Improving the Design and the Performance of
Managed Runtime Environments

Gaél Thomas

INRIA/LIP6

Exploiting Multicores 1n
Managed Runtime Environments

Lokesh Gidra, Gaél Thomas, Julien Sopena Marc Shapiro

INRIA/LIP6

Managed Runtime Environments (MRESs)

Before After
Native Code Abstract Code

1 =

Hardware/OS Hardware/OS

MRE: simulates an abstract hardware/OS

v" Safety: isolate code from the rest of the system

v" Portability: write once, run anywhere

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

MREs are efticient

@ 0 @ python

L| 8'3 Efficient Garbage Collectors
(generational, 1984)

Interpreters C#
(Lisp, 1959) Efficient JIT Compilers Bz
(Self, 1987-1989) T
Powerful processors
(more than 100MHz, 1992) @
Safety/portability requirements ((PN
(HTML, 1993) =7 « DART
JavaScript
. ° °)
Time Inefficient ~1990 Efficient

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 4

MREs are everywhere

Découverte ‘
Sunburn Brame 16] s sesese
[Top Ecoutes e

Bibliothéque
£ Collection

c
o
n
n
()

User: admin Domain: domain1 Server: ocalhost
GlassFish™ Server Open Source Edition

Web servers

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

But they were not prepared to multicore

Most MREs were designed for a monocore architecture
= Necessary to study their bottlenecks on a multicore architecture

Interconnects

6100 , 6100
NUMA node 0 —— | ! J [MuMAnade? 8 Memory
Low ! |
' Controllers
! 1
Dell Power Edge 1815 > ;
z v
48-core g(5 | 2
2
(Magny-Cours) 6
1|4 4|1
” > e = 48 cores
= g 2 5 S 2 L 3
Samsung Galaxy S3 s 3
4-core 18 I
NUMA node 1 —— “——NUMA node 3

AMD Opteron 6172 Magny-Cours

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

GC Scalability (Lusearch) [PLO5 11
HotSpot JVM’s Garbage Collectors

30000

25000

20000

15000

10000

5000

Time in Milliseconds (Lower is better)

I | | 1 I ‘l | | I I | : | I I | | 1
Pause Time I

Application Time —/

1 6 12243648 1 6 12243648 1 6 12243648
ParScavenge ConMS G1

Number of GC Threads

Pause time of the GC increases with GC threads

Gaél Thomas

=> Negative scalability!

A Study of the Scalability of Garbage Collectors on Multicores

Why suspending the application

The concurrency issue

Pending queue

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

Why suspending the application

The concurrency issue

Gaél Thomas

O,

Pending queue

A Study of the Scalability of Garbage Collectors on Multicores

9

Why suspending the application

The concurrency issue

Gaél Thomas

O
00

Pending queue

A Study of the Scalability of Garbage Collectors on Multicores

10

Why suspending the application

The concurrency issue

Gaél Thomas

&)

Pending queue

A Study of the Scalability of Garbage Collectors on Multicores

11

Why suspending the application

The concurrency issue

Gaél Thomas

Application executes B—>f

&)

Pending queue

A Study of the Scalability of Garbage Collectors on Multicores

G

12

Why suspending the application

The concurrency i1ssue = G freed while still used

Pending queue

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

13

Common believe

1. Stop-the-world: Application Threads
- Suspend the application (mutators)
+ Simple to implement Stop the world l
safe-point
GC Threads
2. Concurrent: -
fine-grain locking, code instrumentation PT E;‘IJI?}

- Hard to implement b Vv v
- Degrades application performance
+ Do not pause the application

Current believe:
STW are unacceptable for server apps [Iyengar, ISMM 2012]

Long pauses due to larger heaps

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 14

Our hypothesis

Increase in transistor count 1s for both memory and CPU

v' Large heaps come with large core count
v' STW GC should be still useful, provided they scale

Can we make a GC scales with the number of cores
to avoid the price of concurrent collectors?

