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IMAGE PROCESSING AT LRDE

@ young lab with a small image processing (IP) team

@ (dev) OLENA = IP platform, including MILENA:
» C++ image processing library
» generic and efficient
» easy prototyping / industrial code

» many structures

o [P research topics
> translation IP — generic code
» algorithms
» stuff about mathematical morphology / discrete topology < HERE

» document image analysis / text extraction from natural images & videos
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THIS TALK = A STORY

SERENDIPITY

Serendipity means a “happy accident” or “pleasant surprise”; specifically, the
accident of finding something good or useful while not specifically searching
for it. (Wikipedia)

searching for an algorithm ~» finding a representation of images
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SOME REPRESENTATIONS OF IMAGE

image =7 array graph

4 —_ —e

3 — -—

1 T ’ _— o0—o0
distribution function function u.s.c.

THIERRY GERAUD, LRDE SELF-DUAL REPRESENTATION OF 2D IMAGES FEBRUARY 2013 6/65



THIS TALK IS ABOUT...

Many subjects involved:

image processing
mathematical morphology
mathematical analysis

discrete topology

and discrete geometry, computer graphics...

we are going to talk about pixel-level details...

...yet the devil is in the detail!

THIERRY GERAUD, LRDE SELF-DUAL REPRESENTATION OF 2D IMAGES FEBRUARY 2013 7165



CONTEXT: DOCUMENT IMAGE PROCESSING

Education

America’s
Colleges

RREJECTING Y0U
e
e

Yes, Hurvard’s on
the li<.. But soare
lesser-known
schools. ' re are
our picks for the
pla ing
buzz for 2005-0¢

v

J

HOTTEST FORSCIENCE

“A =0 lines

SanDieg, La Jolla

a HUGE magazine page image yet with very tiny and thin objects!
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SOME PREREQUISITES 1/2

JORDAN CURVE THEOREM

Every simple closed curve divides the plane into an “interior” region and an
“exterior” region.
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SOME PREREQUISITES 2/2

Excerpt from:

Digital topology and applications
by Jacques-Olivier Lachaud

Laboratoire de Mathématiques (UMR 5127), Université de Savoie
slides of “Séminaire de Géométrie, 4 avril 2008

http://www.lama.univ-savoie.fr/~lachaud/People/LACHAUD-JO/Talks/chambery-geometry-2008-slides.pdf
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MORPHOLOGY AND APPLICATIONS

@ document image analysis
> objects with different scales (from tiny to very large)
» different levels of contrast
» contrast inversion < self-duality is required

» gray levels / colors

o connected filters (v. “structuring element”-based morphology)

> preserve contours

» underlying tree representation <« tree manipulations are enabled

» many apps including:
filtering / simplification / object recognition / indexing / segmentation...
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SOME ILLUSTRATIONS

“Structuring element”-based morphology:

From left to right: id, ¢, v, m%&
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REMARK 1: DUALITY V. SELF-DUALITY

@ ¢ and +y are dual operators:

» wehave v=CoC
» ¢ filters dark objects over light background
» v does the opposite

o V= M 18 self-dual:

» it satisfies Cv=v(C
» it makes no assumption about object/background contrast

@ duality should be avoided when:

» we cannot make an assumption about contrast
» we do not want to make such an assumption

‘notion of “object” # notion of “subject”
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IMAGE AND FUNCTION

in the following:

an image is a mapping u: X - Y

wecanhave X = 7% and Y=27...
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REMARK 2: CUTS

CuTs
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REMARK 2: CUTS

CuTs

@ clue of the extension of morphology on sets to functions

@ used to define some connected filters

» algebraic openings and closings
» some levelings
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REMARK 2: CUTS

CuTs

= a couple of dual trees

@ lower cuts ~ min-tree ~ filtering dark objects (e.g., ¢)
@ upper cuts ~ max-tree ~ filtering light objects (e.g., 7)

o filtering = tree pruning
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REMARK 2: CUTS

b

5 Original image Filtered image _5
5] st
5 =
172} wr
= =
s} o
o Qo
g 5
= Tree pruning g
5 e =
=
Tree representation Filtered tree
how to run ~y
o> <5 = = E 9Dacr
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REMARK 2: CUTS

we can try to be self-dual with two trees...

yet we get some info redundancy between trees

and

we have to juggle with 2 structures
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REMARK 3: A DIRECT SELF-DUAL APPROACH

o the best case is to “directly run a filter”

