
Designing robust
distributed systems

with weakly interacting
feedback structures

EPITA

April 24, 2013

Peter Van Roy

ICTEAM Institute
Université catholique de Louvain

Louvain-la-Neuve, Belgium

P. Van Roy, UCL, Louvain-la-Neuve

1

Apr. 2013

Overview
l  As Internet services become larger, they become more complex and their

environment becomes more hostile
l  Partial failures, software errors, communication problems, churn, attacks
l  Problems due to global behavior (oscillations, traffic jams, multicast storms,

thundering herds, chaotic fluctuations, thrashing, cascading failures)
l  How can we design Internet services to provide predictable behavior in such

conditions?
l  Motivating examples from biology (and some well-designed computing systems)
l  Proposed architecture for scalable services as a set of weakly interacting feedback

structures with dependencies
l  Preliminary evaluation based on Scalaris key/value store (SELFMAN project)

l  Scalaris provides high-performance transactions on a structured overlay network
l  Scalaris contains five feedback structures and their dependencies: connectivity,

routing, load balancing, replication, and transactions
l  We are currently formalizing this approach and tying it to existing quantitative

approaches
P. Van Roy, UCL, Louvain-la-Neuve 2 Apr. 2013

Motivating examples from
biology and computing

P. Van Roy, UCL, Louvain-la-Neuve

3

Apr. 2013

Motivating examples
l  Many systems exist that survive in hostile environments

l  Biological organisms
l  Some computing systems
l  Human organizations

l  It is a good idea to study these systems to derive general
design principles

l  We give five examples to introduce the main ideas
l  Hotel lobby example → Debugging of feedback structures
l  Human respiratory system → Design rules, state diagram
l  TCP protocol operation → Systems with many parts
l  Human endocrine system → Concurrent component model
l  Human organizations → Design patterns for feedback structures

P. Van Roy, UCL, Louvain-la-Neuve 4 Apr. 2013

5

Simple example: hotel lobby
(from [Wiener 1948])

l  This is unstable!
l  The tribesman stokes

the fire but gets colder
and colder because the
airconditioning works
harder and harder

l  Wiener leaves the fix
as homework for the
reader (!)

l  One possible solution:
outer loop (tribesman)
controls the other by
simply adjusting the
thermostat
l  One loop controls the

other

l  Two loops interacting through a common subsystem (stigmergy)

Monitoring agents

Thermostat
(run aircond. if too warm)

(stoke fire if too cold)
Tribesman

Measure
temperature

near fire

Measure
temperature

in lobbyairconditioning
Run

fire
Stoke

Subsystem

Hotel lobby

Calculate corrective action

Fire

Hotel lobby

Tribesman

Thermostat

Actuating agents

P. Van Roy, UCL, Louvain-la-Neuve

5

Apr. 2013

Hotel lobby solution

l  Instead of stoking a fire, the tribesman simply adjusts the
thermostat. The resulting system is stable.

l  This uses management (one loop controls another) instead
of stigmergy (two loops interact through the environment)

l  Design pattern: use the system, don’t try to bypass it

(adjust thermostat)

Thermostat
(run aircond. if too warm)

airconditioning
Run

Hotel lobby

Tribesman

Measure
temperature

Measure
temperature

at thermostat at tribesman

P. Van Roy, UCL, Louvain-la-Neuve

6

Apr. 2013

Human respiratory system

l  Default behavior: rhythmic breathing reflex
l  Complex component: conscious control can override and plan lifesaving actions
l  Abstraction: conscious control does not need to know details of breathing reflex
l  Fail-safe: conscious control can itself be overridden (falling unconscious)
l  Time scales: laryngospasm is a quick action that interrupts slower breathing reflex

Other inputs

when sufficient obstruction in airways

Laryngospasm

(seal air tube)

Breathing

reflex

Measure
O2

in blood

Monitor

breathing

Measure
CO2

in blood

Detect
obstruction
in airways

Trigger unconsciousness

when O2 falls to threshold

Conscious control

of body and breathing

Trigger breathing reflex

when CO2 increases to threshold

Trigger laryngospasm temporarily

Actuating agents Monitoring agents

in human body

Breathing apparatus

(maximum is breath!hold breakpoint)
and change CO2 threshold

Increase or decrease breathing rate

(and reduce CO2 threshold to base level)
Render unconscious

P. Van Roy, UCL, Louvain-la-Neuve

Some design rules:

