Multiplication matrice creuse–vecteur dense exacte et efficace dans FFLAS-FFPACK.

Brice Boyer
LIP6, UPMC, France

Joint work with Pascal Giorgi (LIRMM), Clément Pernet (LIG, ENSL), Bastien Vialla (LIRMM)
11 Mars 2015

Séminaire Performance et Généricité LRDE
Motivations/Goals

Facts

- FFLAS-FFPACK is a C++ exact linear algebra library based on numerical BLAS and fast (sub-cubic) algorithms.

- Its performance mainly depends on FFLAS::fgemm operation.
Motivations/Goals

Facts

- **FFLAS-FFPACK** is a C++ exact linear algebra library based on numerical BLAS and fast (sub-cubic) algorithms.
- Its performance mainly depends on **FFLAS::fgemm** operation.
- **LinBox** is a generic C++ exact linear algebra library with emphasis on dense (FFLAS-FFPACK) and *black-box* algorithms.
- Create a building block **FFLAS::fspmv** for *black-box* algorithms.
Motivations/Goals

Problems

⚠️ Our matrices can be several Gb large (http://hpac.imag.fr/gbla).
Motivations/Goals

Problems

⚠️ Our matrices can be several Gb large (http://hpac.imag.fr/gbla).
- spmv has a huge literature, many available numerical implementations
Motivations/Goals

Problems

⚠️ Our matrices can be several Gb large (http://hpac.imag.fr/gbla).
- **SPMV** has a huge literature, many available numerical implementations
- **SPMV** efficiency depends primarily on storage
Motivations/Goals

Problems

⚠️ Our matrices can be several Gb large (http://hpac.imag.fr/gbla).
- spmv has a huge literature, many available numerical implementations
- spmv efficiency depends primarily on storage
⚠️ sparse-BLAS standard is usually not implemented
Motivations/Goals

Problems

⚠️ Our matrices can be several Gb large (http://hpac.imag.fr/gbla).
- \texttt{spmv} has a huge literature, many available numerical implementations
- \texttt{spmv} efficiency depends primarily on storage
⚠️ sparse-BLAS standard is usually not implemented

⇒ implementation in libraries like Nvidia cuSPARSE (gpu) or Intel MLK (multicore cpu)
Motivations/Goals

Problems

⚠️ Our matrices can be several Gb large (http://hpac.imag.fr/gbla).
- \texttt{spmv} has a huge literature, many available numerical implementations
- \texttt{spmv} efficiency depends primarily on storage
⚠️ sparse-BLAS standard is usually not implemented
 ↷ implementation in libraries like Nvidia cuSPARSE (gpu) or Intel MLK (multicore cpu)
- MKL proposes a new sparse API with auto-tuning
Motivations/Goals

Problems

⚠️ Our matrices can be several Gb large (http://hpac.imag.fr/gbla).
- spmv has a huge literature, many available numerical implementations
- spmv efficiency depends primarily on storage
⚠️ sparse-BLAS standard is usually not implemented

→ implementation in libraries like Nvidia cuSPARSE (gpu) or Intel MLK (multicore cpu)
- MKL proposes a new sparse API with auto-tuning
→ provide an efficient implementation in FFLAS-FFPACK
Motivations/Goals

Our matrices can be several Gb large (http://hpac.imag.fr/gbla).

- spmv has a huge literature, many available numerical implementations
- spmv efficiency depends primarily on storage
- sparse-BLAS standard is usually not implemented; implementation in libraries like Nvidia cuSPARSE (gpu) or Intel MKL (multicore cpu)
- MKL proposes a new sparse API with auto-tuning
- provide an efficient implementation in Fflas-Ffpack

Problems

B. Boyer, J.-G. Dumas, and P. Giorgi.
Exact sparse matrix-vector multiplication on GPU’s and multicore architectures.
PASCO 2010.

Elements of design for containers and solutions in the LinBox library.
In ICMS 2014.

