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IMAGE PROCESSING AT LRDE

young lab with a small image processing (IP) team

(dev) OLENA = IP platform, including MILENA:
▸ C++ image processing library
▸ generic and efficient
▸ easy prototyping / industrial code
▸ many structures

IP research topics
▸ translation IP→ generic code
▸ algorithms
▸ stuff about mathematical morphology / discrete topology ← HERE
▸ document image analysis / text extraction from natural images & videos
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THIS TALK = A STORY

SERENDIPITY

Serendipity means a ”happy accident” or ”pleasant surprise”; specifically, the
accident of finding something good or useful while not specifically searching
for it. (Wikipedia)

searching for an algorithm ↝ finding a representation of images
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SOME REPRESENTATIONS OF IMAGE

1
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34

array graph

1

3
4

distribution function function u.s.c.

image = ?
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THIS TALK IS ABOUT...

Many subjects involved:

image processing

mathematical morphology

mathematical analysis

discrete topology

and discrete geometry, computer graphics...

we are going to talk about pixel-level details...

...yet the devil is in the detail!
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CONTEXT: DOCUMENT IMAGE PROCESSING

“∆ = 0” lines

a HUGE magazine page image yet with very tiny and thin objects!
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SOME PREREQUISITES 1/2

JORDAN CURVE THEOREM

Every simple closed curve divides the plane into an ”interior” region and an
“exterior” region.
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SOME PREREQUISITES 2/2

Excerpt from:

Digital topology and applications
by Jacques-Olivier Lachaud

Laboratoire de Mathématiques (UMR 5127), Université de Savoie
slides of “Séminaire de Géométrie, 4 avril 2008”

http://www.lama.univ-savoie.fr/˜lachaud/People/LACHAUD-JO/Talks/chambery-geometry-2008-slides.pdf
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MORPHOLOGY AND APPLICATIONS

document image analysis
▸ objects with different scales (from tiny to very large)
▸ different levels of contrast
▸ contrast inversion ← self-duality is required
▸ gray levels / colors

connected filters (v. “structuring element”-based morphology)
▸ preserve contours
▸ underlying tree representation ← tree manipulations are enabled
▸ many apps including:

filtering / simplification / object recognition / indexing / segmentation...
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SOME ILLUSTRATIONS
“Structuring element”-based morphology:

Morphological connected filters:

From left to right: id, φ, γ, φγ+γφ2 .
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REMARK 1: DUALITY V. SELF-DUALITY

φ and γ are dual operators:
▸ we have γ = ∁φ∁
▸ φ filters dark objects over light background
▸ γ does the opposite

ν = φγ+γφ
2 is self-dual:

▸ it satisfies ∁ν = ν ∁
▸ it makes no assumption about object/background contrast

duality should be avoided when:
▸ we cannot make an assumption about contrast
▸ we do not want to make such an assumption

notion of “object” ≠ notion of “subject”
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IMAGE AND FUNCTION

in the following:

an image is a mapping u ∶ X → Y

we can have X = Z2 and Y = Z ...
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REMARK 2: CUTS

CUTS

lower cuts: [u ≤ λ ] = { x ∈ X ∣ u(x) ≤ λ}
upper cuts: [u ≥ λ ] = { x ∈ X ∣ u(x) ≥ λ}
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REMARK 2: CUTS

CUTS

lower cuts: [u ≤ λ ] = { x ∈ X ∣ u(x) ≤ λ}
upper cuts: [u ≥ λ ] = { x ∈ X ∣ u(x) ≥ λ}

clue of the extension of morphology on sets to functions

used to define some connected filters
▸ algebraic openings and closings
▸ some levelings

THIERRY GÉRAUD, LRDE SELF-DUAL REPRESENTATION OF 2D IMAGES FEBRUARY 2013 16 / 65



REMARK 2: CUTS

CUTS

lower cuts: [u ≤ λ ] = { x ∈ X ∣ u(x) ≤ λ}
upper cuts: [u ≥ λ ] = { x ∈ X ∣ u(x) ≥ λ}

⇒ a couple of dual trees

lower cuts ↝ min-tree ↝ filtering dark objects (e.g., φ)

upper cuts ↝ max-tree ↝ filtering light objects (e.g., γ)

filtering = tree pruning
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REMARK 2: CUTS

how to run γ
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REMARK 2: CUTS

we can try to be self-dual with two trees...

yet we get some info redundancy between trees

and

we have to juggle with 2 structures
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REMARK 3: A DIRECT SELF-DUAL APPROACH

the best case is to “directly run a filter”

tree + pruning
ÐÐÐÐÐÐÐ→

grain filters κ:
▸ connected filters (preserve some level lines ∂[u ≤ λ ])
▸ actually φγ+γφ

2 ≈ κ
▸ based on a single and self-dual tree

we need this tree of shapes (ToS)!