{
:
:-
- 45
".
§
i

tree + pruning
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REMARK 3: A DIRECT SELF-DUAL APPROACH

o the best case is to “directly run a filter”

{
:
:-
- 45
".
§
i

tree + pruning

@ grain filters x:
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REMARK 3: A DIRECT SELF-DUAL APPROACH

o the best case is to “directly run a filter”

¥
§

tree + pruning

@ grain filters x:

» connected filters (preserve some level lines O u < A ])
> actually 22 ~ g

» based on a single and self-dual tree

@ we need this tree of shapes (ToS)!
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WHAT’S WRONG

state of the art = 3 different algorithms to compute the ToS:
o yet with O(N?) complexity...
@ rather hard to implement...

@ unusable for nD images...

(just unthinkable for a computer scientist!)
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WHAT’S WRONG

state of the art = 3 different algorithms to compute the ToS:
o yet with O(N?) complexity...
@ rather hard to implement...

@ unusable for nD images...

(just unthinkable for a computer scientist!)

moreover:

@ some topological inconsistencies...

e and only a “quasi-self-dual” ToS...

(so we want to fix those issues...)
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Two WAYS OF CUTTING

DuaL CuTs

lowercuts: [u<A] ={xeX]|u(x)<A}
uppercuts: [u>A] = {xeX|u(x)>\}
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Two WAYS OF CUTTING

DuaL CuTs

lowercuts: [u<A] ={xeX]|u(x)<A}
uppercuts: [u>A] = {xeX|u(x)>\}

with A being dark gray:
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DUAL TREES

Given a function u, consider the set of components of every upper cuts:

To(u) = {Te CC([uxA]) ha

THIERRY GERAUD, LRDE SELF-DUAL REPRESENTATION OF 2D IMAGES FEBRUARY 2013 22/65



DUAL TREES

Given a function u, consider the set of components of every upper cuts:

To(u) = {Te CC([uxA]) ha

we have:
@ a couple of components are either disjoint or included one in another,

@ 5o the components of 7 («) form a tree, the max-tree of u.
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DUAL TREES

Given a function u, consider the set of components of every upper cuts:

To(u) = {TeCC([uxA]) }a
we have:

@ a couple of components are either disjoint or included one in another,

@ 5o the components of 7 («) form a tree, the max-tree of u.

and with the lower cuts’ components:

Te(u) = {TeCC([u<A]) }a

we have the min-tree of u.
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A SCHEMATIC EXAMPLE

image
O
A ©
0
max-tree min-tree
Y
2 C,DE
1 ,,,,,,,,,,,,,,,,,,,,,,
0 ,,,,,,,,,,,,,,,,,,,,,,,,,,,
o = = E = DA
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TREE OF SHAPES

Consider the saturation (fill holes) set operator Sat:

T(u) = {Say(T"), T' e U7}
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TREE OF SHAPES
Consider the saturation (fill holes) set operator Sat:
T(u) = {Say(T"), T' e U7}

we have:
@ anelement of 7 is called a shape
@ a couple of shapes are either disjoint or included one in another

@ so the elements of 7 («) form a tree, the tree of shapes of u
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TREE OF SHAPES
Consider the saturation (fill holes) set operator Sat:
T(u) = {Say(T"), T' e U7}

we have:
@ anelement of 7 is called a shape
@ a couple of shapes are either disjoint or included one in another

@ so the elements of 7 («) form a tree, the tree of shapes of u

actually

o the shapes are the holes of cut components

THIERRY GERAUD, LRDE SELF-DUAL REPRESENTATION OF 2D IMAGES FEBRUARY 2013 24/65



A SCHEMATIC EXAMPLE

image
O
A ©
0
max-tree tree of shapes min-tree
>0
0] <3 3 L(?J

<1 B 2 C,DE

<0 B C >2 R\ T -

[m] = = =

yQ (>
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A TWO-PASS ALGORITHM

A two-pass algorithm is known to compute the max-tree or min-tree:

1. sort the pixels in the descending tree order

2. following the reverse order,
distort the Union-Find algorithm to compute the tree.
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A TWO-PASS ALGORITHM

A two-pass algorithm is known to compute the max-tree or min-tree:

1. sort the pixels in the descending tree order

2. following the reverse order,
distort the Union-Find algorithm to compute the tree.

