
Address & Thread Sanitizer in GCC 4.8

Dodji Seketeli <dodji@redhat.com>

LRDE Epita - November 2013 - Paris, France

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 1/16

Outline

Address Sanitizer Status

Thread Sanitizer Status

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 2/16

Now let’s talk about ...

Address Sanitizer Status

Thread Sanitizer Status

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 3/16

A brief recap

I Address Sanitizer is a memory error detector.

I Instruments each memory access.
I Checks if it’s OK to access memory at that address.
I Emits an error when accessing a non-valid address.
I libsanitizer runtime library replaces malloc/free functions.
I Addresses of freed memory are marked as being non-valid aka

“poisoned”.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 4/16

A brief recap

I Address Sanitizer is a memory error detector.
I Instruments each memory access.

I Checks if it’s OK to access memory at that address.
I Emits an error when accessing a non-valid address.
I libsanitizer runtime library replaces malloc/free functions.
I Addresses of freed memory are marked as being non-valid aka

“poisoned”.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 4/16

A brief recap

I Address Sanitizer is a memory error detector.
I Instruments each memory access.
I Checks if it’s OK to access memory at that address.

I Emits an error when accessing a non-valid address.
I libsanitizer runtime library replaces malloc/free functions.
I Addresses of freed memory are marked as being non-valid aka

“poisoned”.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 4/16

A brief recap

I Address Sanitizer is a memory error detector.
I Instruments each memory access.
I Checks if it’s OK to access memory at that address.
I Emits an error when accessing a non-valid address.

I libsanitizer runtime library replaces malloc/free functions.
I Addresses of freed memory are marked as being non-valid aka

“poisoned”.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 4/16

A brief recap

I Address Sanitizer is a memory error detector.
I Instruments each memory access.
I Checks if it’s OK to access memory at that address.
I Emits an error when accessing a non-valid address.
I libsanitizer runtime library replaces malloc/free functions.

I Addresses of freed memory are marked as being non-valid aka
“poisoned”.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 4/16

A brief recap

I Address Sanitizer is a memory error detector.
I Instruments each memory access.
I Checks if it’s OK to access memory at that address.
I Emits an error when accessing a non-valid address.
I libsanitizer runtime library replaces malloc/free functions.
I Addresses of freed memory are marked as being non-valid aka

“poisoned”.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 4/16

Instrumentation principles

I Suppose we have this code:
*address = ...; // or: ... = *address;

I Asan instruments it as:
if (is_poisoned (address))

{

report_error (address, access_size, /*is_write=*/true);

}

*address = ...; // or: ... = *address;

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 5/16

Instrumentation principles

I Suppose we have this code:
*address = ...; // or: ... = *address;

I Asan instruments it as:
if (is_poisoned (address))

{

report_error (address, access_size, /*is_write=*/true);

}

*address = ...; // or: ... = *address;

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 5/16

Instrumentation principles: memory address validity
how-to

I Application address space is divided in two parts:

I One part really for the application. Let’s call it part A.
I One part to store metadata about validity of bytes in part A.

That’s the Shadow memory.

I Each 8 bytes of application memory has metadata encoded in
1 byte in shadow memory.

I Each byte of shadow memory can take 9 different values
(surprise, heh):

I 0: All bytes in the corresponding 8-bytes region are accessible.
I -1: All bytes in the corresponding 8-bytes region are

non-accessible (aka poisoned).
I k: The first k bytes of the 8-bytes region are poisoned.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 6/16

Instrumentation principles: memory address validity
how-to

I Application address space is divided in two parts:
I One part really for the application. Let’s call it part A.

I One part to store metadata about validity of bytes in part A.
That’s the Shadow memory.

I Each 8 bytes of application memory has metadata encoded in
1 byte in shadow memory.

