Digital topology and applications

Jacques-Olivier Lachaud

jacques-olivier.lachaud@univ-savoie.fr

Laboratoire de Mathématiques (UMR 5127), Université de Savoie

Séminaire de Géométrie, 4 avril 2008

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Outline of the talk

Which topology for images ?

J.-O. Lachaud Digital topology and applications

ヘロト ヘアト ヘビト ヘビト

Images and ℤ^{//} Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

Outline of the talk

Which topology for images ?

- Images and \mathbb{Z}^n
- Rosenfeld's adjacency graph
- Khalimsky's and Kovalevksy's spaces
- Herman's digital space

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

Images and ℤⁿ Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

Images and topology I

- Objectives: to identify, represent, measure, characterize, compare, index, simplify, localize, visualize objects and components in images
- Neighborhood, Connectedness, Manifold or Surface, Boundary, Topology invariants
- Topology for images = topology for Zⁿ

イロト イポト イヨト イヨト

Images and ℤⁿ Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

Topologies for \mathbb{Z}^n I

Jordan curves

shape = subset of \mathbb{R}^n

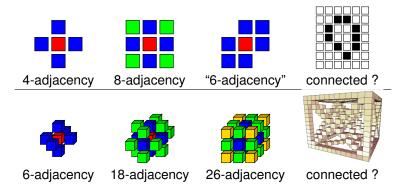
non-Jordan curves

shape = subset of \mathbb{Z}^n

- Can we mimick standard topology in digital space ?
- Guide: Jordan property, sound definition of hypersurfaces
 - graph approaches: adjacency graphs put on Zⁿ (n-cells)
 - cellular approaches: cubical complex, abstract cellular complex, connected ordered topological space, orders (*n*-cells, ..., 0-cells)
 - intermediate approach: graph and arcs (*n*-cells, *n* – 1-cells)

Images and Zⁿ Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

Adjacency graph



- adjacency relations ρ : 4- and 8- in \mathbb{Z}^2 , 6-, 18- and 26- in \mathbb{Z}^3 , etc.
- connectedness relations in X ⊂ Zⁿ = transitive closure of ρ in X.
- ρ-components, ρ-pathes follow

ヘロト ヘアト ヘビト ヘ

Images and \mathbb{Z}^n Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

Rosenfeld's paradox in \mathbb{Z}^2 I

simple 8-curve

one 8-comp.

three 4-comp.

イロト イポト イヨト イヨト

- Digital analog of Jordan curve theorem
- Simple ρ -curve: any point has exactly two ρ -neighbors.
- A simple 4-curve may not separate \mathbb{Z}^2 in two 4-components
- A simple 8-curve may not separate \mathbb{Z}^2 in two 8-components

Images and \mathbb{Z}^n Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

Rosenfeld's paradox in \mathbb{Z}^2 II

Theorem ([Rosenfeld])

- A simple 4-curve (with more than 4 pixels) separates Z² in two 8-components
- A simple 8-curve separates \mathbb{Z}^2 in two 4-components
- Standard practice: choose one adjacency for the foreground (shape) and the other for the background.
- Note: local computations are enough to check that a curve is "Jordan"

イロト イポト イヨト イヨト

Images and \mathbb{Z}^n Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

Do the same hold in 3D? I

[Morgenthaler, Rosenfeld 81] [Malgouyres97]

Definition (Digital Surface)

 $S \subset \mathbb{Z}^3$ is a surface iff *S* separates \mathbb{Z}^3 in two 6-connected components and every voxel of *S* is 6-adjacent to each component of $\mathbb{Z}^3 \setminus S$.

• Several local definitions that induces surfaces [Morgenthaler, Rosenfeld 81] [Malgouyres97]

 $\forall u \in S$, the 26-neighbors of u in S constitute a 18-connected quasicurve.

Images and \mathbb{Z}^n Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

Do the same hold in 3D ? II

Theorem ([Malgouyres96])

There is no local characterization of surfaces in \mathbb{Z}^3 .

 Note: local computations are not enough to check that a surface is "Jordan"

イロト イポト イヨト イヨト 一座

Images and \mathbb{Z}^n Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

Khalimsky digital space I

- Connected ordered topological space (COTS) [Khalimsky90]
- Even points of ℤ are closed, odd points are open. Aleksandrov topology.
- $\mathbb{Z}^n = \mathbb{Z} \times \ldots \times \mathbb{Z}$
- neighbors define an adjacency relation θ

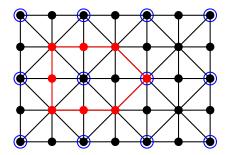
ヘロト ヘアト ヘビト ヘビト

Images and \mathbb{Z}^n Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

Khalimsky digital space II

Jordan property

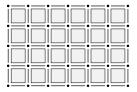
Any simple θ -curve separates \mathbb{Z}^2 into two components.