When pixel values have a low quantization (less than 16 bit):
@ sorting is of linear complexity (distributed sort),

@ so we get a quasi-linear algorithm (complexity of the Union-Find step).
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COMPUTING THE MAX-TREE
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COMPUTING THE MAX-TREE

sort : B WA ¢© b E [0
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COMPUTING THE MAX-TREE

sort : EVEME ¢ D E [O]

(Cp) '
(c) 2 e c-D-E-~

(=] = = =
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COMPUTING THE MAX-TREE

sort : [BNEMA ¢ D E [O]
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COMPUTING THE MAX-TREE

sort: B MA@ ¢ D E [0
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WHAT IF...

A FIRST KEY IDEA

if we succeed in sorting the pixels such as descending the tree of shapes,
then we have a simple and efficient algorithm.
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A SECOND KEY IDEA

sorting the pixels means progress “continuously”
both in image space' and in value space®

1ie., through a spatially consistent growing (thanks to a propagation front)
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WHAT IF...

A FIRST KEY IDEA

if we succeed in sorting the pixels such as descending the tree of shapes,
then we have a simple and efficient algorithm.

A SECOND KEY IDEA

sorting the pixels means progress “continuously”
both in image space' and in value space®

1ie., through a spatially consistent growing (thanks to a propagation front)

2 j.e., jumping from a gray level to the “next” one (either upper or lower)

= we can use a hierarchical queue!
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COMPUTING THE TREE OF SHAPES

sort : JOHAHE}-C-D-E-H>
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COMPUTING THE TREE OF SHAPES

sort : [O/[NEc b E &
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COMPUTING THE TREE OF SHAPES
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COMPUTING THE TREE OF SHAPES
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COMPUTING THE TREE OF SHAPES

sort : OB c b EH
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COMPUTING THE TREE OF SHAPES

sort :

OlBAco el

ABQG)%
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COMPUTING THE TREE OF SHAPES

sort :

ofABAcob ER

A ©

THIERRY GERAUD, LRDE
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COMPUTING THE TREE OF SHAPES

sort: OJME c b EE

A © 2
2 I
D E

done! (done? no, we first have to sort...)
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INTERMEDIATE CONCLUSION

THE NEED

we need a discrete image representation...
...that has some appropriate continuous properties!
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INTERMEDIATE CONCLUSION

THE NEED

we need a discrete image representation...
...that has some appropriate continuous properties!

Catching two ideas:

A

B J
A‘ é AF——A
0
ST1 2 3.
Lafafafala T
1]oJ[o][2][2][1
1o|[T]a]2][1 0
1]oflo]l2]]2][1 el 1,
INRRRN 1]
we need to pass between pixels... ...and with many values
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CuBIcAL COMPLEXES V. KHALIMSKY’S GRID

[ E—

oC—0o

Two representations of a set of faces... ...and Khalimsky’s grid.

3=)
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WHAT IS NICE

we have some topological operators:

——oC——ocC—o

| [

ocC——ocCc—30o

i |
E={f,gh} star: E' closure: EV

... and an easy and effective structure to work on
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IMAGE (BASIC) IMMERSION 1/3

OCJocCa0
U=JBL=]]]
OEI8CE=10

NEEIE
i -

Here, where Op is an operator over a set of values:

@ we have ab = Op({a, b}), abcd = Op({a, b,c,d}), etc.
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IMAGE (BASIC) IMMERSION 1/3

g1yt

a|b Da

[ [ac ]

d DC

1

UJ

1

g1yt

Here, where Op is an operator over a set of values:

@ we have ab = Op({a, b}), abcd = Op({a, b,c,d}), etc.

@ adiscrete function u# on domain D becomes u%’ = I,Cc)p(u) on domain K
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IMAGE (BASIC) IMMERSION 1/3

I O

alb Da°b°

L]

d DC. T

I I

Here, where Op is an operator over a set of values:

@ we have ab = Op({a, b}), abcd = Op({a, b,c,d}), etc.

