: isolate code from the rest of the system

ü  Portability: write once, run anywhere

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores

Abstract Code

Hardware/OS

MRE

Native Code

Hardware/OS

Before After

3

MREs are efficient

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores

Interpreters
(Lisp, 1959) Efficient JIT Compilers

(Self, 1987-1989)

Efficient Garbage Collectors
(generational, 1984)

(1995)

Safety/portability requirements
(HTML, 1993)

Powerful processors
(more than 100MHz, 1992)

Inefficient Efficient Time ~ 1990

4

MREs are everywhere

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores

Smartphones

Desktop

Web browsers

Web servers

5

But they were not prepared to multicore
Most MREs were designed for a monocore architecture

⇒ Necessary to study their bottlenecks on a multicore architecture

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores

Samsung Galaxy S3
4-core

Dell Power Edge r815
48-core

(Magny-Cours)

8 Memory
Controllers

48 cores

AMD Opteron 6172 Magny-Cours

6

GC Scalability (Lusearch) [PLOS’11]

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 7

Pause time of the GC increases with GC threads
⇒ Negative scalability!

HotSpot JVM’s Garbage Collectors

Why suspending the application
The concurrency issue

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 8

A	

B	 E	

G	

Pending queue

Why suspending the application
The concurrency issue

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 9

A	

B	 E	

G	

Pending queue

A	

Why suspending the application
The concurrency issue

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 10

A	

B	 E	

G	

Pending queue

E	 B	

Why suspending the application
The concurrency issue

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 11

A	

B	 E	

G	

Pending queue

E	

Why suspending the application
The concurrency issue

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 12

A	

B	 E	

G	 Application executes B->f = G

Pending queue

E	

Why suspending the application
The concurrency issue ⇒ G freed while still used

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 13

A	

B	 E	

G	

Pending queue

Common believe
1.  Stop-the-world:

- Suspend the application
+ Simple to implement

2.  Concurrent:
fine-grain locking, code instrumentation
- Hard to implement
- Degrades application performance
+ Do not pause the application

Current believe:

 STW are unacceptable for server apps [Iyengar, ISMM 2012]
Long pauses due to larger heaps

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 14

Pause
Time

GC Threads

Application Threads
(mutators)

Stop the world
safe-point

Our hypothesis

Increase in transistor count is for both memory and CPU
ü Large heaps come with large core count
ü STW GC should be still useful, provided they scale

Can we make a GC scales with the number of cores
to avoid the price of concurrent collectors?

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 15

Contribution
Identify the bottlenecks of Parallel Scavenge

(the most scalable GC of OpenJDK – used by default)
ü Heavy contended locks
ü Lack of NUMA-awareness

Solve the bottlenecks
ü Remove all the locks during the collection
ü Propose 3 NUMA-aware heap layouts

v Interleaved: balance memory accesses across the nodes
v Fragmented: balance + increase memory locality
v Segregated: balance + perfect memory locality

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 16

1.  Background

2.  The lock bottleneck

3.  The NUMA bottleneck

4.  Evaluation

5.  Conclusion

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 17

1.  Background

2.  The lock bottleneck

3.  The NUMA bottleneck

4.  Evaluation

5.  Conclusion

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 18

Background: the copying collector

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 19

A	

B	 E	

D	 C	 F	

Pending queue

G	

From Space To Space

Background: the copying collector
Step 1: identify the root objects (globals, stack)

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 20

A	

B	 E	

D	 C	 F	

Pending queue

G	

From Space To Space

A	

Background: the copying collector
Step 2: copy an object from the pending queue + update pending queue

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 21

B	 E	

D	 C	 F	

Pending queue

G	

From Space To Space

A	

B	 E	

Background: the copying collector
Step 2: copy an object from the pending queue + update pending queue

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 22

B	 E	

D	 C	 F	

Pending queue

G	

From Space To Space

A	

E	 C	 D	

Background: the copying collector
Step 2: copy an object from the pending queue + update pending queue

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 23

B	 E	

D	 C	 F	

Pending queue

G	

From Space To Space

A	

E	 D	

Background: the copying collector
Step 2: copy an object from the pending queue + update pending queue

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 24

B	 E	

D	 C	 F	

Pending queue

G	

From Space To Space

A	

E	

Background: the copying collector
Step 2: copy an object from the pending queue + update pending queue

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 25

B	

E	

D	 C	 F	

Pending queue

G	

From Space To Space

A	

F	

Background: the copying collector
Step 2: copy an object from the pending queue + update pending queue

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 26

B	

E	

D	 C	

F	

Pending queue

G	

From Space To Space

A	

Background: the copying collector
Step 3: invert the spaces + consider to space empty

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 27

B	

E	

D	 C	

F	

To Space From Space

A	

Advantage: spaces are never fragmented

1.  Background

2.  The lock bottleneck

3.  The NUMA bottleneck

4.  Evaluation

5.  Conclusion

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 28

Poor Synchronization in Parallel Scavenge

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 29

Coarse grained synchronization + use of monitors

Simplify synchronizations

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 30

1.  Background

2.  The lock bottleneck

3.  The NUMA bottleneck

4.  Evaluation

5.  Conclusion

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 31

Impact of a NUMA architecture
Problem 1: unbalanced memory accesses

Interconnect or memory controllers saturate

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 32

Impact of a NUMA architecture
Problem 2: remote memory accesses

Interconnect saturates

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 33

Impact of a NUMA architecture

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 34

Inefficient Memory Layout in ParallelScavenge (PS)
The initial thread fixes the mapping of physical pages

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 35

Mutator 0

Physical Memory
Node 0 Node 1

SPECjbb2005 allocates ~95% of memory from a single node

Initial Heap
(w/o physical
pages) The mapping

never changes!