The operation of the
human respiratory
system is given as one
feedback structure,
inferred from a precise
medical description of
its behavior

7

Apr. 2013

Apr. 2013 P. Van Roy, UCL, Louvain-la-Neuve 8

Discussion of respiratory system
l  Four feedback loops: two inner loops (breathing reflex and

laryngospasm), a loop controlling the breathing reflex (conscious control),
and an outer loop controlling the conscious control (falling unconscious)
l  This design is derived from a precise textual medical description

[Wikipedia 2006: Entry “Drowning”]
l  Holding your breath can have two effects

l  Breath-hold threshold is reached first and breathing reflex happens
l  O2 threshold is reached first and you fall unconscious, which reestablishes the

normal breathing reflex
l  Some plausible design rules inferred from this system

l  Conscious control is sandwiched in between two simpler loops: the breathing
reflex provides abstraction (consciousness does not have to understand details
of breathing) and falling unconscious provides protection against instability

l  Conscious control is a powerful problem solver but it needs to be held in check

Respiratory system
state diagram

l  The behavior of the human respiratory system modeled as a state diagram
l  Dominant subset = active subset of feedback loops = state

l  At any time, one subset is active, depending on operating conditions
l  Each subset corresponds to a state in the state diagram

P. Van Roy, UCL, Louvain-la-Neuve 9 Apr. 2013

10

TCP as feedback structures
l  This example shows a

reliable byte stream
protocol with congestion
control (a variant of TCP)
l  This diagram is for the

sending side
l  The congestion control

loop manages the reliable
transfer loop
l  By changing the sliding

window’s buffer size
l  With n connections there

are n feedback structures
interacting through a
shared network
(stigmergy)
l  This is an example of a

system with many WIFS
l  Each FS has its own

state

P. Van Roy, UCL, Louvain-la-Neuve

Send

Inner loop (reliable transfer)

Outer loop (congestion control)

Calculate policy modification

Actuator
(send packet)

Monitor Monitor
throughput

Calculate bytes to send

(modify throughput)

(sliding window protocol)

destination and receives ack)
(network that sends packet to

Subsystem

(receive ack)

Send
stream acknowledgement

10

Apr. 2013

Apr. 2013 P. Van Roy, UCL, Louvain-la-Neuve 11

Human endocrine system
l  The endocrine system regulates many quantities in

the human body
l  It uses chemical messengers called hormones

which are secreted by specialized glands and
which exercise their action at a distance, using the
blood stream as a diffusion channel

l  By studying the endocrine system, we can obtain
insights in how to build large-scale self-regulating
distributed systems

Apr. 2013 P. Van Roy, UCL, Louvain-la-Neuve 12

Feedback loops in the
endocrine system
l  There are many feedback loops and systems of interacting feedback

loops in the endocrine system
l  Provides homeostasis (stability) and reaction to stresses

l  Much regulation is done by simple negative feedback loops
l  Glucose level in blood is regulated by hormones glucagon & insulin. In the

pancreas, A cells secrete glucagon and B cells secrete insulin. Increase in
glucose in blood causes decrease in glucagon and increase in insulin.
These hormones act on the liver, which releases glucose in the
bloodstream.

l  Calcium level in blood is regulated by parathyroid hormone (parathormone)
and calcitonine (also in opposite directions), which act on the bone

l  More complex regulatory mechanisms exist, e.g., hypothalamus-
pituitary-target organ axis

l  There is interaction between nervous transmission and hormonal
transmission

P. Van Roy, UCL, Louvain-la-Neuve

Hypothalamus-pituitary-target
organ axis (endocrine system)

l  Two superimposed groups of negative feedback loops, a third short negative loop, a
fourth loop from the central nervous system [Encyclopaedia Britannica 2005]

l  This diagram shows only the main components and their interactions; there are many
more parts giving a much more complex full system

13 Apr. 2013

Apr. 2013 P. Van Roy, UCL, Louvain-la-Neuve

14

Discussion of endocrine system
l  This system is quite complex

l  Many interacting feedback loops, many “short circuits”,
many special cases, much interaction with other systems
(nervous, immune)
l  Negative feedback for most, also saturation (logistic curve)
l  Evolution is not always a parsimonious designer!