@ adiscrete function u# on domain D becomes u%p = I,Cc)p(u) on domain K

U

1

UJ

1

U

@ and the gray dots indicate where the primary pixel values are assigned.
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IMAGE (BASIC) IMMERSION 2/3
with Op = max and A\ =3:

I N N

E BN

[ A ] N

417 NARED

I Y
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IMAGE (BASIC) IMMERSION 2/3
with Op = max and A\ =3:
OCaoCa0

E BN
4

[ A ] N

’ NARED

I Y

we have:
@ any I' € CC([ug™ > X)) is a closed set

@ I'nD e CCxs([u>]) ~ TRWE)|p = 7?;(“)
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IMAGE (BASIC) IMMERSION 2/3
with Op = max and A\ =3:

I N N

E BN
4

[ A ] N

’ NARED

I Y

we have:

@ any I' € CC([ug™ > X)) is a closed set

@ I'nD e CCxs([u>]) ~ TRUE)|p = TE (u)
and

@ any I € CC([u™ < \])is an open set

@ I"nD e CCu([u<A]) ~ TR |p = TE ()
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IMAGE (BASIC) IMMERSION 3/3

we have:
@ the set of (upper and lower) cuts 77 (u2*) u T (1™ ) gives a tree of shapes

@ whose restriction over D is “the” state-of-the-art tree of shapes:

T50 W) D = TE, e @)

THIERRY GERAUD, LRDE SELF-DUAL REPRESENTATION OF 2D IMAGES FEBRUARY 2013 36/65



IMAGE (BASIC) IMMERSION 3/3

we have:
@ the set of (upper and lower) cuts 77 (u2*) u T (1™ ) gives a tree of shapes

@ whose restriction over D is “the” state-of-the-art tree of shapes:

T50 W) D = TE, e @)

what’s nice:

@ up™ is an u.s.c. function so cuts over D rely on the duality > / <4
@ there is no topological problem

@ over K upper and lower cuts have the same connectivity (c4)
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IMAGE (BASIC) IMMERSION 3/3

we have:
@ the set of (upper and lower) cuts 77 (u2*) u T (1™ ) gives a tree of shapes

@ whose restriction over D is “the” state-of-the-art tree of shapes:

TEo W) D = T, ey W)-

what’s nice:

@ up™ is an u.s.c. function so cuts over D rely on the duality > / <4
@ there is no topological problem

@ over K upper and lower cuts have the same connectivity (c4)

yet we cannot compute the ToS with that BASIC immersion...
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SELF-DUALITY FLAW AND ABNORMALITIES (1/3)

the tree of shapes is not purely self-dual:

72558/<c4)(u) - C 72'?('4/308)(0 u)
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SELF-DUALITY FLAW AND ABNORMALITIES (1/3)

the tree of shapes is not purely self-dual:

7-(258/<c4)(u) = C 72'?('4/308)(0 u)

that starts with two immersions that are not self-dual:

C Zg™(u) = Zg™(C u)
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SELF-DUALITY FLAW AND ABNORMALITIES (1/3)

the tree of shapes is not purely self-dual:

7-(258/<c4)(u) = C 7E€c'4/308) (C u)
that starts with two immersions that are not self-dual:
C I%ax(u) — I[,gin(C u)

~  definitely such immersions are not so good image representations...
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SELF-DUALITY FLAW AND ABNORMALITIES (2/3)

consider these examples:

1/1]1]1

2[2[2]1

2|1]2]1

1/2]2]1

1[1]1]1
ToS? ToS?
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SELF-DUALITY FLAW AND ABNORMALITIES (2/3)
consider these examples:

1
1
1@
@ !
two possible trees!

a non symmetrical tree!
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SELF-DUALITY FLAW AND ABNORMALITIES (3/3)

furthermore, from a topological point of view:

@ some shapes are closed, the other ones are open...
@ some shapes contain their level lines, the other ones do not...

o there is an arbitrary choice between (.8 / <c4) and (>c4 / <cg)-.-

THIERRY GERAUD, LRDE SELF-DUAL REPRESENTATION OF 2D IMAGES FEBRUARY 2013 39/65



SET-VALUED MAPS

a set-valued map U : X ~ Y is characterized by its graph Gra(U):
Gra(u) = {(x,y) €Xx ¥ | yeu(x)}

actually we have U : X — P(Y)
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SET-VALUED MAPS

a set-valued map U : X ~ Y is characterized by its graph Gra(U):
Gra(u) = {(x,y) €Xx ¥ | yeu(x)}

actually we have U : X — P(Y)

P X
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INVERSE BY U OF A SUBSET M

two ways:

o the inverse image of M c Y by U is
Ul(M) = {xeX | u(x)nM =g}

v M) X
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INVERSE BY U OF A SUBSET M

two ways:

o the inverse image of M c Y by U is
Ul(M) = {xeX | u(x)nM =g}

@ the coreof M cY by U is
Utl(M) = {xeX |u(x)cM}

Y Y

" o

ue(M) X u®(M) X
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MATHS!

