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Managed Runtime Environments (MREs) 
 
 

 
 

 

MRE: simulates an abstract hardware/OS 
ü  Safety: isolate code from the rest of the system 

ü  Portability: write once, run anywhere 
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MREs are efficient 
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Interpreters 
(Lisp, 1959) Efficient JIT Compilers 

(Self, 1987-1989) 

Efficient Garbage Collectors 
(generational, 1984) 

(1995) 

Safety/portability requirements 
(HTML, 1993) 

Powerful processors 
(more than 100MHz, 1992) 

Inefficient Efficient Time ~ 1990 
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MREs are everywhere 

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 

Smartphones 

Desktop 
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But they were not prepared to multicore 
Most MREs were designed for a monocore architecture 

⇒ Necessary to study their bottlenecks on a multicore architecture 
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Samsung Galaxy S3 
4-core 

Dell Power Edge r815 
48-core 

(Magny-Cours) 

8 Memory 
Controllers 

48 cores 

AMD Opteron 6172 Magny-Cours 
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GC Scalability (Lusearch) [PLOS’11] 
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Pause time  of the GC increases with GC threads  
⇒ Negative scalability! 

HotSpot JVM’s Garbage Collectors 



Why suspending the application 
The concurrency issue 
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Why suspending the application 
The concurrency issue 
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Why suspending the application 
The concurrency issue ⇒ G freed while still used 
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Common believe 
1.  Stop-the-world:  

- Suspend the application  
+ Simple to implement 

2.  Concurrent:  
fine-grain locking, code instrumentation 
- Hard to implement 
- Degrades application performance 
+ Do not pause the application 

 
Current believe:  

 STW are unacceptable for server apps [Iyengar, ISMM 2012] 
Long pauses due to larger heaps  
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Pause 
Time 

GC Threads  

Application Threads 
(mutators) 

Stop the world 
safe-point 



Our hypothesis 

Increase in transistor count is for both memory and CPU 
ü Large heaps come with large core count 
ü STW GC should be still useful, provided they scale 

Can we make a GC scales with the number of cores  
to avoid the price of concurrent collectors? 
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Contribution 
Identify the bottlenecks of Parallel Scavenge 

(the most scalable GC of OpenJDK – used by default) 
ü Heavy contended locks 
ü Lack of NUMA-awareness 

Solve the bottlenecks 
ü Remove all the locks during the collection 
ü Propose 3 NUMA-aware heap layouts 

v Interleaved: balance memory accesses across the nodes 
v Fragmented: balance + increase memory locality 
v Segregated: balance + perfect memory locality   
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1.  Background 

2.  The lock bottleneck 

3.  The NUMA bottleneck 

4.  Evaluation 

5.  Conclusion 
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Background: the copying collector 
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Background: the copying collector 
Step 1: identify the root objects (globals, stack) 
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Background: the copying collector 
Step 2: copy an object from the pending queue + update pending queue 
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Background: the copying collector 
Step 2: copy an object from the pending queue + update pending queue 
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Background: the copying collector 
Step 2: copy an object from the pending queue + update pending queue 

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 23 

B	  E	  

D	   C	  F	  

Pending queue 

G	  

From Space To Space 

A	  

E	   D	  



Background: the copying collector 
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Background: the copying collector 
Step 2: copy an object from the pending queue + update pending queue 
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Background: the copying collector 
Step 2: copy an object from the pending queue + update pending queue 
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Background: the copying collector 
Step 3: invert the spaces + consider to space empty 
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Advantage: spaces are never fragmented 
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4.  Evaluation 

5.  Conclusion 
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Poor Synchronization in Parallel Scavenge 
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Coarse grained synchronization + use of monitors 



Simplify synchronizations 

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 30 



 
 
1.  Background 

2.  The lock bottleneck 

3.  The NUMA bottleneck 

4.  Evaluation 

5.  Conclusion 

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 31 



Impact of a NUMA architecture 
Problem 1: unbalanced memory accesses 

Interconnect or memory controllers saturate 
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Impact of a NUMA architecture 
Problem 2: remote memory accesses 

Interconnect saturates 
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Impact of a NUMA architecture 
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Inefficient Memory Layout in ParallelScavenge (PS) 
The initial thread fixes the mapping of physical pages 
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Mutator 0 

Physical Memory 
Node 0 Node 1 

SPECjbb2005 allocates ~95% of memory from a single node  

Initial Heap 
(w/o physical 
pages) The mapping 

never changes! 