§  Only criterion: it has to work

l  Several feedback loops are channeled through a single
point, the hypothalamus-pituitary complex in the brain
l  So that the central nervous system can manage these loops
l  Different time scales are used: the loops are slow; the

central nervous system is fast

Apr. 2013 P. Van Roy, UCL, Louvain-la-Neuve

15

Computational architecture of
human endocrine system
l  Local and global components

l  Local: gland, organ, or clumps of cells
l  Global (diffuse): large part of the body

l  Point-to-point and broadcast channels
l  Fast point-to-point: nerve fiber, e.g., from spinal chord to muscle
l  Slower broadcast: hormone diffused by blood circulation

l  With buffering (reducing variations): carrier proteins
l  Regulatory mechanisms can be modeled by interactions

between components and channels
l  There are often intermediate links
l  Abstraction (encapsulation) is almost always approximate

Design patterns
for feedback structures

l  We can arrange feedback structures in a tree according to their
relationships and the problems they solve

P. Van Roy, UCL, Louvain-la-Neuve

C
hapter

4.
F
eedback

system
s

-
patterns

64

I am most
concerned about ...

Balancing Loop
Reinforcing Loop

vicious and virtuous spiral

Limits to Growth
Success to the

Successful

Accidental
Adversaries

Fix that BackfireDrifting Goals Escalation Indecision
Balancing with

Delay

Tragedy of the
Commons

The Attractiveness
Principle

Growth &
Underinvestment

Shifting the Burden

Addiction
Growth &

Underinvestment
(drifting standards)

growth fixing problems

But my growth
seems to lead

 to your decline...

But nothing
grows forevever...

I have more than
one limit and can't
address all of them

equally...

... so, if we're all
up against the

same limit My capacity is my
limit. Therefore, my
capacity isn't large

enough...

... but there's a
temptation to let my

standards slip instead ...

I form a partnership
for growth, but end up

feeling betrayed ...

...by making my partner into
an adversary ...

While waiting for my
fix to take hold, to
relieve the tension,
I become satisfied

with less ...

But my
fix is your
nightmare But I don't know

what I'm going to do

But sometimes,
the reaction

is not immediate

But my fix comes back
to haunt me

... because I'm getting
at the real underlying

cause ...

The drifting goals
undermine my long-term

growth ...

but once I become
addicted to the

symptomatic solution ...

F
ig

u
r
e

4
.4

0
:

T
he

A
rchetyp

e
F
am

ily
T
ree

Archetype Family Tree
(from [Senge 1994])

16 Apr. 2013

Designing scalable
systems

P. Van Roy, UCL, Louvain-la-Neuve

17

Apr. 2013

Designing scalable systems
l  Essential ingredients

l  Design principles inferred from existing working
systems and validated subsequently

l  The CAP theorem is an essential tool
l  It holds at all scales and all levels of abstraction

l  First step
l  The default is a set of independent parts
l  We add coordination between these parts
l  It is important to add as little coordination as possible

l  Next step: weakly interacting feedback structures
Apr. 2013 P. Van Roy, UCL, Louvain-la-Neuve

18

The CAP theorem
l  The CAP theorem is an essential tool for any scalable system

design
l  The CAP theorem was conjectured by Eric Brewer at PODC in 2000 and

proved by Seth Gilbert and Nancy Lynch in 2002

l  For an asynchronous network, it is impossible to implement
an object that guarantees the following properties in all fair
executions:
l  Consistency: all operations are atomic (totally ordered)
l  Availability: every request eventually returns a result
l  Partition tolerance: any messages may be lost

l  The CAP Theorem applies for all systems, at all levels of
abstraction, and at all sizes
l  It can be applied in many places in the same system
l  The whole system is a rainbow of interacting instances of CAP

P. Van Roy, UCL, Louvain-la-Neuve

19

Apr. 2013

Designing with CAP
l  C is hard to achieve → (P+A, no C) is the default

l  Consistency requires global coordination

l  Avoid needing C if possible
l  We can achieve robustness (P) and performance (A)

l  DropBox and Web cache give P and A, but not C
l  Wuala and BitTorrent are read-only, achieve C easily
l  Mercurial is consistent if connected (C+A), but is still usable if disconnected (P+A)

l  But if we really need C
l  Give up A → Waiting sometimes needed
l  Give up P → Fragile system

l  Distributed database guarantees C but will block if there is a partition

l  Accept weaker C → Eventual consistency

l  We can have our cake and eat it too, if we pay the price
l  Highly reliable communication channels and fault tolerance
l  We get C and A, and we “seem” to get P as well (actually, we just have less partitions)

l  Scalaris, Beernet: peer-to-peer with majority consensus (Paxos) gives robustness
l  Cassandra: run on cloud, not peer-to-peer (does not support loose coupling)