P. Giorgi and B. Vialla.
Generating optimized sparse matrix vector product over finite fields.
In ICMS 2014.
Motivations/Goals

Problems

⚠️ Our matrices can be several Gb large (http://hpac.imag.fr/gbla).
- \texttt{spmv} has a huge literature, many available numerical implementations
- \texttt{spmv} efficiency depends primarily on storage
⚠️ sparse-BLAS standard is usually not implemented

→ implementation in libraries like Nvidia cuSPARSE (gpu) or Intel MLK (multicore cpu)
- MKL proposes a new sparse API with auto-tuning
→ provide an \textit{efficient} implementation in \texttt{FFLAS-FFPACK}
Consider:

- F_p represented on a machine type (= `double, uint64_t`,...)
- `fdot(F,x,n,y)` computing the dot product:
  ```
  for ( ; i < n ; ++i) F.axpyin(res,x[i],y[i])
  ```
Basics: Delaying reduction

Consider:
- F_p represented on a machine type ($= \text{double, uint64_t,...}$)
- $\text{fdot}(F,x,n,y)$ computing the dot product:

  ```
  for ( ; i < n ; ++i) F.axpyin(res,x[i],y[i])
  ```

Instead of doing modular reduction at each F.axpyin call:
- one can delay the mod operation.
- delay mod as long as e.g. $\text{res} + (p - 1)^2 < 2^{53}$ on double.
- do the accumulation numerically using $\text{cblas} _ ? \text{dot}$
Basics: Delaying reduction

Consider:
- F_p represented on a machine type ($= \text{double, uint64}_t,...$)
- $\text{fdot}(F,x,n,y)$ computing the dot product:

  ```c
  for ( ; i < n ; ++i) F.axpvin(res,x[i],y[i])
  ```

Instead of doing modular reduction at each $F.axpvin$ call:
- one can delay the mod operation.
- delay mod as long as e.g. $\text{res} + (p - 1) \cdot 2^{53} < 2^{53}$ on double.
- do the accumulation numerically using $\text{cblas}_?\text{dot}$

Outline

1 SIMD tools
Outline

1. SIMD tools

2. Helpers and Strategies
 - Controller/Module Design
 - Helper structures
1. SIMD tools

2. Helpers and Strategies
 - Controller/Module Design
 - Helper structures

3. Fast exact SPmv
1 SIMD tools

2 Helpers and Strategies
 - Controller/Module Design
 - Helper structures

3 Fast exact spmv
Why SIMD?

- data parallelism available on many CPUs
- support from SSE4.1 up to AVX2, MIC to come, fall back provided
- little/no overhead
Why SIMD?

- data parallelism available on many CPUs
- support from SSE4.1 up to AVX2, MIC to come, fall back provided
- little/no overhead
- minimal knowledge writing, automatic implementation choosing
Why SIMD?

- data parallelism available on many CPUs
- support from SSE4.1 up to AVX2, MIC to come, fall back provided
- little/no overhead
- minimal knowledge writing, automatic implementation choosing
- no need to depend on an external library (boost, ...)
- ad-hoc optimised functions (modp, gcd) other than BLAS-provided
- specialised integer functions usually missing
/* C = A + B mod P (positive or balanced representation) */

using simd = Simd<Element>;
C = simd::add(A, B);
Q = simd::vand(simd::greater(C, MAX),NEGP);
if (!positive) {
 T = simd::vand(simd::lesser(C, MIN),P);
 Q = simd::vor(Q, T);
}
C = simd::add(C, Q);
3 layer implementation:
- template <class T> using Simd = typename SimdChooser<T>::value;
3 layer implementation:
- template <class T> using Simd = typename SimdChooser<T>::value;
- SimdChooser chooses among Simd128<T> and Simd256<T>
3 layer implementation:

- template <class T> using Simd = typename SimdChooser<T>::value;
- SimdChooser chooses among Simd128<T> and Simd256<T>
- template <class T> using Simd128 = Simd128_impl<std::is_arithmetic<T>::value,
 std::is_integral<T>::value,
 std::is_signed<T>::value,
 sizeof(T)
 >;
3 layer implementation:

- template <class T> using Simd = typename SimdChooser<T>::value;
- SimdChooser chooses among Simd128<T> and Simd256<T>
- template <class T> using Simd128 = Simd128_impl<std::is_arithmetic<T>::value,
 std::is_integral<T>::value,
 std::is_signed<T>::value,
 sizeof(T)
>;
- covers SIMD 128/256 and float/double or (u)intXX_t
- allocators provide automatically aligned data
- $\approx 8-10\times$ faster for AVX2 compared to \texttt{fmod} on \texttt{double}
- $\approx 4\times$ faster for AVX compared to \% on \texttt{int32_t}
- BLAS-like implementation of \texttt{igemm} on \texttt{int64_t} is only 50% slower than OpenBLAS \texttt{fgemm} on \texttt{double} but we can reach higher modulo.
Outline