@ we have some nice properties:
eg., X\ul(M)=utl(Y\M)
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MATHS!

@ we have some nice properties:
eg., X\ul(M)=utl(Y\M)

@ we have some continuity:
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MATHS!

@ we have some nice properties:
eg., X\ul(M)=utl(Y\M)

@ we have some continuity:
» when U(x) is compact, U is Upper Semi-Continuous (U.S.C.) at x if

Ve >0, 3n > 0such that V x" € By(x,n), U(x") c By(U(x),¢).
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MATHS!

@ we have some nice properties:
eg., X\ul(M)=utl(Y\M)
@ we have some continuity:
» when U(x) is compact, U is Upper Semi-Continuous (U.S.C.) at x if
Ve >0, 3n > 0such that V x" € By(x,n), U(x") c By(U(x),¢).

» this is the “natural” extension of the continuity of a single-valued function
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MATHS!

@ we have some nice properties:
eg., X\ul(M)=ul(Y\M)
@ we have some continuity:
» when U(x) is compact, U is Upper Semi-Continuous (U.S.C.) at x if
Ve >0, 3n > 0such that V x" € By(x,n), U(x") c By(U(x),¢).

» this is the “natural” extension of the continuity of a single-valued function

@ some characterization of U.S.C. maps:

U is U.S.C. if and only if the core of any open subset is open
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D

SELF-DUAL REPRESENTATION OF 2D IMAGES



WHAT DO WE HAVE TO DO
remember:

@ we can compute the ToS if we can adequately sort pixels

so we have to:
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@ for that, we need
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WHAT DO WE HAVE TO DO
remember:

@ we can compute the ToS if we can adequately sort pixels

@ for that, we need

» to pass between pixels ~ Khalimsky’s grid

so we have to:
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WHAT DO WE HAVE TO DO
remember:

@ we can compute the ToS if we can adequately sort pixels

@ for that, we need

» to pass between pixels ~ Khalimsky’s grid

» to deal with many values between pixels ~ set-valued maps

so we have to:
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WHAT DO WE HAVE TO DO
remember:

@ we can compute the ToS if we can adequately sort pixels

@ for that, we need

» to pass between pixels ~ Khalimsky’s grid

» to deal with many values between pixels ~ set-valued maps

@ morphology on functions and the ToS is based on cuts.

so we have to:
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WHAT DO WE HAVE TO DO
remember:

@ we can compute the ToS if we can adequately sort pixels

@ for that, we need

» to pass between pixels ~ Khalimsky’s grid

» to deal with many values between pixels ~ set-valued maps

@ morphology on functions and the ToS is based on cuts.

so we have to:

@ define cuts of set-valued maps

?
(note that [ U > X\ ] implies an external relation since U(x) € P(Y) whereas A € Y)
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WHAT DO WE HAVE TO DO
remember:

@ we can compute the ToS if we can adequately sort pixels

@ for that, we need

» to pass between pixels ~ Khalimsky’s grid

» to deal with many values between pixels ~ set-valued maps

@ morphology on functions and the ToS is based on cuts.

so we have to:

@ define cuts of set-valued maps

?
(note that [ U > X\ ] implies an external relation since U(x) € P(Y) whereas A € Y)

@ define some proper ways to represent an image on Khalimsky’s grid
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OUTLINE

© A NEW REPRESENTATION OF 2D IMAGES

o
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CUTS OF SET-VALUED MAPS NEW!

definition of large cuts:

[

U
[u

{xeX|Ipeulx), p<A}

Al
A {xeX|Jpeulx), u>2A}

]

IV 1A
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CUTS OF SET-VALUED MAPS NEW!

definition of large cuts:

[u
[u

Al = {xeX | 3Ipeu(x), u<A}
Al = {xeX | Ipeu(x), u>A}

IV 1A

by extension we define:

[U<aA] = XN[u ]
[Up A] = X\[Ug)]
[Ugl] = [ugA] n[ur ]
[UmA]l = X~[uo)]
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CUTS OF SET-VALUED MAPS NEW!

definition of large cuts:

[u
[u

Al = {xeX | 3Ipeu(x), u<A}
Al = {xeX | Ipeu(x), u>A}

IV 1A

by extension we define:

[U<A] = X~[ue )]
[Up A] = X\[Ug)]
[Ugl] = [ugA] n[ur ]
[UmA]l = X~[uo)]
so we have:
[UaA] = {xeX|Vpueulx), p<A}
[Ub A] = {xeX|Vpueu(x), u>A}
[UoA] = {xeX|Xeu(x)}
[UmA] = {xeX|AéUu(x)}
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CUTS PROPERTIES

we have some inclusions:
Al <X = [U <]
A< = [U > )\2]

1A
N
r
c
A

4 A2 — min-tree T

N
rm
c
v

A1 — max-tree g
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CUTS PROPERTIES

we have some inclusions:
A< = [U d )\1]
)\1 < )\2 = [U > )\2]

N
—

N
= o
[AYARRNVAN

2] — min-tree T

1] — max-tree g

some separations with strict cuts:

A< = [U<sA]n[us 2] =0
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CUTS PROPERTIES

we have some inclusions:

A< = [Uﬂ)\l]
A< = [U[Z)\z]

N
r
c
A

4 A2 — min-tree T

N
rm
c
v

A1 — max-tree g

some separations with strict cuts:

A< = [U<sA]n[us 2] =0

!!! but also an oddity with large cuts:

AL <X\ 75 [Uﬂ)\l]ﬁ[UE)\z]ZQ
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CUTS PROPERTIES

we have some inclusions:
A< = [U < )\1]
A< = [U > )\2]

N
r
c
A

4 A2 — min-tree T

N
rm
c
v

A1 — max-tree g

some separations with strict cuts:

A< = [U<sA]n[us 2] =0

!!! but also an oddity with large cuts:

AL <X\ 75 [Uﬂ)\l]ﬁ[UE)\z]ZQ

e.g., with U(x) = [1,2], we have both xe [U < 1] and x € [U > 2]...
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PROPOSITIONS (1/3)

given an image u : Z> - Z, we want to define U : X ~ ¥
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PROPOSITIONS (1/3)

given an image u : Z> - Z, we want to define U : X ~ ¥ J

e we want Ui to be reconstructible from its component tree
= values of U have to be intervals
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PROPOSITIONS (1/3)

given an image u : Z> - Z, we want to define U : X ~ ¥ J

e we want Ui to be reconstructible from its component tree
= values of U have to be intervals

e we want Ui to be continuous a-la U.S.C.
<> values on O-faces and 1-faces are the span
of their resp. 1-faces and 2-faces neighbors values
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PROPOSITIONS (1/3)

given an image u : Z> - Z, we want to define U : X ~ ¥ J

e we want Ui to be reconstructible from its component tree
= values of U have to be intervals

e we want Ui to be continuous a-la U.S.C.
<> values on O-faces and 1-faces are the span
of their resp. 1-faces and 2-faces neighbors values

e we want shapes of Ux to get a chance to form a ToS
= shapes are obtained with strict cuts only
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PROPOSITIONS (1/3)

given an image u : Z> - Z, we want to define U : X ~ ¥ J

we want Ux to be reconstructible from its component tree
= values of U have to be intervals

e we want Ui to be continuous a-la U.S.C.
<> values on O-faces and 1-faces are the span
of their resp. 1-faces and 2-faces neighbors values

we want shapes of Ui to get a chance to form a ToS
= shapes are obtained with strict cuts only

e we want Ux to preserve extrema of u
= values on non-primary 2-faces are intermediate values
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PROPOSED IMAGE IMMERSION

F R
. o
o
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|
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|g|
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NE
L (@)
C 1101
3
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Y

e

=] = =
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PROPOSED IMAGE IMMERSION

with

TR
, o
S
S
|
S
°

|E|
[

ac

——
3
S
¥

all denoted values being degenerated,

on the border non-primary 2-faces (with “two-letter” values): min(a, b) < ab < max(a, b), ...
on the center non-primary 2-face:

max( min(ab, cd), min(ac, bd) ) < m < min( max(ab, cd), max(ac, bd) )
on 1-faces: the span of 2-faces neighbors (turquoise arrows)

on O-faces: the span of 1-faces neighbors (pink arrows)
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AN EXAMPLE

)
(0. 1]
—_

[0, 47]

(1.0

[ 7]

W
[[4.6]]
(@)

[ 97]

©

[[6,6]

[B.7]

9 6

[6.9]