P. Van Roy, UCL, Louvain-la-Neuve

20

Apr. 2013

The default is a set of
independent parts

l  Every scalable design starts as a decentralized system (P+A, no C)
l  A system of independent parts

l  Nodes occasionally interact (add some C) → collaboration, emergence
l  Split protocol: what happens when a node leaves a group (may be abrupt)
l  Merge protocol: what happens when a node joins a group

l  Merge is based on data coherence and may need input from highest level
l  Many examples: biology, peer-to-peer, map-reduce, gas/liquid/solid, …

P. Van Roy, UCL, Louvain-la-Neuve

split/merge

l group

21

Apr. 2013

Mostly independent parts
l  Large systems consist of independent parts with weak

interactions
l  Gas in a box: molecules mostly independent, occasional interaction

when two molecules collide.
l  Peer-to-peer network: peers mostly independent, occasional

interaction between neighbors only. Can provide efficient and robust
communication and storage infrastructure (see later).

l  Gossip algorithm: nodes mostly independent, occasional interaction
between random pairs. Can efficiently solve many global problems
such as diffusion, search, aggregation, monitoring, and topology
management.

l  This seems to be a general principle
l  Systems with many parts that interact strongly are avoided by nature

P. Van Roy, UCL, Louvain-la-Neuve

22

Apr. 2013

Apr. 2013 P. Van Roy, UCL, Louvain-la-Neuve 23

Types of systems
l  This diagram is from

[Weinberg 1977] An
Introduction to General
Systems Thinking

l  The discipline of computing is
pushing the boundaries of the
two shaded areas inwards

l  Software development and
computational science are the
vanguards of system theory

l  However, there seems to be
something inherently
unpleasant about the white
area in the middle
l  It is extremely difficult to

analyze systems with many
strongly interacting parts;
science has barely touched it

l  Even biological organisms
avoid it (they are mostly
decomposable)

computing

computing

Adding consistency/
coordination
l  We start with a decentralized system (P+A, no C)

l  How much C do we need and how do we add it?
l  General principle: as little as possible (weak interaction)

l  The rest of the talk explores how to add C
l  Main design principle:

weakly interacting feedback structures
l  We validate the approach on a real system

l  Scalaris, a transactional key/value store

P. Van Roy, UCL, Louvain-la-Neuve

24

Apr. 2013

A scalable architecture
in four steps
l  Concurrent component

l  An active entity communicating with its neighbors through
asynchronous messages

l  Intelligence is concentrated in complex components
l  Feedback loop

l  Monitor, corrector, and actuator components connected to
a subsystem and continuously maintaining one local goal

l  Feedback structure
l  A set of feedback loops that work together to maintain

one global system property
l  Weakly interacting feedback structures

l  The complete system is a conjunction of global
properties, each maintained by one feedback structure

l  The feedback structures have dependencies based on
the operating conditions

P. Van Roy, UCL, Louvain-la-Neuve 25 Apr. 2013

Scalaris with
feedback structures

P. Van Roy, UCL, Louvain-la-Neuve

26

Apr. 2013

A peer-to-peer key/
value Store: Scalaris

l  Scalaris is a high-performance self-managing key/value store that provides
transactions and is built on top of a structured overlay network
l  A major result of the European SELFMAN project (www.ist-selfman.org)
l  4000 read-modify-write transactions per second on two dual-core Intel Xeon at 2.66 GHz

l  Scalaris has five WIFS: connectivity management (Sconnect), routing (Sroute), load
balancing (Sload), replica management (Sreplica), and transaction management (Strans)

Sscalaris= Skey-value ∧ Sconnect ∧ Sroute ∧	

	
Sload ∧ Sreplica ∧ Strans
The Scalaris specification is a conjunction of
six properties. Each non-functional property
is implemented by one feedback structure.

Sconnect → Sroute → Sreplica → Strans

P. Van Roy, UCL, Louvain-la-Neuve

Sload

27 Apr. 2013

! " "! " !

#!$%&'!()!)!*%&#"#!+&*,

-

.$)&#)*!"%&!/),+$

"- 0"-"!

)!%1"*"!,2!*%&#"#!+&*,2

"#%-)!"%&2!(3$)0"-"!,

4++$"!%"4++$ /),+$5)!) 5)!)