THIERRY GÉRAUD, LRDE SELF-DUAL REPRESENTATION OF 2D IMAGES FEBRUARY 2013 18 / 65



REMARK 3: A DIRECT SELF-DUAL APPROACH

the best case is to “directly run a filter”

tree + pruning
ÐÐÐÐÐÐÐ→

grain filters κ:
▸ connected filters (preserve some level lines ∂[u ≤ λ ])
▸ actually φγ+γφ

2 ≈ κ
▸ based on a single and self-dual tree

we need this tree of shapes (ToS)!
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THIERRY GÉRAUD, LRDE SELF-DUAL REPRESENTATION OF 2D IMAGES FEBRUARY 2013 18 / 65



REMARK 3: A DIRECT SELF-DUAL APPROACH

the best case is to “directly run a filter”

tree + pruning
ÐÐÐÐÐÐÐ→

grain filters κ:
▸ connected filters (preserve some level lines ∂[u ≤ λ ])
▸ actually φγ+γφ

2 ≈ κ
▸ based on a single and self-dual tree

we need this tree of shapes (ToS)!
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WHAT’S WRONG

state of the art = 3 different algorithms to compute the ToS:

yet with O(N2) complexity...

rather hard to implement...

unusable for nD images...

(just unthinkable for a computer scientist!)
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WHAT’S WRONG

state of the art = 3 different algorithms to compute the ToS:

yet with O(N2) complexity...

rather hard to implement...

unusable for nD images...

(just unthinkable for a computer scientist!)

moreover:

some topological inconsistencies...

and only a “quasi-self-dual” ToS...

(so we want to fix those issues...)
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TWO WAYS OF CUTTING

DUAL CUTS

lower cuts: [u ≤ λ ] = { x ∈ X ∣ u(x) ≤ λ}
upper cuts: [u ≥ λ ] = { x ∈ X ∣ u(x) ≥ λ}
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TWO WAYS OF CUTTING

DUAL CUTS

lower cuts: [u ≤ λ ] = { x ∈ X ∣ u(x) ≤ λ}
upper cuts: [u ≥ λ ] = { x ∈ X ∣ u(x) ≥ λ}

with λ being dark gray:

D

E

B
A

C

F

O

A U B F
D

E

A U O U C U F 

[u ≤ λ ] u [u ≥ λ ]
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DUAL TREES

Given a function u, consider the set of components of every upper cuts:

T≥(u) = { Γ ∈ CC([u ≥ λ]) }λ
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DUAL TREES

Given a function u, consider the set of components of every upper cuts:

T≥(u) = { Γ ∈ CC([u ≥ λ]) }λ

we have:

a couple of components are either disjoint or included one in another,

so the components of T≥(u) form a tree, the max-tree of u.
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DUAL TREES

Given a function u, consider the set of components of every upper cuts:

T≥(u) = { Γ ∈ CC([u ≥ λ]) }λ

we have:

a couple of components are either disjoint or included one in another,

so the components of T≥(u) form a tree, the max-tree of u.

and with the lower cuts’ components:

T≤(u) = { Γ ∈ CC([u ≤ λ]) }λ

we have the min-tree of u.
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A SCHEMATIC EXAMPLE
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TREE OF SHAPES

Consider the saturation (fill holes) set operator Sat:

T (u) = { Sat(Γ), Γ ∈ T≥ ∪ T< }
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TREE OF SHAPES

Consider the saturation (fill holes) set operator Sat:

T (u) = { Sat(Γ), Γ ∈ T≥ ∪ T< }

we have:

an element of T is called a shape

a couple of shapes are either disjoint or included one in another

so the elements of T (u) form a tree, the tree of shapes of u
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TREE OF SHAPES