イロン 不良 とくほう 不良 とうほ

Images and \mathbb{Z}^n Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

Kovalevsky's cellular complex I



Remark [Kovalevsky89]

Any finite separable topological space is an abstract cellular complex

- Topologies for images are to be found in cellular complexes
- For \mathbb{Z}^n , complex = cellular grid, with induced topology.

Images and \mathbb{Z}^n Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

Kovalevsky's cellular complex II

- Identical to Khalimsky topology
- Neighborhood graph is enough iff its corresponding subcomplex is strongly connected
- Other cellular structures have better properties (hexagonal)

くロト (過) (目) (日)

Images and \mathbb{Z}^n Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

Surfaces in the cellular grid I

Definition (Surface as boundary of a shape)

Let Cl(O) be the closure of a subset O of the cellular grid \mathbb{C}^n . The boundary of O is the subset of cells of Cl(O) whose star touches the complement of Cl(O) in \mathbb{C}^n .

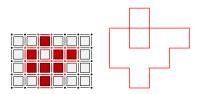
 if O is ω_n-connected, it is a strongly connected polyhedral n - 1-complex.

ヘロト ヘアト ヘヨト ヘヨト

Images and \mathbb{Z}^n Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

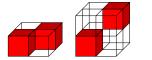
Surfaces in the cellular grid II

But boundaries may not be separating



Images and \mathbb{Z}^n Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

Boundaries in well-composed pictures I



Well-composed picture [Latecki97] : Picture without specific configurations

Theorem ([Latecki97])

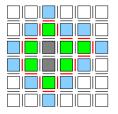
Any boundary of a connected object in a well-composed picture is a combinatorial n - 1-manifold

 but it is not a straightforward local process to make a picture well-composed

イロト イポト イヨト イヨト

Images and Zⁿ Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

Intermediate approach of Herman I



[Liu, Artzy, Frieder, Herman, Webster, Gordon, Udupa, Kong]

ヘロト ヘ回ト ヘヨト ヘヨト

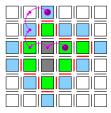
3

Definition

- Digital space is an adjacency graph (proto-adjacency ω_n)
- Surface element = surfel = arc ∈ ω_n = couple (u,v)
- Surface is a set of surfels

Images and Zⁿ Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

Jordan surfaces and Jordan pairs I



• immediate interior *II(S)*

$$= \{u|(u,v) \in S\}$$

• immediate exterior IE(S)= { $v | (u, v) \in S$ }.

Definition (Jordan surface [Herman92])

 $S \subset \omega_n \subset \mathbb{Z}^n \times \mathbb{Z}^n$ is a Jordan surface iff every ω_n -path from II(S) to IE(S) crosses S.

イロト イポト イヨト イヨト

Images and Zⁿ Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

Jordan surfaces and Jordan pairs II

Definition (Strong Jordan pair)

Consider a subset *X* of \mathbb{Z}^n . A pair of adjacencies $\{\kappa, \lambda\}$ is a strong Jordan pair iff any boundary surface between a κ -component of *X* and a λ -component of *X^c* is Jordan.

- in 2D: (8,4), (4,8) are strong Jordan pairs for (Z²,4).
 (4,4) is not.
- in 3D: (26,6), (6,26) are strong Jordan pairs for (Z³,6).
 (6,6) is not.
- in nD: there exists such pairs [Herman92,Udupa94,Lachaud00]

くロト (過) (目) (日)

Images and \mathbb{Z}^n Rosenfeld's adjacency graph Khalimsky's and Kovalevksy's spaces Herman's digital space

Jordan surfaces and Jordan pairs III

Summary

- boundaries of object are separating (and thin)
- a local topology may be defined on the surface
- theoretical framework extensible to many non regular digital spaces [Herman98]

イロト 不得 トイヨト イヨト

Topology on digital surfaces Surface tracking and algebraic topology Visualizing isosurfaces What about surfaces with singularities ?

Outline of the talk

Which topology for images ?

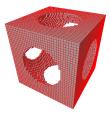
2 Around digital surfaces

- Topology on digital surfaces
- Surface tracking and algebraic topology
- Visualizing isosurfaces
- What about surfaces with singularities ?

イロト イポト イヨト イヨト

Topology on digital surfaces Surface tracking and algebraic topology Visualizing isosurfaces What about surfaces with singularities ?

Topology on digital surfaces ? I



• For now, a surface is a set of surfels

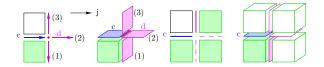
Questions ?

Can we define local neighborhood relations so that

- a whole connected surface can be extracted by their tracking,
- Jordan property is satisfied

Topology on digital surfaces Surface tracking and algebraic topology Visualizing isosurfaces What about surfaces with singularities ?