1. SIMD tools

2. Helpers and Strategies
 - Controller/Module Design
 - Helper structures

3. Fast exact spmv
Generic design in FFLAS-FFPACK

- many algorithms for one problem (e.g. \texttt{fgemm})
- redundant code
- difficult to generalise for new fields and new algorithms: ad-hoc specialisations
Outline

1. SIMD tools

2. Helpers and Strategies
 - Controller/Module Design
 - Helper structures

3. Fast exact SPMD
Algorithm Design

Strategy Design Pattern

input

Interface

call

Algorithms

output
Algorithm Design

Strategy Design Pattern

input → Interface

E. Gamma.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series.
Addison-Wesley, 1995.
Controller/Module Design Pattern

input → Controllers → output

call back

Controllers

Modules

call
Controller/Module Design Pattern

Van-Dat Cung, Vincent Danjean, Jean-Guillaume Dumas, Thierry Gautier, Guillaume Huard, Bruno Raffin, Christophe Rapine, Jean-Louis Roch, and Denis Trystram.

Adaptive and hybrid algorithms: classification and illustration on triangular system solving.

Example: Cascading (dense)

Algorithm 1: **MatMul controller**

Input: A and B resp. \(n \times k \) and \(k \times n \).
Input: H General Helper
Output: \(C = A \times B \)

if

\[\min(m, k, n) < H.\text{threshold}() \]
then

| MatMul(C,A,B,Base()) ; |

else

| MatMul(C,A,B,Recursive()) |

end

Algorithm 2: **MatMul module**

Input: A, B, C as in controller.
Input: Recursive Helper
Output: \(C = A \times B \)
Cut A,B,C in \(S_i, T_i \)

... MatMul(P_i,S_i,T_i,H)

...
Outline

1. **SIMD tools**

2. **Helpers and Strategies**
 - Controller/Module Design
 - Helper structures

3. **Fast exact SPMV**
Helpers

Structures

- light-weight
- selects a (class of) algorithm
- stores information (largest entry, hints, other representation,...)
- partial specialisation
Code Example

```cpp
template<class Field,
    typename AlgoTrait = MMHelperAlgo::Auto,
    typename ModeTrait = typename ModeTraits<Field>::value,
    typename ParSeqTrait = ParSeqHelper::Sequential >
struct MMHelper {
    ...
};
```
void fgemm (const Givaro::DoubleDomain& F,
const FFLAS_TRANSPOSE ta,
const FFLAS_TRANSPOSE tb,
const size_t m, const size_t n, const size_t k,
const Givaro::DoubleDomain::Element alpha,
Givaro::DoubleDomain::ConstElement_ptr Ad,
const size_t lda,
...
MMHelper<Givaro::DoubleDomain, MMHelperAlgo::Classic>&H)
{
 H.setOutBounds(k, alpha, beta);

cblas_dgemm (CblasRowMajor, (CBLAS_TRANSPOSE) ta,
(CBLAS_TRANSPOSE) tb, (int)m, (int)n, (int)k,
(Givaro::DoubleDomain::Element) alpha,
...
 Cd, (int)ldc);
}
Helpers (Cont’ed)

Benefits

- fewer routine names, more entry points
- simplified/more generic structure of the algorithm
Helpers (Cont’ed)

former \texttt{fgemm} structure in FFLAS

\[\begin{array}{c}
\text{fgemm} \\
\text{kmax}=... \\
l = ...
\end{array} \]

\[\begin{array}{c}
\text{WinoMain} \\
l=0? \\
\text{O}
\end{array} \]

\[\begin{array}{c}
\text{WinoCalc} \\
22 \text{ Winograd’s ops} \\
\text{k}<\text{kmax}?
\end{array} \]

\[\begin{array}{c}
\text{ClassicMatmul} \\
\text{cblas_dgemm}
\end{array} \]

Algorithms

\[\begin{array}{c}
\text{fgemm} \\
\text{kmax}=... \\
l = ...
\end{array} \]

\[\begin{array}{c}
\text{WinoMain} \\
l=0? \\
\text{O}
\end{array} \]

\[\begin{array}{c}
\text{WinoCalc} \\
22 \text{ Winograd’s ops} \\
\text{k}<\text{kmax}?
\end{array} \]

\[\begin{array}{c}
\text{ClassicMatmul} \\
\text{cblas_dgemm}
\end{array} \]
Helpers (Cont’ed)