I Each byte of shadow memory can take 9 different values
(surprise, heh):

I 0: All bytes in the corresponding 8-bytes region are accessible.
I -1: All bytes in the corresponding 8-bytes region are

non-accessible (aka poisoned).
I k: The first k bytes of the 8-bytes region are poisoned.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 6/16

Instrumentation principles: memory address validity
how-to

I Application address space is divided in two parts:
I One part really for the application. Let’s call it part A.
I One part to store metadata about validity of bytes in part A.

That’s the Shadow memory.

I Each 8 bytes of application memory has metadata encoded in
1 byte in shadow memory.

I Each byte of shadow memory can take 9 different values
(surprise, heh):

I 0: All bytes in the corresponding 8-bytes region are accessible.
I -1: All bytes in the corresponding 8-bytes region are

non-accessible (aka poisoned).
I k: The first k bytes of the 8-bytes region are poisoned.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 6/16

Instrumentation principles: memory address validity
how-to

I Application address space is divided in two parts:
I One part really for the application. Let’s call it part A.
I One part to store metadata about validity of bytes in part A.

That’s the Shadow memory.

I Each 8 bytes of application memory has metadata encoded in
1 byte in shadow memory.

I Each byte of shadow memory can take 9 different values
(surprise, heh):

I 0: All bytes in the corresponding 8-bytes region are accessible.
I -1: All bytes in the corresponding 8-bytes region are

non-accessible (aka poisoned).
I k: The first k bytes of the 8-bytes region are poisoned.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 6/16

Instrumentation principles: memory address validity
how-to

I Application address space is divided in two parts:
I One part really for the application. Let’s call it part A.
I One part to store metadata about validity of bytes in part A.

That’s the Shadow memory.

I Each 8 bytes of application memory has metadata encoded in
1 byte in shadow memory.

I Each byte of shadow memory can take 9 different values
(surprise, heh):

I 0: All bytes in the corresponding 8-bytes region are accessible.
I -1: All bytes in the corresponding 8-bytes region are

non-accessible (aka poisoned).
I k: The first k bytes of the 8-bytes region are poisoned.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 6/16

Instrumentation principles: memory address validity
how-to

I Application address space is divided in two parts:
I One part really for the application. Let’s call it part A.
I One part to store metadata about validity of bytes in part A.

That’s the Shadow memory.

I Each 8 bytes of application memory has metadata encoded in
1 byte in shadow memory.

I Each byte of shadow memory can take 9 different values
(surprise, heh):

I 0: All bytes in the corresponding 8-bytes region are accessible.

I -1: All bytes in the corresponding 8-bytes region are
non-accessible (aka poisoned).

I k: The first k bytes of the 8-bytes region are poisoned.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 6/16

Instrumentation principles: memory address validity
how-to

I Application address space is divided in two parts:
I One part really for the application. Let’s call it part A.
I One part to store metadata about validity of bytes in part A.

That’s the Shadow memory.

I Each 8 bytes of application memory has metadata encoded in
1 byte in shadow memory.

I Each byte of shadow memory can take 9 different values
(surprise, heh):

I 0: All bytes in the corresponding 8-bytes region are accessible.
I -1: All bytes in the corresponding 8-bytes region are

non-accessible (aka poisoned).

I k: The first k bytes of the 8-bytes region are poisoned.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 6/16

Instrumentation principles: memory address validity
how-to

I Application address space is divided in two parts:
I One part really for the application. Let’s call it part A.
I One part to store metadata about validity of bytes in part A.

That’s the Shadow memory.

I Each 8 bytes of application memory has metadata encoded in
1 byte in shadow memory.