(ol E (6] E 1]

from u to a correct Ui
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WITH AN OPERATOR

@ we can rely again on an operator, Op, to construct ng:

> ab = Op({a, b})
> ac = Op({a, c})

» m=0p({a,b,c,d})

@ except that it now operates on 2-faces

@ (- and 1-faces are now here to ensure continuity
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WITH AN OPERATOR

@ we can rely again on an operator, Op, to construct ng:

Op({a,b})
Op({a, c})

> ab
> ac

m = Op({% b, ¢, d})

@ except that it now operates on 2-faces

@ (- and 1-faces are now here to ensure continuity

about common operators:

@ namely they are min, mean, median, max

@ the mean operator is commonly used for subdivision / subsampling...
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ARITHMETICAL MEAN

from u to U™ :

sample cuts: [Uge™ < 5]

Wl 1]

N N I I

NN

[ N I I

W]

8T 4] El0]

0 @ ) @ G

4]E[8 ] 2]

[umean & 10]

NN

L JO0C e

UL Al

L N E

JIHIN
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PROPOSITIONS (2/3)

e strict cuts verify [Ugx > A] = UF(]A, +00]) and [Ux < A] = UZ ([-o0, A[)
and they are open sets
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PROPOSITIONS (2/3)

e strict cuts verify [Uxc > A]
and they are open sets

U (], +o0]) and [Ux < A] = U ([-o00, A)

o large cuts verify [Ux < A] = U ([-00, A]) and [Ux & A]

and they are closed sets

U ([X, +00])
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PROPOSITIONS (2/3)

e strict cuts verify [Uxc > A]
and they are open sets

U (], +o0]) and [Ux < A] = U ([-o00, A)

e large cuts verify [Ux < A]
and they are closed sets

U ([-o0, A]) and [Uk & A] = UZ([), +o0])

o the set of components

S(ux) = {Sa(l), I e T (ux) v T (uk) }

forms a lattice w.r.t. component inclusion
so a priori S(Ux) does not form a tree...
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PROPOSITIONS (2/3)

e strict cuts verify [Ugx > A] = UF(]A, +00]) and [Ux < A] = UZ ([-o0, A[)
and they are open sets

e large cuts verify [Ux < A]
and they are closed sets

U ([-o0, A]) and [Uk & A] = UZ([), +o0])

o the set of components
S(ux) = {Sayl), T' e TX(ux) U T (uk) }

forms a lattice w.r.t. component inclusion
so a priori S(Ux) does not form a tree...

o we have the classical couple of trees of (quasi-self-dual) shapes

SURM) D = T8, (@) and S(URM|p = 7T ()
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PROPOSITIONS (3/3)

e with the median operator*, we have
C Ze(u) = ZR°Y(C u)

* the one with med({a,b}) = (a +b)/2
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PROPOSITIONS (3/3)

e with the median operator*, we have
C Ze(u) = ZR°Y(C u)
* the one with med({a,b}) = (a +b)/2

o S(umedian) forms a tree of shapes
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PROPOSITIONS (3/3)

e with the median operator*, we have
C Ze(u) = ZR°Y(C u)
* the one with med({a,b}) = (a +b)/2

o S(umedian) forms a tree of shapes

e the only operator to get a pure self-dual ToS is the median
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PROPOSITIONS (3/3)

e with the median operator*, we have
C Z¥(u) = TR(C u)
* the one with med({a,b}) = (a +b)/2
o S(umedian) forms a tree of shapes

e the only operator to get a pure self-dual ToS is the median

e we can compute the three ToS with quasi-linear time complexity
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PROPOSITIONS (3/3)

e with the median operator*, we have
C ZRA(u) = IR*(C u)
* the one with med({a,b}) = (a +b)/2
o S(umedian) forms a tree of shapes
o the only operator to get a pure self-dual ToS is the median

e we can compute the three ToS with quasi-linear time complexity

two key points:
- for any set in S(URYiaM) the saturation op. commutes with the closure op.
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PROPOSITIONS (3/3)

with the median operator*, we have
C Ze(u) = ZR°Y(C u)

* the one with med({a,b}) = (a +b)/2

S(Ufllcledia“) forms a tree of shapes

the only operator to get a pure self-dual ToS is the median

e we can compute the three ToS with quasi-linear time complexity

two key points:

- for any set in S(URYiaM) the saturation op. commutes with the closure op.