Benefits

– fewer routine names, more entry points
– simplified/more generic structure of the algorithm
Helpers (Cont’ed)

Benefits

– fewer routine names, more entry points
– simplified/more generic structure of the algorithm
– discovers the best strategy without (inaccurate) pre-computations
– improved delayed reductions (larger primes reachable, fewer modulo)
– faster overall algorithm in all cases
Helpers: `fgemm` timings

Perfs over double $n = 6000$

Diamond: Positive New $w=3$
Square: Positive Old $w=3$
Triangle: Balanced New $w=3$
Circle: Balanced Old $w=3$
Helpers: \texttt{fgemm} timings

Perfs over \texttt{float} \(n = 6000 \)

\begin{equation*}
\text{fgemm} < \text{float} > \: C = C - AB : 3 \text{ Winograd level}
\end{equation*}
Helpers: `fgemm` timings

Automatic `double` → `float` switching ($n = 10000$)

```
fgemm<double> C = C - AB : 3 Winograd level
Positive New w=3
Positive Old w=3
Balanced New w=3
Balanced Old w=3
```
Helpers: \texttt{fgemm} timings

Impact on asymptotic perfs $p = 8388617$

\texttt{fgemm<double> C = C − AB over \mathbb{Z}/8388617\mathbb{Z}}
Outline

1. SIMD tools

2. Helpers and Strategies
 - Controller/Module Design
 - Helper structures

3. Fast exact spmv
SPMV overview

Classical formats

- COO (coordinate, row/col/data triplets)
- CSR (compressed row, ≈ stores starting point of each new row in col or data)
- ELL (row major table of col indices and data value, row i in tables correspond to row i in matrix)
Matrices with constant entries (especially ±1) can be stored:
- without data field
- delay reduction much further (no multiplication, just additions)
- implemented for COO/CSR/ELL
SPMV overview

Hybrid formats

- Write $A = A_0 + A_1 + \cdots + A_k$ with A_j in some dedicated format, such as ELL+CSR, or ELL+COO or CSR_ZO+CSR...
- hybrid CSR stores, for each line, the columns in col that first correspond data -1 then $+1$ and then the rest.
SIMD friendly formats (AVX)

SELL:
- like ELL but rows are sorted by weight
- 4 consecutive rows in a table are stored column major
SPMV overview

SIMD friendly formats (AVX)

SELL:
- like ELL but rows are sorted by weight
- 4 consecutive rows in a table are stored column major
loading 4 rows at a time
SPMV overview

SIMD friendly formats (AVX)

SELL:
- like ELL but rows are sorted by weight
- 4 consecutive rows in a table are stored column major
- loads 4 rows at a time

SCSR (new?) :
- data are blocks of 4 consecutive non all zero elements
- consecutive columns are stored as j, k
 - ie. j is the first column of k consecutive 4-blocks
- single columns are masked by 2^{32}
SPMV overview

SIMD friendly formats (AVX)

SELL:
- like ELL but rows are sorted by weight
- 4 consecutive rows in a table are stored column major
- loads 4 rows at a time

SCSR (new?):
- data are blocks of 4 consecutive non all zero elements
- consecutive columns are stored as $j \ k$
 - * ie. j is the first column of k consecutive 4-blocks
- single columns are masked by 2^{32}
- col always smaller, data may be $4 \times$ larger

⚠ not efficient if matrix not 'locally' dense
SIMD parallelism happens on the dense matrix
SPMV/SPMM architecture

- Implementation for generic and delayed fields
- Matrices are supposed to be cut so that no reduction is needed
- Use of numerical sparse blas (intel) or self-made routines (other data type)
SPMV/SPMM performance (early results)

- for CSR our code is \(\approx 20\%\) slower than MKL (but we are working on it and we support more data types)
- \(\pm 1\) formats or SCSR are competitive for special matrices
- SELL is generally faster than CSR.
Merci pour votre attention !
Multiplication matrice creuse–vecteur dense exacte et efficace dans FFLAS-FFPACK.

Brice Boyer
LIP6, UPMC, France

Joint work with Pascal Giorgi (LIRMM), Clément Pernet (LIG, ENSL), Bastien Vialla (LIRMM)
11 Mars 2015

Séminaire Performance et Généricité LRDE