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

15

Contribution

Identify the bottlenecks of Parallel Scavenge
(the most scalable GC of OpenJDK — used by default)

v Heavy contended locks
v" Lack of NUMA-awareness

Solve the bottlenecks
v Remove all the locks during the collection
v" Propose 3 NUMA -aware heap layouts

s Interleaved: balance memory accesses across the nodes
*»Fragmented: balance + increase memory locality

“*Segregated: balance + perfect memory locality

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

16

1. Background

2. The lock bottleneck

3. The NUMA bottleneck

4. Evaluation

5. Conclusion

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 17

1. Background

2. The lock bottleneck

3. The NUMA bottleneck

4. Evaluation

5. Conclusion

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 18

Background: the copying collector

From Space To Space

O O
o ©

Pending queue

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 19

Background: the copying collector

Step 1: 1identify the root objects (globals, stack)

From Space To Space

O O
O

O,

Pending queue

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

Background: the copying collector

Step 2: copy an object from the pending queue + update pending queue

From Space To Space

o ©
.
ERL

00

Pending queue

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

21

Background: the copying collector

Step 2: copy an object from the pending queue + update pending queue

From Space To Space

OOy

—
E

o

000

Pending queue

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

22

Background: the copying collector

Step 2: copy an object from the pending queue + update pending queue

From Space To Space

oo
o}

00

Pending queue

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

Background: the copying collector

Step 2: copy an object from the pending queue + update pending queue

From Space To Space

o

&)

Pending queue

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

Background: the copying collector

Step 2: copy an object from the pending queue + update pending queue

From Space To Space

o

v,

Pending queue

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

Background: the copying collector

Step 2: copy an object from the pending queue + update pending queue

From Space

To Space

o

Gaél Thomas

Pending queue

A Study of the Scalability of Garbage Collectors on Multicores

26

Background: the copying collector

Step 3: invert the spaces + consider to space empty

To Space From Space

Advantage: spaces are never fragmented

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

27

1. Background

2. The lock bottleneck

3. The NUMA bottleneck

4. Evaluation

5. Conclusion

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 28

Poor Synchronization in Parallel Scavenge

Stop-the-World pause——
//\\ivv,/"_v/: NN j;;:/"_iM
== T =

4
Termination
protocol
S 4 AT 4 P 4
Mutators VM Thread GC Threads

Coarse grained synchronization + use of monitors

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 29

Gaél Thomas

Simplify synchronizations

Stop-the-World pause——
N SN SN S SR N £
=~ SN (e =~
Termination
protocol
S 4 AR 4 N
Mutators VM Thread GC Threads

A Study of the Scalability of Garbage Collectors on Multicores 30

1. Background

2. The lock bottleneck

3. The NUMA bottleneck

4. Evaluation

5. Conclusion

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 31

Impact of a NUMA architecture

Problem 1: unbalanced memory accesses

Interconnect or memory controllers saturate

6100 Interconnects 6100

NUMA node 0 —— | ' ———NUMA node 2

NUMA node 1 ——— L NUMA node 3
Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

32

Impact of a NUMA architecture

Problem 2: remote memory accesses

Interconnect saturates

6100 Interconnects 6100

NUMA node 0 —— | ' ———NUMA node 2

NUMA node 1 ——— L NUMA node 3
Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

33

Impact of a NUMA architecture

47
44 - —— Unbalanced-Remote
40 - Balanced-Remote
36 ' —x— Balanced-Local
32 " —=— Unbalanced-Local
o -
3 28 Linear Speedup
L 24 -
o
n 20
16 -
12
8 -

1 4 8 12 16 20 24 28 32 36 40 44 47
Number of Threads

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

Inefficient Memory Layout in ParallelScavenge (PS)

The 1nitial thread fixes the mapping of physical pages

Initial Heap
(w/o physical
ages .
pages) The mapping
never changes!
Node 0 Node 1

Physical Memory

SPECjbb2005 allocates ~95% of memory from a single node

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 35

Map the pages on the node in round-robin

= perfect memory balance

Gaél Thomas

Solution 1: Interleaved Space

Node (

Node 1

A Study of the Scalability of Garbage Collectors on Multicores

36

Solution 1: Interleaved Space

Idea: map the pages on the node in round-robin

6100

NUMA node 0 —— |}
2
|

Node 0 Node 1

= perfect memory balance but bad memory locality

| |
NUMA node 1 —— ———NUMA node 3

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 37

Solution 2: Fragmented Space

Associate fragments to memory nodes
= node-local allocation

Fragment 0 Fragment 1

Heap

Physical
Memory Node 0 Node 1

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

Solution 2: Fragmented Space

Naturally balance the load

v" GC threads uniformly distributed on the nodes
v Efficient work stealing between GC threads
= balance the copies on all the nodes