- ulpedian is 4 well-composed image w.r.t. strict cuts
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FORGET ARITHMETICAL MEAN

24[24]24]24[24[24 24'24 24 24 24 24 BN
2424[0]0]0 24 24240 0 024 00
24[0[6/8[0]24 24/ 0 6&}»024 i4][[85][12]
24[24]0 [0 [24]24 2424/ 0] 02424 i s
24(24/24/24[24[24 24 24 24 24 24 24 (2]

a sample image u two sample cuts zoom
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FORGET ARITHMETICAL MEAN

...........

24[24[24[24[24]24 24 24 24 24 24 24 DD
2424/ 000 [24 24240 0 0]24 .I:m:m:l
24/0[6/8[0][24 24 0 6]8[0]24 DD
24/24|0 | 0 |24[24 2424/ 0| 0]24/24 ﬁ'ﬁ'ﬁ'mz
24]24(24/24(24 24 24 24 24 24 24 24 [o][1[12][][24]
a sample image u two sample cuts Zoom

we have

@ the cut [UR®*" <« 7] (light green) intersects the cut [UZ*" > 5] at’6’°
@ saturation is a no-op on the “6 8” component and on the “6 & 0s” component

@ the resulting shapes are neither disjoint nor included one in another!
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FORGET ARITHMETICAL MEAN

24

24

24

24

24

24

0

24

24

0

0

24

24

24

24

24

24

24

24

24

24 24 24 24 24 24
24240 0 0|24

24/ 0 6]8] 0|24
24 24) 0] 024/ 24

24 24 24 24 24 24

a sample image u

we have
@ the cut [UR®*" <« 7] (light green) intersects the cut [UZ*" > 5] at’6’°

two sample cuts

...........

{810)[440[o]

.:II:I:I-I:I:I

(4[]0

[0 [][12] [} [24]

Z0oom

@ saturation is a no-op on the “6 8” component and on the “6 & 0s” component

@ the resulting shapes are neither disjoint nor included one in another!

so we do not have a tree of shapes for
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MEDIAN

from u to U%edian:

5

BEE
E

0.2 [E] [
El 2] [E] [

N (Rl ] [E
1] | DN [E]

S|
|

= | [= =
HEIESEE

Bl

with sample cuts [UR4ia" 4 7] (light green) and [URe%an 1~ 5] (light blue):
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OUTLINE

@ ConcLusioN
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RECAP
e we have an algorithmic scheme
» generic

@ we have coined a new representation based on

» cubical complex / Khalimsky’s grid
> multi-valued maps

» subdivision with the median operator

@ we have defined cuts for multi-valued maps

@ we have proven some topological properties

» including well-composedness
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WHAT IS INTERESTING

o the algorithm in itself

» is incredibly simple
» has a good (quasi-linear) time complexity
» gives a tree even on a huge inclusion lattice

@ the proposed image representation

> fixes a lot of issues
> is theoretically sexy

» is very useful in practice
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WHAT WE DID NOT TALK ABOUT

@ defining p., for the saturation operator

@ defining what is Y

@ characterizing what we have in X x Y

@ relating Jordan’s theorem to the “lattice v. tree”

@ extending this work to partial orderings on Y

and also

@ making a hierarchical queue deal with intervals
@ reducing the space complexity of the algorithm

@ parallelizing the algorithm

THIERRY GERAUD, LRDE SELF-DUAL REPRESENTATION OF 2D IMAGES



RELATED WORKS

about filters:

@ Connected Operator
P. Salembier and M. Wilkinson, IEEE Signal Processing Magazine, 2009.

@ Grain Filters
V. Caselles and P. Monasse, JIMIV, 2002.

about algorithms:

@ Fast Computation of a Contrast Invariant Image Representation
P. Monasse and F. Guichard, IP, 2000.

@ A Topdown Algorithm for Computation of Level Line Trees
Y. Song, IP, 2007.
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PERSPECTIVES

working out the 3D case

dealing with nD

having a tree of “shapes” for color images

transfering results towards

> computer graphics
> Morse theory

@ exploring the many use cases of the ToS...
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SOME NICE IMAGES

(a) Input image.

(b) Shaping 1.

(a) Input image

(b) NFA

(d) Ballester, x=2¢ (e) Ballester, =k

(c) Chan-Vese

(f) Our method
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http://olena.lrde.epita.fr

thanks for your attention

any questions?
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