I Each byte of shadow memory can take 9 different values
(surprise, heh):

I 0: All bytes in the corresponding 8-bytes region are accessible.
I -1: All bytes in the corresponding 8-bytes region are

non-accessible (aka poisoned).
I k: The first k bytes of the 8-bytes region are poisoned.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 6/16

Instrumentation principles: more of it

I So the “is poisoned” function now becomes:
bool

is_poisoned (char *address, size_t access_size, bool is_write_access)

{

/* Get the address of the shadow memory. */

char *shadow_address = mem_to_shadow (address);

/* And now check if the shadow value says we are accessing

a poisoned memory slot ... */

char shadow_value = *shadow_address;

if (shadow_value)

{

if (is_access_to_poisoned_memory (shadow_value, address, access_size))

report_error (address, access_size, is_write_access);

}

}

I And the “is access to poisoned” function is:

bool

is_access_to_poisoned_memory (char shadow_value char *address, char access_size)

{

last_accessed_byte = (address & 7) + access_size - 1;

return last_accessed_byte >= shadow_value;

}

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 7/16

Instrumentation principles: more of it

I So the “is poisoned” function now becomes:
bool

is_poisoned (char *address, size_t access_size, bool is_write_access)

{

/* Get the address of the shadow memory. */

char *shadow_address = mem_to_shadow (address);

/* And now check if the shadow value says we are accessing

a poisoned memory slot ... */

char shadow_value = *shadow_address;

if (shadow_value)

{

if (is_access_to_poisoned_memory (shadow_value, address, access_size))

report_error (address, access_size, is_write_access);

}

}

I And the “is access to poisoned” function is:

bool

is_access_to_poisoned_memory (char shadow_value char *address, char access_size)

{

last_accessed_byte = (address & 7) + access_size - 1;

return last_accessed_byte >= shadow_value;

}

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 7/16

Instrumenting global & stack variables

I To catch use out-of-bounds on global and stack variables.

I Global variables

I Insert a red zone (poisoned memory region) between two
global variables.

I A constructor function tells the asan runtime about each
global variable and about the red zones.

I Stack Variables

I Insert a red zone

I At the top of the stack
I Between each variable slot
I At the bottom of the stack that contains metadata for the

runtime: function name, number of variables, offset of the
variables slot and their length.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 8/16

Instrumenting global & stack variables

I To catch use out-of-bounds on global and stack variables.
I Global variables

I Insert a red zone (poisoned memory region) between two
global variables.

I A constructor function tells the asan runtime about each
global variable and about the red zones.

I Stack Variables

I Insert a red zone

I At the top of the stack
I Between each variable slot
I At the bottom of the stack that contains metadata for the

runtime: function name, number of variables, offset of the
variables slot and their length.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 8/16

Instrumenting global & stack variables

I To catch use out-of-bounds on global and stack variables.
I Global variables

I Insert a red zone (poisoned memory region) between two
global variables.

I A constructor function tells the asan runtime about each
global variable and about the red zones.

I Stack Variables

I Insert a red zone

I At the top of the stack
I Between each variable slot
I At the bottom of the stack that contains metadata for the

runtime: function name, number of variables, offset of the
variables slot and their length.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 8/16

Instrumenting global & stack variables

I To catch use out-of-bounds on global and stack variables.
I Global variables

I Insert a red zone (poisoned memory region) between two
global variables.

I A constructor function tells the asan runtime about each
global variable and about the red zones.

I Stack Variables

I Insert a red zone

I At the top of the stack
I Between each variable slot
I At the bottom of the stack that contains metadata for the

runtime: function name, number of variables, offset of the
variables slot and their length.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 8/16

Instrumenting global & stack variables

I To catch use out-of-bounds on global and stack variables.
I Global variables

I Insert a red zone (poisoned memory region) between two
global variables.

I A constructor function tells the asan runtime about each
global variable and about the red zones.

I Stack Variables

I Insert a red zone

I At the top of the stack
I Between each variable slot
I At the bottom of the stack that contains metadata for the

runtime: function name, number of variables, offset of the
variables slot and their length.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 8/16

Instrumenting global & stack variables

I To catch use out-of-bounds on global and stack variables.
I Global variables

I Insert a red zone (poisoned memory region) between two
global variables.

I A constructor function tells the asan runtime about each
global variable and about the red zones.