Bel adjacency in a picture I

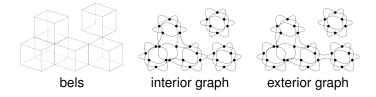


- binary picture *I*: finite subset X of Zⁿ
- boundary element or bel in I = surfel between X and X^c
- For each direction j (n 1 directions for each bel)
 - interior bel-adjacency from *c* (dir. *j*). *d* : first follower of *c* along *j* which is a bel
 - exterior bel-adjacency from *c* (dir. *j*). *d* : last follower of *c* along *j* which is a bel

(日)

Topology on digital surfaces Surface tracking and algebraic topology Visualizing isosurfaces What about surfaces with singularities ?

Bel adjacency graph I



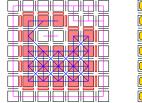
 For each direction, choose interior/exterior ⇒2^{n(n-1)/2} bel-adjacencies

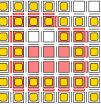
Theorem (3D [Herman,Webster83])

Let $O \subset X$ 6-connected, $Q \subset X^c$ 18-connected. *c* a bel. The all-interior bel-adjacency graph component containing *c* is the boundary surface between *O* and *Q*.

Topology on digital surfaces Surface tracking and algebraic topology Visualizing isosurfaces What about surfaces with singularities ?

Bel adjacency graph II





ヘロト ヘアト ヘヨト ヘ

Theorem (nD, $n \ge 2$, [Udupa94])

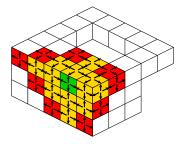
Let $O \subset X$ 2n-connected, $Q \subset X^c$ 2n²-connected. *c* a bel. The all-interior bel-adjacency graph component containing *c* is the boundary surface between *O* and *Q*.

• To extract a boundary component \Rightarrow track it.

Topology on digital surfaces Surface tracking and algebraic topology Visualizing isosurfaces What about surfaces with singularities ?

Tracking digital boundaries I

- boundary in parallepiped Nⁿ
- number of bels is $V = O(N^{n-1})$
- degree of each vertex is 2n-2



ヘロト ヘ回ト ヘヨト ヘヨト

- breadth-first traversal of bel-adjacency graph
- each bel is visited 2n 2 times
- time complexity $\approx (2n-2)V$

Topology on digital surfaces Surface tracking and algebraic topology Visualizing isosurfaces What about surfaces with singularities ?

Tracking digital boundaries II

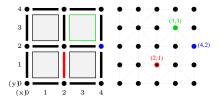
Lower bound on time complexity in 3D

- [Tutte56] Any 4-connected planar graph has a hamiltonian cycle
- lower bound is V in some case
- only O(V) is known [Chiba89]

イロト イポト イヨト イヨト

Topology on digital surfaces Surface tracking and algebraic topology Visualizing isosurfaces What about surfaces with singularities?

Cubical chain complex I



- isomorphism "grid" and "Khalimsky's space"
- a cell is an element of Zⁿ, parities = topology
- pixels, voxels, n-cells have odd parities

< 🗇 🕨

- < ∃ →

Topology on digital surfaces Surface tracking and algebraic topology Visualizing isosurfaces What about surfaces with singularities ?

Cubical chain complex II

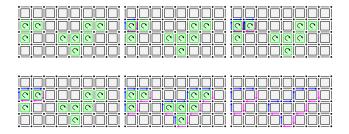
Construction of a chain complex

- oriented k-cells form k-dimensional bases
- *k*-chains are formal sums of *k*-cells (coefficient \mathbb{Z}) $\sum_{i} + o_{i}^{n}$ is a digital shape $\sum + s_{j}^{n-1} + \sum - s_{j'}^{n-1}$ is a digital surface
- boundary operator Δ , with $\Delta \Delta = 0$, based on cell parities

ヘロト ヘアト ヘビト ヘビト

Topology on digital surfaces Surface tracking and algebraic topology Visualizing isosurfaces What about surfaces with singularities?

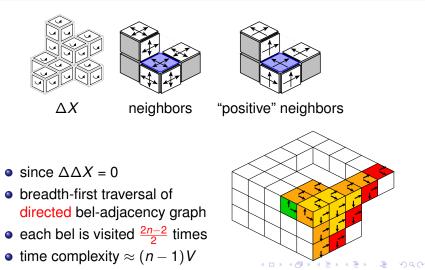
Application to digital boundaries I



- digital shape is a subset X of \mathbb{Z}^n (odd parities)
- its boundary = n 1-chain $\Delta \sum_{x \in X} + x$
- it is a cycle since $\Delta \Delta = 0$

Topology on digital surfaces Surface tracking and algebraic topology Visualizing isosurfaces What about surfaces with singularities ?