Node (0

Node 1

299
oo
o

Node (0

oo

Node 1

From Space
Gaél Thomas

To Space

A Study of the Scalability of Garbage Collectors on Multicores

39

Solution 2: Fragmented Space

Increase locality for the application
v Mutator mostly accesses recently allocated objects

v’ Recently allocated object is on the mutator’s node

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

40

Solution 2: Fragmented Space

Increase memory locality during copy

Thread on node 1

From Space To Space
Node 0 ° Node 1 ||| Node 0 Node 1
Pending queue

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 41

Solution 2: Fragmented Space

Increase memory locality during copy

From Space To Space Thread on node 1

Node (0 Node 1 Node (0 Node 1

00

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 42

Pending queue

Solution 3: Segregated Space

Fragmented space + node-local scanning
(Send remote references to the owner of the object)

Perfect locality for the GC

But have to pay the price of inter-node message exchanges

Good locality for the mutators
Mutator mostly accesses recently allocated objects

Natural balance of the load if allocation rates of the mutators are similar

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

43

Summary of the spaces

Interleaved Fragmented Segregated
Memory Perfect Good Good
Balance
Mutat.or Bad Good o
Locality
GC' Bad Good Perfect
Locality
Comment Inter-node
messages

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

1. Background

2. The lock bottleneck

3. The NUMA bottleneck

4. Evaluation

5. Conclusion

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 45

Evaluation

Hardware:
v' AMD Opteron 6172 sockets
v" 8 nodes and 48 cores

mE- —m
m—{ m
m=m ﬂ=m

25 evaluated applications:
v SPECjbb2005: ~ 3.5 GB M

v' SPECjvm2008: ~ 1 to 2 GB M / ﬂ=m

v DaCapo 9.12: ~ 500

Focus on SPECjbb2005 1in the presentation

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 46

Effect of optimizations on the GC

ParallelScavenge —*— Interleaved Space —e— Fragmented Space —+—
Segregated Space Fragmented Space + Lock-free —=—
(a) SPECjbb
o 25
(D)
N
o 20
S
5 15
o
>
> 10
o
c
S 5
O
O 0

5 10 15 20 25 30 35 40 45
Number of GC Threads

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 47

Effect of optimizations on the GC

ParallelScavenge —*— Interleaved Space —e— Fragmented Space —+—
Segregated Space Fragmented Space + Lock-free —=—
(a) SPECjbb
25
20

15

10

GC Throughput (GB/Sec)

High
memory imbalance

Number of GC Threads

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 48

Effect of optimizations on the GC

ParallelScavenge —*— Interleaved Space —e— Fragmented Space —+—
Segregated Space Fragmented Space + Lock-free —=—
(a) SPECjbb

5 25

0

5 20 -

S

s 15

Q.

S

e N

e

S 5

& o |

0 Bad locality

Latency effect 5 10 15 20 25 30 35 40 45 Hampers
due to locality scalability

marginal Number of GC Threads

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 49

Effect of optimizations on the GC

ParallelScavenge —*— Interleaved Space —e— Fragmented Space —+—

Segregated Space Fragmented Space + Lock-free —=—

(a) SPECjbb

25

20

15

10

GC Throughput (GB/Sec)

Locality required

5 10 15 20 25 30 35 40 45 for scalability
Number of GC Threads

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 50

Effect of optimizations on the GC

ParallelScavenge —*— Interleaved Space —e— Fragmented Space —+—

Segregated Space Fragmented Space + Lock-free —=—

(a) SPECjbb

o 25
)
%)
o 20
S
5 15
Q.
L
> 10
o
= 5
O
O 0
Effect of lock
plectollook 5 10 15 20 25 30 35 40 45 ~becomes
Neghg1ble important with
with few cores Number of GC Threads many cores