I Stack Variables
I Insert a red zone

I At the top of the stack
I Between each variable slot
I At the bottom of the stack that contains metadata for the

runtime: function name, number of variables, offset of the
variables slot and their length.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 8/16

Instrumenting global & stack variables

I To catch use out-of-bounds on global and stack variables.
I Global variables

I Insert a red zone (poisoned memory region) between two
global variables.

I A constructor function tells the asan runtime about each
global variable and about the red zones.

I Stack Variables
I Insert a red zone

I At the top of the stack

I Between each variable slot
I At the bottom of the stack that contains metadata for the

runtime: function name, number of variables, offset of the
variables slot and their length.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 8/16

Instrumenting global & stack variables

I To catch use out-of-bounds on global and stack variables.
I Global variables

I Insert a red zone (poisoned memory region) between two
global variables.

I A constructor function tells the asan runtime about each
global variable and about the red zones.

I Stack Variables
I Insert a red zone

I At the top of the stack
I Between each variable slot

I At the bottom of the stack that contains metadata for the
runtime: function name, number of variables, offset of the
variables slot and their length.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 8/16

Instrumenting global & stack variables

I To catch use out-of-bounds on global and stack variables.
I Global variables

I Insert a red zone (poisoned memory region) between two
global variables.

I A constructor function tells the asan runtime about each
global variable and about the red zones.

I Stack Variables
I Insert a red zone

I At the top of the stack
I Between each variable slot
I At the bottom of the stack that contains metadata for the

runtime: function name, number of variables, offset of the
variables slot and their length.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 8/16

Instrumentation Patterns at GIMPLE level

I load/store through pointers

I builtin memory access function calls

I Basically instrument access to the memory region of the
arguments

I For example:
int n = strlen (str);

/*

* For this, we instrument access to str[0] and str[n].

*/

I Avoid instrumenting “adjacent” memory accesses to the same
addresses in the same basic block.

variable = *the_pointer;

/* some stuff that don’t touch the_pointer */

variable = *the_pointer; /* We shouldn’t instrument this access to

the_pointer, right? */

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 9/16

Instrumentation Patterns at GIMPLE level

I load/store through pointers
I builtin memory access function calls

I Basically instrument access to the memory region of the
arguments

I For example:
int n = strlen (str);

/*

* For this, we instrument access to str[0] and str[n].

*/

I Avoid instrumenting “adjacent” memory accesses to the same
addresses in the same basic block.

variable = *the_pointer;

/* some stuff that don’t touch the_pointer */

variable = *the_pointer; /* We shouldn’t instrument this access to

the_pointer, right? */

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 9/16

Instrumentation Patterns at GIMPLE level

I load/store through pointers
I builtin memory access function calls

I Basically instrument access to the memory region of the
arguments

I For example:
int n = strlen (str);

/*

* For this, we instrument access to str[0] and str[n].

*/

I Avoid instrumenting “adjacent” memory accesses to the same
addresses in the same basic block.

variable = *the_pointer;

/* some stuff that don’t touch the_pointer */

variable = *the_pointer; /* We shouldn’t instrument this access to

the_pointer, right? */

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 9/16

Instrumentation Patterns at GIMPLE level

I load/store through pointers
I builtin memory access function calls

I Basically instrument access to the memory region of the
arguments

I For example:
int n = strlen (str);

/*

* For this, we instrument access to str[0] and str[n].

*/

I Avoid instrumenting “adjacent” memory accesses to the same
addresses in the same basic block.

variable = *the_pointer;

/* some stuff that don’t touch the_pointer */

variable = *the_pointer; /* We shouldn’t instrument this access to

the_pointer, right? */

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 9/16

Instrumentation Patterns at GIMPLE level

I load/store through pointers
I builtin memory access function calls

I Basically instrument access to the memory region of the
arguments

I For example:
int n = strlen (str);

/*

* For this, we instrument access to str[0] and str[n].