Solution 1: Interleaved Space
Map the pages on the node in round-robin

⇒ perfect memory balance

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores

Node	 0	 Node	 1	

36

0 0 1 1

Solution 1: Interleaved Space
Idea: map the pages on the node in round-robin

⇒ perfect memory balance but bad memory locality

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores

Node	 0	 Node	 1	

37

0 0 1 1

Solution 2: Fragmented Space
Associate fragments to memory nodes

 ⇒ node-local allocation

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 38

Node 0 Node 1

Heap

Physical
Memory

Fragment 0 Fragment 1

Solution 2: Fragmented Space
Naturally balance the load

ü GC threads uniformly distributed on the nodes
ü Efficient work stealing between GC threads
⇒ balance the copies on all the nodes

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 39

A	

B	 E	

D	 C	 F	

G	

To Space
Node 0 Node 1

A	

B	

E	

D	 C	

F	
G	

From Space
Node 0 Node 1

Solution 2: Fragmented Space
Increase locality for the application

ü Mutator mostly accesses recently allocated objects
ü Recently allocated object is on the mutator’s node

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 40

Solution 2: Fragmented Space
Increase memory locality during copy

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 41

A	

B	 E	

D	 C	 F	

Pending queue

A	

G	

From Space To Space

Node 0 Node 1 Node 0 Node 1

Thread on node 1

Solution 2: Fragmented Space
Increase memory locality during copy

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 42

B	 E	

D	 C	 F	

Pending queue

G	

Thread on node 1 From Space To Space

Node 0 Node 1 Node 0 Node 1
A	

E	 B	

Solution 3: Segregated Space
Fragmented space + node-local scanning

(Send remote references to the owner of the object)

Perfect locality for the GC
But have to pay the price of inter-node message exchanges

Good locality for the mutators
Mutator mostly accesses recently allocated objects

Natural balance of the load if allocation rates of the mutators are similar

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 43

Summary of the spaces

Interleaved Fragmented Segregated
Memory
Balance Perfect Good Good

Mutator
Locality Bad Good Good

GC
Locality Bad Good Perfect

Comment Inter-node
messages

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 44

1.  Background

2.  The lock bottleneck

3.  The NUMA bottleneck

4.  Evaluation

5.  Conclusion

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 45

Evaluation
Hardware:

ü AMD Opteron 6172 sockets
ü  8 nodes and 48 cores

25 evaluated applications:
ü  SPECjbb2005: ~ 3.5 GB
ü  SPECjvm2008: ~ 1 to 2 GB
ü DaCapo 9.12: ~ 500

Focus on SPECjbb2005 in the presentation

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 46

N0	

N1	

N4	

N5	

N2	

N3	

N6	

N7	

MC	

MC	

MC	

MC	

MC	

MC	

MC	

MC	

Effect of optimizations on the GC

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 47

Effect of optimizations on the GC

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 48

High
memory imbalance
(95% on node 0)

Effect of optimizations on the GC

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 49

Bad locality
Hampers

scalability
Latency effect
due to locality

marginal

Effect of optimizations on the GC

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 50

Locality required
for scalability

Effect of optimizations on the GC

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 51

Effect of lock
becomes

important with
many cores

Effect of lock
Negligible

with few cores

Effect of optimizations on the GC

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 52

Too many messages
between the nodes
(12% of objects are

still remote)

Effect of optimizations on the Application

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 53

GC time excluded

Balance ⇒ increase
performance of app.

Locality ⇒ marginal

effect

Overall effect

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 54

Optimizations translates into
a x2 on throughput

of SPECjbb

Pause time of 1 collection:
from 105ms to 49ms

Scalability with the cores

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 55

Scalability with the cores

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 56

Stop-the-world scales with memory intensive applications

Scalability with the cores

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 57

Adding GC threads is useless for non memory-intensive applications

To take away
STW GCs assumed to be inherently non-scalable is probably a mistake

 ⇒ Stop-the-world GC still well suited for contemporary H/W

Most important NUMA effects

ü Balancing memory accesses has the most important impact
ü Increasing memory locality is required to scale
ü Latency improvement due to locality negligible

Next step

ü Avoiding most of the messages between the nodes

[A Study of the Scalability of Stop-the-world Garbage Collectors on Multicores,
ASPLOS 2013]

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 58