Consider the saturation (fill holes) set operator Sat:

T (u) = { Sat(Γ), Γ ∈ T≥ ∪ T< }

we have:

an element of T is called a shape

a couple of shapes are either disjoint or included one in another

so the elements of T (u) form a tree, the tree of shapes of u

actually

the shapes are the holes of cut components

THIERRY GÉRAUD, LRDE SELF-DUAL REPRESENTATION OF 2D IMAGES FEBRUARY 2013 24 / 65



A SCHEMATIC EXAMPLE

D

E

B
A

C

F

O

3

2

0

1 A

C, D, E

O

B

F

min-tree

B

A, F

C D E

O3

2

0

1

max-tree

image

tree of shapes

A

O

F

B C

D E
> 2 >1> 2

> 2

> 0

>1

>0

>3
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A TWO-PASS ALGORITHM

A two-pass algorithm is known to compute the max-tree or min-tree:

1. sort the pixels in the descending tree order

2. following the reverse order,
distort the Union-Find algorithm to compute the tree.
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A TWO-PASS ALGORITHM

A two-pass algorithm is known to compute the max-tree or min-tree:

1. sort the pixels in the descending tree order

2. following the reverse order,
distort the Union-Find algorithm to compute the tree.

When pixel values have a low quantization (less than 16 bit):

sorting is of linear complexity (distributed sort),

so we get a quasi-linear algorithm (complexity of the Union-Find step).
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COMPUTING THE MAX-TREE
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WHAT IF...

A FIRST KEY IDEA

if we succeed in sorting the pixels such as descending the tree of shapes,
then we have a simple and efficient algorithm.
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WHAT IF...

A FIRST KEY IDEA

if we succeed in sorting the pixels such as descending the tree of shapes,
then we have a simple and efficient algorithm.

A SECOND KEY IDEA

sorting the pixels means progress “continuously”
both in image space1 and in value space2

1 i.e., through a spatially consistent growing (thanks to a propagation front)
2 i.e., jumping from a gray level to the “next” one (either upper or lower)

⇒ we can use a hierarchical queue!
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COMPUTING THE TREE OF SHAPES
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COMPUTING THE TREE OF SHAPES
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COMPUTING THE TREE OF SHAPES

D

E

B
A

C

F

O

B FC D EOsort : 

A

O

F

B C

D E

A

done! (done? no, we first have to sort...)
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INTERMEDIATE CONCLUSION

THE NEED

we need a discrete image representation...
...that has some appropriate continuous properties!
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INTERMEDIATE CONCLUSION

THE NEED

we need a discrete image representation...
...that has some appropriate continuous properties!

Catching two ideas:

A

A'
B C A, A'

B C

1 1 1 1 1 1

1 1 1 1 1 1

1

1

1

1

1

1

1 1

0

0

0 0

0 2 2

2

22

we need to pass between pixels...

1

0 1
2

9

0
1, 2, 3...

...and with many values
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CUBICAL COMPLEXES V. KHALIMSKY’S GRID

f

g

h h

f

g

Two representations of a set of faces...
:-)

...and Khalimsky’s grid.
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WHAT IS NICE

we have some topological operators:

E = { f , g, h} star: E↑ closure: E↓

... and an easy and effective structure to work on
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IMAGE (BASIC) IMMERSION 1/3

a b

c d

ac

ab

cd

bdabcd
a b

c d

Here, where Op is an operator over a set of values:

we have ab = Op({a, b}), abcd = Op({a, b, c, d }), etc.

a discrete function u on domain D becomes uOp
K = IOp

K (u) on domain K

and the gray dots indicate where the primary pixel values are assigned.
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THIERRY GÉRAUD, LRDE SELF-DUAL REPRESENTATION OF 2D IMAGES FEBRUARY 2013 34 / 65



IMAGE (BASIC) IMMERSION 1/3

a b

c d

ac

ab

cd

bdabcd
a b

c d

Here, where Op is an operator over a set of values:

we have ab = Op({a, b}), abcd = Op({a, b, c, d }), etc.

a discrete function u on domain D becomes uOp
K = IOp

K (u) on domain K

and the gray dots indicate where the primary pixel values are assigned.
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IMAGE (BASIC) IMMERSION 2/3
with Op = max and λ = 3:

1 3

4 2

4

3

4

34
1 3

4 2
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we have:

any Γ ∈ CC([umax
K ≥ λ ]) is a closed set

Γ ∩D ∈ CCc8([u ≥ λ ]) ↝ T K≥ (umax
K ) ∣D = T D≥c8

(u)
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we have:

any Γ ∈ CC([umax
K ≥ λ ]) is a closed set

Γ ∩D ∈ CCc8([u ≥ λ ]) ↝ T K≥ (umax
K ) ∣D = T D≥c8

(u)

and

any Γ′ ∈ CC([umax
K < λ ]) is an open set

Γ′ ∩D ∈ CCc4([u < λ ]) ↝ T K< (umax
K ) ∣D = T D<c4

(u)
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IMAGE (BASIC) IMMERSION 3/3

we have:

the set of (upper and lower) cuts T K≥ (umax
K ) ∪ T K< (umax

K ) gives a tree of shapes

whose restriction over D is “the” state-of-the-art tree of shapes:

T K(≥/<)(umax
K ) ∣D = T D(≥c8/<c4)(u).
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whose restriction over D is “the” state-of-the-art tree of shapes:

T K(≥/<)(umax
K ) ∣D = T D(≥c8/<c4)(u).

what’s nice:

umax
K is an u.s.c. function so cuts over D rely on the duality ≥c8 / <c4

there is no topological problem

over K upper and lower cuts have the same connectivity (c4)
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IMAGE (BASIC) IMMERSION 3/3

we have:

the set of (upper and lower) cuts T K≥ (umax
K ) ∪ T K< (umax

K ) gives a tree of shapes

whose restriction over D is “the” state-of-the-art tree of shapes:

T K(≥/<)(umax
K ) ∣D = T D(≥c8/<c4)(u).

what’s nice:

umax
K is an u.s.c. function so cuts over D rely on the duality ≥c8 / <c4

there is no topological problem

over K upper and lower cuts have the same connectivity (c4)

yet we cannot compute the ToS with that BASIC immersion...
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SELF-DUALITY FLAW AND ABNORMALITIES (1/3)

the tree of shapes is not purely self-dual:

T D(≥c8/<c4)(u) = ∁ T D(>c4/≤c8)(∁ u)
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T D(≥c8/<c4)(u) = ∁ T D(>c4/≤c8)(∁ u)

that starts with two immersions that are not self-dual:

∁ Imax
K (u) = Imin

K (∁ u)
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SELF-DUALITY FLAW AND ABNORMALITIES (1/3)

the tree of shapes is not purely self-dual:

T D(≥c8/<c4)(u) = ∁ T D(>c4/≤c8)(∁ u)

that starts with two immersions that are not self-dual:

∁ Imax
K (u) = Imin

K (∁ u)

↝ definitely such immersions are not so good image representations...
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SELF-DUALITY FLAW AND ABNORMALITIES (2/3)

consider these examples:

1 0

0 1

ToS?

1 0 0 0 1 2

1 1 1 1 1 1 1 1

2 2

1 0

1 0

1 0

0 1

1 2

1 1

1 2

2 2

1 1 1 1 1 1 1 1

1

1

1

1

1

ToS?
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SELF-DUALITY FLAW AND ABNORMALITIES (2/3)

consider these examples:

1 0

0 1

1 0

0 1

two possible trees!

0 2

1

1 1

a non symmetrical tree!
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SELF-DUALITY FLAW AND ABNORMALITIES (3/3)

furthermore, from a topological point of view:

some shapes are closed, the other ones are open...

some shapes contain their level lines, the other ones do not...

there is an arbitrary choice between (≥c8 / <c4) and (>c4 / ≤c8)...
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SET-VALUED MAPS

a set-valued map U ∶ X ↝ Y is characterized by its graph Gra(U):

Gra(U) = { (x, y) ∈ X × Y ∣ y ∈ U(x) }

actually we have U ∶ X → P(Y)
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SET-VALUED MAPS

a set-valued map U ∶ X ↝ Y is characterized by its graph Gra(U):

Gra(U) = { (x, y) ∈ X × Y ∣ y ∈ U(x) }

actually we have U ∶ X → P(Y)