*/

I Avoid instrumenting “adjacent” memory accesses to the same
addresses in the same basic block.

variable = *the_pointer;

/* some stuff that don’t touch the_pointer */

variable = *the_pointer; /* We shouldn’t instrument this access to

the_pointer, right? */

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 9/16

TODO

I Improve performance

I Introduce a builtin like builtin asan mem test
I Teach relevant parts of the compiler to not optimize that

builtin out
I Teach the vectorizer about that builtin to make it work in

vectorisation contexts
I Introduce a new pass that would generalize the redundant

instrumentation removal.

I Keep up with the new features in asan@llvm

I Detect use of address of variables that escape a scope:
some_class *ptr = 0;

{

some_class belongs_to_a_scope;

ptr = &belongs_to_a_scope;

}

do_something_with (ptr); // <-- we catch this in asan@gcc

I More generally, keep track of what happens in asan
I Pro-actively propose killing features

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 10/16

TODO

I Improve performance
I Introduce a builtin like builtin asan mem test

I Teach relevant parts of the compiler to not optimize that
builtin out

I Teach the vectorizer about that builtin to make it work in
vectorisation contexts

I Introduce a new pass that would generalize the redundant
instrumentation removal.

I Keep up with the new features in asan@llvm

I Detect use of address of variables that escape a scope:
some_class *ptr = 0;

{

some_class belongs_to_a_scope;

ptr = &belongs_to_a_scope;

}

do_something_with (ptr); // <-- we catch this in asan@gcc

I More generally, keep track of what happens in asan
I Pro-actively propose killing features

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 10/16

TODO

I Improve performance
I Introduce a builtin like builtin asan mem test
I Teach relevant parts of the compiler to not optimize that

builtin out
I Teach the vectorizer about that builtin to make it work in

vectorisation contexts

I Introduce a new pass that would generalize the redundant
instrumentation removal.

I Keep up with the new features in asan@llvm

I Detect use of address of variables that escape a scope:
some_class *ptr = 0;

{

some_class belongs_to_a_scope;

ptr = &belongs_to_a_scope;

}

do_something_with (ptr); // <-- we catch this in asan@gcc

I More generally, keep track of what happens in asan
I Pro-actively propose killing features

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 10/16

TODO

I Improve performance
I Introduce a builtin like builtin asan mem test
I Teach relevant parts of the compiler to not optimize that

builtin out
I Teach the vectorizer about that builtin to make it work in

vectorisation contexts
I Introduce a new pass that would generalize the redundant

instrumentation removal.

I Keep up with the new features in asan@llvm

I Detect use of address of variables that escape a scope:
some_class *ptr = 0;

{

some_class belongs_to_a_scope;

ptr = &belongs_to_a_scope;

}

do_something_with (ptr); // <-- we catch this in asan@gcc

I More generally, keep track of what happens in asan
I Pro-actively propose killing features

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 10/16

TODO

I Improve performance
I Introduce a builtin like builtin asan mem test
I Teach relevant parts of the compiler to not optimize that

builtin out
I Teach the vectorizer about that builtin to make it work in

vectorisation contexts
I Introduce a new pass that would generalize the redundant

instrumentation removal.

I Keep up with the new features in asan@llvm

I Detect use of address of variables that escape a scope:
some_class *ptr = 0;

{

some_class belongs_to_a_scope;

ptr = &belongs_to_a_scope;

}

do_something_with (ptr); // <-- we catch this in asan@gcc

I More generally, keep track of what happens in asan
I Pro-actively propose killing features

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 10/16

TODO

I Improve performance
I Introduce a builtin like builtin asan mem test
I Teach relevant parts of the compiler to not optimize that

builtin out
I Teach the vectorizer about that builtin to make it work in

vectorisation contexts
I Introduce a new pass that would generalize the redundant

instrumentation removal.