6+7-"*)!"%&!/),+$

#*)-)0"-"!,

)8)"-)0"-"!,

4++$!% 4++$!/),+$

5)!)

9!%$+

:

5)!)

9!%$+

;

5)!)

9!%$+

<

5)!)

9!%$+

=

5)!)

9!%$+

>>>

5)!)

9!%$+

>>?

5)!)

9!%$+

>>@

5)!)

9!%$+

>>A

Scalaris scalability

Apr. 2013 P. Van Roy, UCL, Louvain-la-Neuve 28

Scalaris is based on a
structured overlay network

Ring

Fingers

l  Structured overlay networks
are often based on a ring
l  By far the most popular structure,

it has many variants and has
been extensively studied

l  Self organization is done at
two levels:
l  The ring ensures connectivity: it

must always exist despite node
joins, leaves, and failures

l  The fingers provide efficient
routing: they can be temporarily
in an inconsistent state

P. Van Roy, UCL, Louvain-la-Neuve 29 Apr. 2013

Structured overlay networks:
inspired by peer-to-peer

l  Hybrid (client/server)
l  Napster

l  Unstructured overlay
l  Gnutella, Kazaa,

Morpheus, Freenet, …
l  Uses flooding

l  Structured overlay
l  Exponential network
l  DHT (Distributed Hash

Table), e.g., Chord, DKS,
Scalaris, Beernet, etc.

R = N-1 (hub)

R = 1 (others)

H = 1

R = ? (variable)

H = 1…7

(but no guarantee)

R = log N

H = log N

(with guarantee)

P. Van Roy, UCL, Louvain-la-Neuve

30

Apr. 2013

31

A “relaxed” structured
overlay network

l  The relaxed ring is completely
asynchronous
l  Join and leave are completely

asynchronous (as opposed to
Scalaris, where they are
synchronous)

l  The bushes appear only if
there are failure suspicions

l  Beernet implements the
relaxed ring

l  There is a perfect ring (in red)
as a subset of the relaxed ring

l  The relaxed ring is always
converging to a perfect ring
l  The bushiness depends on

churn (rate of change of the
ring, leaves/joins) and failure
suspicion rate (communication
delays)

P. Van Roy, UCL, Louvain-la-Neuve

Perfect ring

Bushes

31

Apr. 2013

32

More on the relaxed ring
l  False failure suspicions are common on the Internet

l  We do not want to eject the node from the ring when this happens
l  The relaxed ring solves this by doing ring maintenance in asynchronous

fashion [Mejias 2008]
l  Nodes communicate through message passing
l  For a join, instead of one step involving 3 peers (as in Scalaris, Chord, or

DKS), we have two steps each with 2 peers → we do not need locking or a
periodic stabilization algorithm

l  Invariant: Every peer is in the same ring as its successor

P. Van Roy, UCL, Louvain-la-Neuve

32

Apr. 2013

Phases in the relaxed ring

l  The relaxed ring has (at least) three phases
l  Uses ring merge algorithm developed in SELFMAN [Shafaat 2009]
l  We are studying how the ring reacts to external stress (phase transitions)

l  Key questions:
l  How do the phases show up at the application layer? (“qualitative changes”)
l  How do we know when we are near a phase transition? (“early bubbling”)

P. Van Roy, UCL, Louvain-la-Neuve

33

Apr. 2013

Phases in large systems

l  A phase is a concise
characterization of an
aggregate behavior in a
system consisting of many
interacting components

l  Phases appear in many
large systems
l  Not just physical systems

(water) but also computing
systems (like peer-to-peer)

P. Van Roy, UCL, Louvain-la-Neuve

l  Different parts of the system can be in different phases
l  Depending on the local operating conditions (environment)
l  Boundaries between phases can be sharp or diffuse
l  Phase transitions and critical points can occur if operating conditions change

Water phase diagram
(Copyright © Martin Chaplin)

34

Apr. 2013

Complex components

(supplement)

Apr. 2013 P. Van Roy, UCL, Louvain-la-Neuve

35

Some complex components
l  Human intelligence

l  Main strength: adaptability (dynamic
creation of new feedback loops)

l  Program intelligence
l  Can easily go beyond human

intelligence in many areas!
l  Turing test is irrelevant: complex

components are already replacing
humans in more and more areas

l  Minesweeper digital assistant: uses
constraints (easy to program!)