X

Y

x

U(x)
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INVERSE BY U OF A SUBSET M

two ways:

the inverse image of M ⊂ Y by U is
U−1(M) = { x ∈ X ∣ U(x) ∩M ≠ ∅}

X

Y

M

U (M)
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INVERSE BY U OF A SUBSET M

two ways:

the inverse image of M ⊂ Y by U is
U−1(M) = { x ∈ X ∣ U(x) ∩M ≠ ∅}

the core of M ⊂ Y by U is
U+1(M) = { x ∈ X ∣ U(x) ⊂ M }

X

Y

M

U (M) X

M

U (M)

Y
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MATHS!

we have some nice properties:
e.g., X / U−1(M) = U+1(Y /M)

we have some continuity:

▸ when U(x) is compact, U is Upper Semi-Continuous (U.S.C.) at x if

∀ε > 0, ∃η > 0 such that ∀ x′ ∈ BX(x, η), U(x′) ⊂ BY(U(x), ε).

▸ this is the “natural” extension of the continuity of a single-valued function

some characterization of U.S.C. maps:

U is U.S.C. if and only if the core of any open subset is open
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...
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WHAT DO WE HAVE TO DO
remember:

we can compute the ToS if we can adequately sort pixels

for that, we need

▸ to pass between pixels ↝ Khalimsky’s grid
▸ to deal with many values between pixels ↝ set-valued maps

morphology on functions and the ToS is based on cuts.

so we have to:

define cuts of set-valued maps
(note that [ U

?≥ λ ] implies an external relation since U(x) ∈ P(Y) whereas λ ∈ Y)

define some proper ways to represent an image on Khalimsky’s grid
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OUTLINE

1 FOREWORDS

2 INTRODUCTION

3 ABOUT TREES AND THEIR COMPUTATION

4 A COUPLE OF TOOLS

5 A NEW REPRESENTATION OF 2D IMAGES

6 CONCLUSION
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CUTS OF SET-VALUED MAPS NEW!

definition of large cuts:

[U ⊴ λ] = { x ∈ X ∣ ∃µ ∈ U(x), µ ≤ λ}
[U ⊵ λ] = { x ∈ X ∣ ∃µ ∈ U(x), µ ≥ λ}
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[U ⊵ λ] = { x ∈ X ∣ ∃µ ∈ U(x), µ ≥ λ}

by extension we define:

[U ⊲ λ] = X ∖ [U ⊵ λ]
[U ⊳ λ] = X ∖ [U ⊴ λ]
[U ◻ λ] = [U ⊴ λ] ∩ [U ⊵ λ]
[U � λ] = X ∖ [U ◻ λ]
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definition of large cuts:

[U ⊴ λ] = { x ∈ X ∣ ∃µ ∈ U(x), µ ≤ λ}
[U ⊵ λ] = { x ∈ X ∣ ∃µ ∈ U(x), µ ≥ λ}

by extension we define:

[U ⊲ λ] = X ∖ [U ⊵ λ]
[U ⊳ λ] = X ∖ [U ⊴ λ]
[U ◻ λ] = [U ⊴ λ] ∩ [U ⊵ λ]
[U � λ] = X ∖ [U ◻ λ]

so we have:
[U ⊲ λ] = { x ∈ X ∣ ∀µ ∈ U(x), µ < λ}
[U ⊳ λ] = { x ∈ X ∣ ∀µ ∈ U(x), µ > λ}
[U ◻ λ] = { x ∈ X ∣ λ ∈ U(x) }
[U � λ] = { x ∈ X ∣ λ /∈ U(x) }
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CUTS PROPERTIES

we have some inclusions:

λ1 < λ2 ⇒ [U ⊴ λ1] ⊆ [U ⊴ λ2] Ð→ min-tree T⊴
λ1 < λ2 ⇒ [U ⊵ λ2] ⊆ [U ⊵ λ1] Ð→ max-tree T⊵
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CUTS PROPERTIES

we have some inclusions:

λ1 < λ2 ⇒ [U ⊴ λ1] ⊆ [U ⊴ λ2] Ð→ min-tree T⊴
λ1 < λ2 ⇒ [U ⊵ λ2] ⊆ [U ⊵ λ1] Ð→ max-tree T⊵

some separations with strict cuts:

λ1 ≤ λ2 ⇒ [U ⊲ λ1] ∩ [U ⊳ λ2] = ∅

!!! but also an oddity with large cuts:

λ1 < λ2 /⇒ [U ⊴ λ1] ∩ [U ⊵ λ2] = ∅

e.g., with U(x) = J1, 2K, we have both x ∈ [U ⊴ 1] and x ∈ [U ⊵ 2]...
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PROPOSITIONS (1/3)

given an image u ∶ Z2 → Z, we want to define UK ∶ X ↝ Y
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PROPOSITIONS (1/3)

given an image u ∶ Z2 → Z, we want to define UK ∶ X ↝ Y

● we want UK to be reconstructible from its component tree
⇒ values of U have to be intervals

● we want UK to be continuous à-la U.S.C.
⇔ values on 0-faces and 1-faces are the span

of their resp. 1-faces and 2-faces neighbors values

● we want shapes of UK to get a chance to form a ToS
⇒ shapes are obtained with strict cuts only

● we want UK to preserve extrema of u
⇒ values on non-primary 2-faces are intermediate values
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PROPOSED IMAGE IMMERSION

a b

c d

a ab

ac m

b

bd

c cd d
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PROPOSED IMAGE IMMERSION

a b

c d

a ab

ac m

b

bd

c cd d

with

all denoted values being degenerated,

on the border non-primary 2-faces (with “two-letter” values): min(a, b) ≤ ab ≤ max(a, b), ...

on the center non-primary 2-face:
max(min(ab, cd), min(ac, bd) ) ≤ m ≤ min(max(ab, cd), max(ac, bd) )

on 1-faces: the span of 2-faces neighbors (turquoise arrows)

on 0-faces: the span of 1-faces neighbors (pink arrows)
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AN EXAMPLE

0 7

9 3

0 1

4 6

7

7

9 6 3

[0, 4] [7, 7]

[4
, 
6
]

[1
, 
7]

[1, 6]

[4, 9]

[6
, 
9]

[3, 7]

[0
, 
1]

[3
, 
6]

[6, 6]

[6
, 
7
]

[1,7][0,6]

[4,9] [3,7]

from u to a correct UK
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WITH AN OPERATOR

we can rely again on an operator, Op, to construct U
Op
K :

▸ ab = Op({a, b})
▸ ac = Op({a, c})
▸ ...
▸ m = Op({a, b, c, d })

except that it now operates on 2-faces

0- and 1-faces are now here to ensure continuity
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WITH AN OPERATOR

we can rely again on an operator, Op, to construct U
Op
K :

▸ ab = Op({a, b})
▸ ac = Op({a, c})
▸ ...
▸ m = Op({a, b, c, d })

except that it now operates on 2-faces

0- and 1-faces are now here to ensure continuity

about common operators:

namely they are min, mean, median, max

the mean operator is commonly used for subdivision / subsampling...
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ARITHMETICAL MEAN

from u to Umean
K :

8 0

0 24

8 4

4 8

0

12

0 12 24

[4, 8] [0, 12]

[4
, 
8]

[0
, 
4]

[4, 8]

[0, 4]

[0
, 
12

]

[12, 24]

[4
, 
8]

[1
2,

 2
4]

[8, 12]

[8
, 
12

]

[0,12][4,8]

[0,12] [8,12]

sample cuts: [Umean
K ⊲ 5] [Umean
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PROPOSITIONS (2/3)

● strict cuts verify [UK ⊳ λ] = U+1
K ( ]λ, +∞]) and [UK ⊲ λ] = U+1

K ( [−∞, λ[ )
and they are open sets
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and they are open sets

● large cuts verify [UK ⊴ λ] = U−1
K ( [−∞, λ] ) and [UK ⊵ λ] = U−1

K ( [λ, +∞])
and they are closed sets

● the set of components

S(UK) = { Sat(Γ), Γ ∈ T K⊲ (UK) ∪ T K⊳ (UK) }

forms a lattice w.r.t. component inclusion
so a priori S(UK) does not form a tree...
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● strict cuts verify [UK ⊳ λ] = U+1
K ( ]λ, +∞]) and [UK ⊲ λ] = U+1

K ( [−∞, λ[ )
and they are open sets

● large cuts verify [UK ⊴ λ] = U−1
K ( [−∞, λ] ) and [UK ⊵ λ] = U−1

K ( [λ, +∞])
and they are closed sets

● the set of components

S(UK) = { Sat(Γ), Γ ∈ T K⊲ (UK) ∪ T K⊳ (UK) }

forms a lattice w.r.t. component inclusion
so a priori S(UK) does not form a tree...