I Keep up with the new features in asan@llvm
I Detect use of address of variables that escape a scope:

some_class *ptr = 0;

{

some_class belongs_to_a_scope;

ptr = &belongs_to_a_scope;

}

do_something_with (ptr); // <-- we catch this in asan@gcc

I More generally, keep track of what happens in asan
I Pro-actively propose killing features

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 10/16

TODO

I Improve performance
I Introduce a builtin like builtin asan mem test
I Teach relevant parts of the compiler to not optimize that

builtin out
I Teach the vectorizer about that builtin to make it work in

vectorisation contexts
I Introduce a new pass that would generalize the redundant

instrumentation removal.

I Keep up with the new features in asan@llvm
I Detect use of address of variables that escape a scope:

some_class *ptr = 0;

{

some_class belongs_to_a_scope;

ptr = &belongs_to_a_scope;

}

do_something_with (ptr); // <-- we catch this in asan@gcc

I More generally, keep track of what happens in asan

I Pro-actively propose killing features

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 10/16

TODO

I Improve performance
I Introduce a builtin like builtin asan mem test
I Teach relevant parts of the compiler to not optimize that

builtin out
I Teach the vectorizer about that builtin to make it work in

vectorisation contexts
I Introduce a new pass that would generalize the redundant

instrumentation removal.

I Keep up with the new features in asan@llvm
I Detect use of address of variables that escape a scope:

some_class *ptr = 0;

{

some_class belongs_to_a_scope;

ptr = &belongs_to_a_scope;

}

do_something_with (ptr); // <-- we catch this in asan@gcc

I More generally, keep track of what happens in asan
I Pro-actively propose killing features

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 10/16

Now let’s talk about ...

Address Sanitizer Status

Thread Sanitizer Status

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 11/16

A brief recap

I thread-sanitizer is a data race detector for C/C++ programs.

I But what’s a data race? (please don’t fall asleep)

I An “Event”: a memory access from a given thread.
I A “Happens-before” partial order relation, defined on a set of

events.

I A Happens-Before B means “A is always observed before B”.

I So we have a data race on a memory location L if:

I If there are two events A and B on L that are not ordered
I and there is no common lock held on their memory location
I and either A or B is a write event.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 12/16

A brief recap

I thread-sanitizer is a data race detector for C/C++ programs.
I But what’s a data race? (please don’t fall asleep)

I An “Event”: a memory access from a given thread.
I A “Happens-before” partial order relation, defined on a set of

events.

I A Happens-Before B means “A is always observed before B”.

I So we have a data race on a memory location L if:

I If there are two events A and B on L that are not ordered
I and there is no common lock held on their memory location
I and either A or B is a write event.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 12/16

A brief recap

I thread-sanitizer is a data race detector for C/C++ programs.
I But what’s a data race? (please don’t fall asleep)

I An “Event”: a memory access from a given thread.

I A “Happens-before” partial order relation, defined on a set of
events.

I A Happens-Before B means “A is always observed before B”.

I So we have a data race on a memory location L if:

I If there are two events A and B on L that are not ordered
I and there is no common lock held on their memory location
I and either A or B is a write event.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 12/16

A brief recap

I thread-sanitizer is a data race detector for C/C++ programs.
I But what’s a data race? (please don’t fall asleep)

I An “Event”: a memory access from a given thread.
I A “Happens-before” partial order relation, defined on a set of

events.

I A Happens-Before B means “A is always observed before B”.

I So we have a data race on a memory location L if:

I If there are two events A and B on L that are not ordered
I and there is no common lock held on their memory location
I and either A or B is a write event.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 12/16

A brief recap

I thread-sanitizer is a data race detector for C/C++ programs.
I But what’s a data race? (please don’t fall asleep)

I An “Event”: a memory access from a given thread.
I A “Happens-before” partial order relation, defined on a set of

events.
I A Happens-Before B means “A is always observed before B”.

I So we have a data race on a memory location L if:

I If there are two events A and B on L that are not ordered
I and there is no common lock held on their memory location
I and either A or B is a write event.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 12/16

A brief recap

I thread-sanitizer is a data race detector for C/C++ programs.
I But what’s a data race? (please don’t fall asleep)

I An “Event”: a memory access from a given thread.
I A “Happens-before” partial order relation, defined on a set of

events.
I A Happens-Before B means “A is always observed before B”.