l  Chess: uses alpha-beta search with
heuristics

l  Compiler: translates human-
readable program into executable
form

P. Van Roy, UCL, Louvain-la-Neuve

36

Apr. 2013

Properties of complex
components
l  Complex components are essential parts of many large systems

l  For example, conscious control in the human respiratory system
l  Complex components completely solve a problem inside a specific

(small) part of the space of system operating conditions (from the
viewpoint of the rest of the system)
l  Conscious control, a chess program, and a compiler are extremely smart

within their operating space
l  Outside of this space, they can be very stupid and should be inactive (on

their own accord or forced)
l  Complex components are completely unpredictable when viewed

from the outside
l  If it were not so, they would not be needed!
l  They can be highly nonlinear and unstable; the rest of the system has to

trust them (typically, up to some hardwired fail-safe)

P. Van Roy, UCL, Louvain-la-Neuve

37

Apr. 2013

Power is built in, not added on

l  The power of a system depends on the strength of its complex components
l  The human respiratory system uses conscious control (e.g., to avoid drowning!)
l  Erlang OTP uses supervisor trees and a database to implement robustness
l  Scalaris uses Paxos consensus and replication to implement fast transactions
l  Google Search uses eigenvector calculation of the Web link matrix
l  What does your system use?

P. Van Roy, UCL, Louvain-la-Neuve

3.6-Liter Biturbo Motor
with 353 kW (480 HP)

Porsche Carrera GT

38

Apr. 2013

Why is conscious control so
smart?
l  Cognitive science and neuroscience try to understand why

l  The brain uses brute force, but in a very smart way

l  Conscious control is a bricklayer: it continuously builds and
organizes new components on top of existing components
l  This process is continuous from birth with compound interest effect,

which is why humans are so smart in common-sense tasks

l  It continuously brings the most useful concepts to the top
(cache organization combined with “grandfather cell”)
l  Manipulating common concepts is made easy

l  “Mirror neurons”: it can use its own components to simulate other
humans, which is why humans can empathize so well with others

l  It can efficiently execute up to two complex programs at once
(“walking and chewing gum”), because of the two-lobed structure
of the brain

P. Van Roy, UCL, Louvain-la-Neuve

39

Apr. 2013

Clouds and
elastic applications

(supplement)

P. Van Roy, UCL, Louvain-la-Neuve

40

Apr. 2013

Elastic computing
l  Two main infrastructures for scalable computing

l  Peer-to-peer: use of client machines
l  Cloud-based: use of datacenters

l  Cloud is elastic; peer-to-peer is not
l  Elasticity: the ability to scale resource usage up and down

rapidly according to instantaneous demand
l  Elasticity is a new property that did not exist before clouds

l  Elasticity makes possible a new kind of application
l  Applications that use enormous computational and storage

resources for short times, but at constant (low) cost
l  Applications that use data-intensive algorithms and machine

learning

P. Van Roy, UCL, Louvain-la-Neuve

41

Apr. 2013

Clouds are the first key:
much more than meets the eye!
l  Cloud computing is a form of

client-server where the “server”
is a dynamically scalable
network of loosely coupled
heterogeneous nodes that are
owned by a single institution

l  It allows enterprises to offload
their computing infrastructure

l  It gives mobile devices an easy
way to manage data

l  Is that all that cloud computing offers?
l  No! This is just the tip of the iceberg!
l  Cloud computing is the beginning of a much more profound change

P. Van Roy, UCL, Louvain-la-Neuve

42

Apr. 2013

Clouds are elastic!

l  Elasticity is the ability to ramp up
resources quickly to meet demand
l  Like electric power distribution

l  With elastic clouds the enormous
dark blue area becomes available

l  Applications that need enormous
resources for short times can get
them for low cost!
l  Like electric power distribution, pay

only for the volume (cost is product
of time and number of machines)

l  This is exactly what intelligent
applications need!

t (time interval)	

r (resources)	

t0	

r0	

Local resources	

r · t ≤ c0	

Elastic	

43

resources	

43

P. Van Roy, UCL, Louvain-la-Neuve Apr. 2013

Machine learning is
the second key
l  Machine learning is the discipline that studies how to program

computers to evolve behaviors based on example data or past
experience

l  Machine learning can solve complex problems that we cannot
solve in any other way
l  It has many successes in practical applications both big and small, e.g.,

speech recognition, computer vision (face and handwriting, etc.), social
prediction (epidemics, economics, retail, etc.), robot control (drones, cars, etc.),
data mining, aiding natural sciences (biology, astronomy, neurology, etc.)