● we have the classical couple of trees of (quasi-self-dual) shapes

S(Umax
K ) ∣D = T D(≥c8/<c4)(u) and S(Umin

K ) ∣D = T D(>c4/≤c8)(u)
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PROPOSITIONS (3/3)

● with the median operator∗, we have

∁ Imed
K (u) = Imed

K (∁ u)

∗ the one with med({a, b}) = (a + b)/2
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∁ Imed
K (u) = Imed

K (∁ u)

∗ the one with med({a, b}) = (a + b)/2

● S(Umedian
K ) forms a tree of shapes

● the only operator to get a pure self-dual ToS is the median

● we can compute the three ToS with quasi-linear time complexity

two key points:
- for any set in S(Umedian

K ) the saturation op. commutes with the closure op.
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PROPOSITIONS (3/3)

● with the median operator∗, we have

∁ Imed
K (u) = Imed

K (∁ u)

∗ the one with med({a, b}) = (a + b)/2

● S(Umedian
K ) forms a tree of shapes

● the only operator to get a pure self-dual ToS is the median

● we can compute the three ToS with quasi-linear time complexity

two key points:
- for any set in S(Umedian

K ) the saturation op. commutes with the closure op.

- Umedian
K is a well-composed image w.r.t. strict cuts
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FORGET ARITHMETICAL MEAN
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a sample image u two sample cuts zoom

we have
the cut [Umean

K ⊲ 7] (light green) intersects the cut [Umean
K ⊳ 5] at ’6’

saturation is a no-op on the “6 8” component and on the “6 & 0s” component

the resulting shapes are neither disjoint nor included one in another!
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a sample image u two sample cuts zoom

we have
the cut [Umean

K ⊲ 7] (light green) intersects the cut [Umean
K ⊳ 5] at ’6’

saturation is a no-op on the “6 8” component and on the “6 & 0s” component

the resulting shapes are neither disjoint nor included one in another!

so we do not have a tree of shapes for Umean
K ...
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MEDIAN

from u to Umedian
K :

8 0

0 24

8 4

4 4

0

12

0 12 24

[4, 8] [0, 12]

[4
, 
4]

[0
, 
4]

[4, 4]

[0, 4]

[0
, 
12

]

[12, 24]

[4
, 
8]

[1
2,

 2
4]

[4, 12]

[4
, 
12

]

[0,12][4,8]

[0,12] [4,12]

with sample cuts [Umedian
K ⊲ 7] (light green) and [Umedian

K ⊳ 5] (light blue):
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RECAP

we have an algorithmic scheme
▸ generic

we have coined a new representation based on
▸ cubical complex / Khalimsky’s grid
▸ multi-valued maps
▸ subdivision with the median operator

we have defined cuts for multi-valued maps

we have proven some topological properties
▸ including well-composedness
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WHAT IS INTERESTING

the algorithm in itself

▸ is incredibly simple
▸ has a good (quasi-linear) time complexity
▸ gives a tree even on a huge inclusion lattice

the proposed image representation

▸ fixes a lot of issues
▸ is theoretically sexy
▸ is very useful in practice
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WHAT WE DID NOT TALK ABOUT

defining p∞ for the saturation operator

defining what is Y

characterizing what we have in X × Y

relating Jordan’s theorem to the “lattice v. tree”

extending this work to partial orderings on Y

and also

making a hierarchical queue deal with intervals

reducing the space complexity of the algorithm

parallelizing the algorithm
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Y. Xu, T. Géraud, and L. Najman, ICPR, 2012.

Fast Object Segmentation on the Tree of Shapes using a Quasi-Local Energy Functional
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PERSPECTIVES

working out the 3D case

dealing with nD

having a tree of “shapes” for color images

transfering results towards

▸ computer graphics
▸ Morse theory

exploring the many use cases of the ToS...
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SOME NICE IMAGES
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Sébastien Crozet (for exploration and parallelization)

Yongchao Xu (for applications)

and also

Olena’s contributors Ð→ see http://olena.lrde.epita.fr
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thanks for your attention

any questions?
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