I So we have a data race on a memory location L if:

I If there are two events A and B on L that are not ordered
I and there is no common lock held on their memory location
I and either A or B is a write event.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 12/16

A brief recap

I thread-sanitizer is a data race detector for C/C++ programs.
I But what’s a data race? (please don’t fall asleep)

I An “Event”: a memory access from a given thread.
I A “Happens-before” partial order relation, defined on a set of

events.
I A Happens-Before B means “A is always observed before B”.

I So we have a data race on a memory location L if:
I If there are two events A and B on L that are not ordered

I and there is no common lock held on their memory location
I and either A or B is a write event.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 12/16

A brief recap

I thread-sanitizer is a data race detector for C/C++ programs.
I But what’s a data race? (please don’t fall asleep)

I An “Event”: a memory access from a given thread.
I A “Happens-before” partial order relation, defined on a set of

events.
I A Happens-Before B means “A is always observed before B”.

I So we have a data race on a memory location L if:
I If there are two events A and B on L that are not ordered
I and there is no common lock held on their memory location

I and either A or B is a write event.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 12/16

A brief recap

I thread-sanitizer is a data race detector for C/C++ programs.
I But what’s a data race? (please don’t fall asleep)

I An “Event”: a memory access from a given thread.
I A “Happens-before” partial order relation, defined on a set of

events.
I A Happens-Before B means “A is always observed before B”.

I So we have a data race on a memory location L if:
I If there are two events A and B on L that are not ordered
I and there is no common lock held on their memory location
I and either A or B is a write event.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 12/16

Instrumentation principles

I Instruments each memory access by prepending it with a
libsanitizer (rutime) function like tsan read4(addr);

I Then the runtime does the magic of figuring out if two
accesses to the same address from different threads represents
a data race.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 13/16

Instrumentation principles

I Instruments each memory access by prepending it with a
libsanitizer (rutime) function like tsan read4(addr);

I Then the runtime does the magic of figuring out if two
accesses to the same address from different threads represents
a data race.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 13/16

Instrumentation patterns

I Instrument sync* and atomic* built-in functions.

I Instrument classic memory accesses.

I Don’t instrument local variables which address don’t escape.

I Don’t instrument reads on global constants including vtables.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 14/16

Instrumentation patterns

I Instrument sync* and atomic* built-in functions.

I Instrument classic memory accesses.

I Don’t instrument local variables which address don’t escape.

I Don’t instrument reads on global constants including vtables.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 14/16

Instrumentation patterns

I Instrument sync* and atomic* built-in functions.

I Instrument classic memory accesses.

I Don’t instrument local variables which address don’t escape.

I Don’t instrument reads on global constants including vtables.

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 14/16

TODO

I Don’t instrument redundant accesses

I A read that comes right before a write to the same location.

I Introduce a builtin for the accesses, like for asan and do the
same things.

I Monitor tsan@llvm

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 15/16

TODO

I Don’t instrument redundant accesses
I A read that comes right before a write to the same location.

I Introduce a builtin for the accesses, like for asan and do the
same things.

I Monitor tsan@llvm

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 15/16

TODO

I Don’t instrument redundant accesses
I A read that comes right before a write to the same location.

I Introduce a builtin for the accesses, like for asan and do the
same things.

I Monitor tsan@llvm

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 15/16

TODO

I Don’t instrument redundant accesses
I A read that comes right before a write to the same location.

I Introduce a builtin for the accesses, like for asan and do the
same things.

I Monitor tsan@llvm

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 15/16

So ...

I Questions ?

I Thank You!

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 16/16

So ...

I Questions ?

I Thank You!

Dodji Seketeli <dodji@redhat.com> Address & Thread Sanitizer in GCC 4.8 16/16

	Address Sanitizer Status
	Thread Sanitizer Status