l  It is a major force on the Internet in big companies (Google, Amazon, Netflix,
Facebook, etc.) as well as in startups (e.g., RecordedFuture)

l  Machine learning will (eventually) transform programming!
l  Programmers will not work on raw data any more; instead they will build

machine learning systems
l  “Programming, like all engineering, is a lot of work; machine learning is more

like farming, where we let nature do most of the work” – Pedro Domingos

P. Van Roy, UCL, Louvain-la-Neuve

44

Apr. 2013

An elastic application (1):
real-time voice translation
l  The pieces of this application already exist; for example the IRCAM

research institute has implemented many of them
l  It requires combining domain knowledge (in sound and language)

with an enormous sound fragment database, hosted on a cloud

Normalization to
canonical voice

Decomposition
into phoneme

sequences
Lookup in

sound database

English/Chinese
sound fragment

database

Concatenative
synthesis

Denormalization
to original voice

English
voice

Chinese
voice

(purely hypothetical design!)

l  Franz Och, head of translation services at Google, announced that
they are working on something similar (Feb. 10, 2010)

l  Rick Rashid, head of research at Microsoft, has recently
demonstrated a prototype of this application (Nov. 2012)

 P. Van Roy, UCL, Louvain-la-Neuve 45 Apr. 2013

An elastic application (2):
ubiquitous augmentation
l  Your sensory input will be “augmented” in real-time

l  Faces, objects, and names you see will be recognized
l  Selected relevant information will be given spontaneously
l  Foreign languages (text, audio, visual) will be translated
l  When doing an activity, you will be guided to do it expertly
l  When confronted with a problem, solutions will be suggested

l  The augmentation will be good enough that it can be
always enabled (it doesn’t get in your way)
l  It will learn to mesh with your thinking processes productively
l  On the rare occasions that it is disabled, you will feel helpless

l  As if half of your brain just stopped working
l  Like today’s Internet addictions, but much worse!

P. Van Roy, UCL, Louvain-la-Neuve

46

Apr. 2013

Query/use phase
elastic resource requirements
l (response time constraints)

Learning/setup phase
elastic resource requirements
l (learning time constraints)

l S	

l S	

l M	

l M	

l L	

l L	

Google	 Search	
Google	 Translate	

l Recommenda3on	 sys.	
Speech	 recogni3on	
l Skype	 connec3on	
l Social	 networks	

l Media	 transla3on	

Weather	
forecas3ng	

l Interactivity (learning + query)

l One-‐shot	

l One-‐way	 stream	

Recorded	
Future	

MMORPG	
l Role-‐playing	 games	

l Chess	 programs	

Championship	
chess	 (Deep	 Fritz)	

IBM	
Jeopardy(Watson)	

Wolfram	 Alpha	
Image	 recogni3on	

Computer	 algebra	
Peer-‐to-‐peer	 CDN	
Google	 Earth	
l JIT	 Compiler	

l XL	

l XL	

l Conversa3on	

BitTorrent	
WIMP	 GUI	

l MicrosoP	 Office	

Tomorrow’s applications

Standard applications

Advanced
applications

Real-‐&me	 audio	
language	 transla&on	

Real-‐&me	
expert	 guidance	

	
Crea&ve	
problem	
solving	

(controlled	
search)	

	

Space of intelligent applications

l Intelligent	
augmented	

reality	

P. Van Roy, UCL, Louvain-la-Neuve 47

Optimization is a
form of learning!

Apr. 2013

Conclusions

Apr. 2013 P. Van Roy, UCL, Louvain-la-Neuve

48

Conclusions
l  Design of large distributed systems is difficult

l  Not just because of their own complexity, but because the environment becomes more
hostile

l  How can we design them?
l  Learn from existing systems that work
l  Inspiration from the SELFMAN project on self-managing systems
l  Inspiration from biological systems

l  Proposed architecture
l  Weakly interacting feedback structures with dominant subsets
l  Complex components to solve the problem in limited conditions
l  Phases define behavior over all possible operating conditions

l  Validation
l  First validation with the Scalaris and Beernet transactional key/value stores

l  Ongoing research
l  Formalization and semantics
l  Tie the approach to existing quantitative techniques (control theory, model checking, system

dynamics)
l  Collaboration with system and application builders

Apr. 2013 P. Van Roy, UCL, Louvain-la-Neuve

49

References

P. Van Roy, UCL, Louvain-la-Neuve

50

Apr. 2013

References (1)
l  Joe Armstrong. Making Reliable Distributed Systems in the Presence of Software Errors, Ph. D.