Oriented boundary tracking I



Topology on digital surfaces Surface tracking and algebraic topology Visualizing isosurfaces What about surfaces with singularities?

Isosurfaces I

Definition (Isosurface)

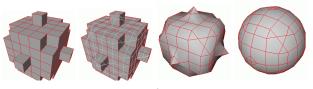
Let $I : \mathbb{R}^3 \to \mathbb{R}$. Isosurface of value *s* in $I = \{(x, y, z) \in \mathbb{R}^3, I(x, y, z) = s\}$.

• marching-cubes [Lorensen, Cline87], by scanning

ヘロア ヘビア ヘビア・

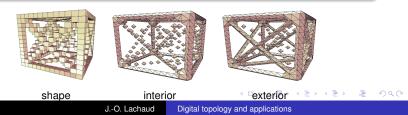
Topology on digital surfaces Surface tracking and algebraic topology Visualizing isosurfaces What about surfaces with singularities?

Duality isosurfaces / digital surface



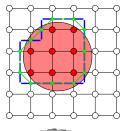
 $X = \{\vec{x} \in \mathbb{Z}^3, l(\vec{x}) \geq s\}$

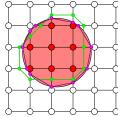
bel-adjacency graph with loops defines a comb. 2D surface. In *n*D, a comb. n - 1-pseudomanifold without boundary [Lachaud00]



Topology on digital surfaces Surface tracking and algebraic topology Visualizing isosurfaces What about surfaces with singularities?

Making isosurfaces nice





$$X = \{ \vec{x} \in \mathbb{Z}^3, l(\vec{x}) \ge s \}$$

) track
$$\Delta \sum_{x \in X} + x$$

- Iocal triangulation
 - move vertices

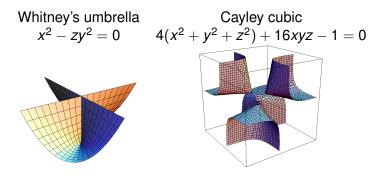
ヘロト ヘアト ヘヨト ヘヨト

Topology on digital surfaces Surface tracking and algebraic topology Visualizing isosurfaces What about surfaces with singularities ?

More general isosurfaces

Work in progress

How to visualize
$$\{(x, y, z) \in \mathbb{R}^3, f(x, y, z) = 0\}$$
?



・ロン ・ 一 マン・ 日 マー・

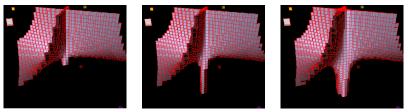
Digital surface in Z^4 I

- since { f² = 0 } = { f = 0 }, we cannot rely on a change of sign around the 0-surface
- we introduce F(x, y, z, t) = f(x, y, z) t
- The set F = 0 is homeomorphic to a 3-plane
- we sample *F* at points $(ih, jh, kh, lh' \frac{1}{2})$, for integers i, j, k, l
- we extract the digital surface F = 0 (with I = 0 or 1)
 - it is a set S of 3-cells
 - we keep in Cl(S) the cells included in t = 0
 - the obtained complex S' is closed with cells of dim k, $0 \le k \le 3$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Topology on digital surfaces Surface tracking and algebraic topology Visualizing isosurfaces What about surfaces with singularities?

Digital surface in Z^4 II

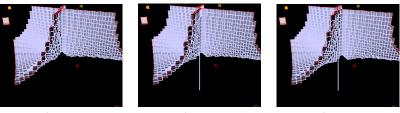


h' = 0.1 h' = 0.5 h' = 2.53-complex *S'* for Whitney's umbrella in $[-5,5]^3$, $h = \frac{10}{64}$

イロン 不同 とくほ とくほ とう

Topology on digital surfaces Surface tracking and algebraic topology Visualizing isosurfaces What about surfaces with singularities?

Collapse



h′ = 0.1

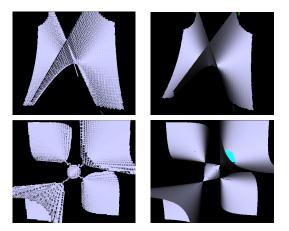
h' = 0.5

h' = 2.5

- To get a thin complex, we collapse S'
- Collapse : $K \leftarrow S' \setminus T$, T fixed cells
 - while ∃(σ, σ') ∈ K, σ maximal cell, σ' free face of σ
 K ← K \ {σ, σ'}
- the new complex K is homotopic to S'

Topology on digital surfaces Surface tracking and algebraic topology Visualizing isosurfaces What about surfaces with singularities?

Projection onto $\{f = 0\}$



Projected with Newton-Raphson

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()