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 51

Effect of optimizations on the GC

ParallelScavenge —*— Interleaved Space —e— Fragmented Space —+—
Segregated Space Fragmented Space + Lock-free —=—
(a) SPECjbb
25
20

15

10

-

GC Throughput (GB/Sec)

Too many messages
between the nodes

5 10 15 20 25 30 35 40 45 (12% ofobjects are

still remote)
Number of GC Threads

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 52

Effect of optimizations on the Application

ParallelScavenge —*— Interleaved Space —e— Fragmented Space —+—

Fragmented Space + Lock-free —=—

XML Tvransform

400 X .
Kk~ W Balance = increase

%2

o

S 390 performance of app.
@ 300 |

p 250 e——9 o ¢ & — 9 @ Locality > marginal
w effect

£ 200

Application Ti

B
o0 O O
o O O

5 10 15 20 25 30 35 40 45 50
Number of GC Threads

o
o

GC time excluded

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 53

Overall effect

ParallelScavenge —*— Interleaved Space —e— Fragmented Space —+—
Segregated Space Fragmented Space + Lock-free —=—
S (a) SPECjbb
7 (Higher is Better)

Optimizations translates into
a x2 on throughput
of SPECjbb

Pause time of 1 collection:
from 105ms to 49ms

5 10 15 20 25 30 35 40 45
Number of GC Threads

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores

Scalability with the cores

ParallelScavenge —— Fragmented Space + Lock-free —=—
(a) SPECjbb (b) XML Transform (c) Compiler.Sunflow

25 7
3 6
920
M
o 5
=15 4
£
210 3
o
E 2

5
O
o 1

O | | | | | | | | | O | | | | | | | | | 0 | | | | | | | | |

5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
Number of GC Threads Number of GC Threads Number of GC Threads
(d) XML Validation (e) Crypto AES (f) Eclipse
12

[I=N
o

oo

GC Throughput (GB/Sec)
(e}

4
2
0 | | | | | | | | | O | | | | | | | | | O | | | | | | | | |
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
Number of GC Threads Number of GC Threads Number of GC Threads

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 55

Scalability with the cores

ParallelScavenge —*— Fragmented Space + Lock-free —=—

(a) SPECjbb (b) XML Transfg (c) Compiler.Sunflow

N
a1

N
o

(==Y
a1

=
o

[¢)]

GC Throughput (GB/Sec)

10 15 20 25 30 35 “mewss 10 15 20 25 30 35 40 45
Number of GC Threads Number of GC Threads

o
K

5 10 15 20 25 30
Number of GC Threads

Stop-the-world scales with memory intensive applications
(d) XML Validation (e) Crypto AES (f) Eclipse

=
N

[I=N
o

GC Throughput (GB/Sec)
(e}

4
2
u | | | | | | | | | | | | | | | | O | | | | | | | | |
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
Number of GC Threads Number of GC Threads Number of GC Threads

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 56

Scalability with the cores

ParallelScavenge —— Fragmented Space + Lock-free —=—
(a) SPECjbb (b) XML Transform (c) Compiler.Sunflow
25 7
g 6
¥ 20
8 5
=15 4
§’10 3
o
E 2
3" 1
0 | | | | | | | | | 0 | | | | | | | | | 0 | | | | | | | | |
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
Number of GC Threads Number of GC Threads Number of GC Threads
Adding GC threads is useless for non memory-intensive applications
(d) XML Validation (f) Eclipse
12

[I=N
o

GC Throughput (GB/Sec)
(e}

4
2
O | | | | | | | | | | | | | | | | |
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
Number of GC Threads Number of GC Threads Number of GC Threads

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 57

To take away

STW GCs assumed to be inherently non-scalable 1s probably a mistake
= Stop-the-world GC still well suited for contemporary H/'W

Most important NUMA effects
v’ Balancing memory accesses has the most important impact
v’ Increasing memory locality is required to scale
v' Latency improvement due to locality negligible

Next step
v" Avoiding most of the messages between the nodes

[A Study of the Scalability of Stop-the-world Garbage Collectors on Multicores,
ASPLOS 2013]

Gaél Thomas A Study of the Scalability of Garbage Collectors on Multicores 58