dissertation, Royal Institute of Technology (KTH), Kista, Sweden, Nov. 2003.
l  Ken Birman, Gregory Chockler, and Robbert van Renesse. “Toward a Cloud Computing Research

Agenda”, 3rd ACM SIGOPS International Workshop on Large Scale Distributed Systems and
Middleware, ACM SIGACT News, 40(2): 68-80 (June 2009).

l  Alexandre Bultot. A Survey of Systems with Multiple Interacting Feedback Loops and Their Application
to Programming, Master’s report, Dept. of Comp. Sci. and Eng., UCL, Aug. 2009.

l  Rick Cattell. “High Performance Scalable Data Stores”, Feb. 22, 2010.
l  Raphaël Collet. The Limits of Network Transparency in a Distributed Programming Language, Ph. D.

dissertation, Dept. of Comp. Sci. and Eng., UCL, Dec. 2007.
l  Michael Fischer, Nancy Lynch, and Michael Paterson. “Impossibility of Distributed Consensus with One

Faulty Process”, Journal of the ACM, 32(2): 374-382 (April 1985).
l  Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of Consistent, Available,

Partition-Tolerant Web Services”, ACM SIGACT News, 33(2): 51-59 (2002).
l  Rachid Guerraoui and Luís Rodrigues. Introduction to Reliable Distributed Programming, Springer-

Verlag, 2006.
l  Márk Jelasity and Özalp Babaoglu. “T-Man: Gossip-based Overlay Topology Management”, Proc. 3rd

Int. Workshop on Engineering Self-Organising Systems (ESOA 2005), Springer-Verlag LNCS volume
3910, 2006, pp. 1-15.

l  Boris Mejías. A Relaxed Ring for Self-Managing Decentralized Systems with Transactional Replicated
Storage, Ph. D. dissertation, Dept. of Comp. Sci. and Eng., UCL, Oct. 2010.

l  Gerhard Michal and Dietmar Schomburg. Biochemical Pathways: An Atlas of Biochemistry and
Molecular Biology, Wiley-Blackwell, 1999 (first edition), 2012 (second edition).

P. Van Roy, UCL, Louvain-la-Neuve

51

Apr. 2013

References (2)
l  Florian Schintke, Alexander Reinefeld, Seif Haridi, and Thorsten Schütt. “Enhanced Paxos Commit for

Transactions on DHTs”, 10th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid 2010), May 17-20, 2010, Melbourne, Australia.

l  SELFMAN: Self Management for Large-Scale Distributed Systems Based on Structured Overlay
Networks and Components. European 6th Framework Programme, www.ist-selfman.org (2009).

l  Peter M. Senge et al. The Fifth Discipline Fieldbook: Strategies and Tools for Building a Learning
Organization, Nicholas Brealey Publishing, 1994.

l  Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi. “Dealing with Network Partitions in Structured Overlay
Networks”, Journal of Peer-to-Peer Networking and Applications, 2(4): 334-347 (2009).

l  Steven Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and
Engineering (Studies in Nonlinearity), Perseus Books, 1994.

l  Nassim Taleb. The Black Swan: The Impact of the Highly Improbable, Penguin Books, 2008.
l  Peter Van Roy, Seif Haridi, and Alexander Reinefeld. “Software Design with Weakly Interacting

Feedback Structures and Its Application to Distributed Systems”, Research Report, Dept. of Comp. Sci.
and Eng., UCL, 2011.

l  Peter Van Roy. “Programming Paradigms for Dummies: What Every Programmer Should Know”,
chapter in New Computational Paradigms for Computer Music, G. Assayag and A. Gerzso (eds.),
IRCAM/Delatour France, June 2009.

l  Gerald M. Weinberg. An Introduction to General Systems Thinking, Dorset House Publishing, 1975
(Silver Anniversary Edition 2001).

l  Norbert Wiener. Cybernetics, or Control and Communication in the Animal and the Machine, MIT Press,
Cambridge, MA, 1948.

l  Ulf Wiger. “Four-fold Increase in Productivity and Quality – Industrial Strength Functional Programming
in Telecom-Class Products”, Ericsson Telecom AB, 2001.

 P. Van Roy, UCL, Louvain-la-Neuve

52

Apr. 2013