Solution 1: Interleaved Space 
Map the pages on the node in round-robin 
 
 
 
 
 
 
 
 
 
⇒ perfect memory balance 
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Solution 1: Interleaved Space 
Idea: map the pages on the node in round-robin 
 
 
 
 
 
 
 
 
 
⇒ perfect memory balance but bad memory locality 
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Solution 2: Fragmented Space 
Associate fragments to memory nodes 

 ⇒ node-local allocation 
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Solution 2: Fragmented Space 
Naturally balance the load 

ü GC threads uniformly distributed on the nodes 
ü Efficient work stealing between GC threads 
⇒ balance the copies on all the nodes 
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Solution 2: Fragmented Space 
Increase locality for the application 

ü Mutator mostly accesses recently allocated objects 
ü Recently allocated object is on the mutator’s node 
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Solution 2: Fragmented Space 
Increase memory locality during copy 
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Solution 2: Fragmented Space 
Increase memory locality during copy 
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Solution 3: Segregated Space 
Fragmented space + node-local scanning 

(Send remote references to the owner of the object) 

Perfect locality for the GC 
But have to pay the price of inter-node message exchanges 

Good locality for the mutators  
Mutator mostly accesses recently allocated objects 

Natural balance of the load if allocation rates of the mutators are similar 
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Summary of the spaces 

Interleaved Fragmented Segregated 
Memory 
Balance Perfect Good Good 

Mutator 
Locality Bad Good Good 

GC 
Locality Bad Good Perfect 

Comment Inter-node 
messages 
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1.  Background 
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4.  Evaluation 

5.  Conclusion 
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Evaluation 
Hardware: 

ü AMD Opteron 6172 sockets 
ü  8 nodes and 48 cores 

25 evaluated applications: 
ü  SPECjbb2005: ~ 3.5 GB 
ü  SPECjvm2008: ~ 1 to 2 GB 
ü DaCapo 9.12: ~ 500 

Focus on SPECjbb2005 in the presentation 
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Effect of optimizations on the GC 
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Effect of optimizations on the GC 
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High 
memory imbalance 
(95% on node 0) 



Effect of optimizations on the GC 
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Bad locality 
Hampers 

scalability 
Latency effect 
due to locality 

marginal 



Effect of optimizations on the GC 
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Locality required 
for scalability 



Effect of optimizations on the GC 
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Effect of lock 
becomes 

important with 
many cores 

Effect of lock 
Negligible 

with few cores 



Effect of optimizations on the GC 
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Too many messages 
between the nodes 
(12% of objects are  

still remote) 



Effect of optimizations on the Application 
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GC time excluded 

Balance ⇒ increase 
performance of app. 

 
Locality ⇒ marginal 

effect 



Overall effect 
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Optimizations translates into 
a x2 on throughput 

of SPECjbb 
 
 

Pause time of 1 collection:  
from 105ms to 49ms 



Scalability with the cores 
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Scalability with the cores 

Gaël Thomas A Study of the Scalability of Garbage Collectors on Multicores 56 













        

































        




















        


















        

































        


















        























        

































        




















        




























        

































        




















        
















Stop-the-world scales with memory intensive applications 



Scalability with the cores 
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Adding GC threads is useless for non memory-intensive applications  



To take away 
STW GCs assumed to be inherently non-scalable is probably a mistake 

 ⇒ Stop-the-world GC still well suited for contemporary H/W 
 
Most important NUMA effects 

ü Balancing memory accesses has the most important impact 
ü Increasing memory locality is required to scale 
ü Latency improvement due to locality negligible 

 
Next step 

ü Avoiding most of the messages between the nodes 

[A Study of the Scalability of Stop-the-world Garbage Collectors on Multicores, 
ASPLOS 2013] 
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