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Motivations

C++ is one of the most efficient language for web programming:
techempower.com/benchmarks
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Motivations

But, it is not really famous for its productivity and ease of use.
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Motivations

So, let’s leverage the new C++14 to ease the writting of web
services without impacting its speed of execution...
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C++11/14

The C++11/14 greatly improves C++, but C/C++ web
frameworks were created with C++98:

TreeFrog

cppnetlib

Wt

CppCMS

lwan

h2o

Facebook Proxygen

....
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C++11/14

Let’s take a look at some of the C++11/14 new features.
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C++11/14: auto

Automatic type inference

auto i = 42 ;

for ( auto it = v . begin ( ) ; it != v . end ( ) ; it++)
{ . . . }

template <typename A , typename B>
auto fun (A a , B b ) { return a + b ; }
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C++11/14: decltype

Automatic type computation

using a_type =
decltype (/a complex expression .

You do not want to manually compute its

type . / )
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C++11/14: lambda functions

Lambda functions

std : : vector<int> V = { 3 , 6 , 2 , 5 , 6 , 7 , 5} ;

std : : sort (V . begin ( ) , V . end ( ) ,
[ ] ( int a , int b ) { return a > b ; }) ;
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C++11/14: What’s new?

Generic lambda functions

auto print = [ ] ( auto e )
{

cout << e << endl ;
} ;

print (1 ) ; // i n t
print ( 2 . 3 f ) ; // f l o a t
print ("test" ) ; // cons t cha r ∗
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C++11/14: What’s new?

Variadic templates

void variadic_printf ( ) {}

template <typename A , typename . . . T>
void variadic_printf ( const A& a , T&&.. . tail )
{

std : : cout << a ;
variadic_printf ( std : : forward<T>(tail ) . . . ) ;

}
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C++11/14: What’s new?

The constexpr keyword

constexpr int

compile_time_add ( int a , int b )
{

return a + b ;
}
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C++11/14: What’s new?

They are great features. But how do they help Web Programming?
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Our problem

A kind of static introspection exists in C++.
But, it does not help to build:

Automatic serialization / deserialization

Object relational mapping

⇒ Let’s improve C++ introspection.
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Definition of a symbol

A symbol is a meta object member carrying its own static
introspection data.
Let dig into the symbol car:

struct _car_t

{
// symbol to s t r i n g .
const char∗ name ( ) { return "car" ; }

template <typename T>
struct variable_type // Meta v a r i a b l e
{

T car ; // ca r member .
using symbol_type = _car_t ;
auto symbol ( ) const { return _car_t ( ) ; }

} ;
}

_car_t _car ; // Symbol d e f i n i t i o n .
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Symbol definition

By convention symbols start with . They are included in the
namespace s to avoid name conflicts.

A macro function helps the definition of symbols:

iod_define_symbol ( car ) ; // d e f i n e s s : : c a r
iod_define_symbol ( name ) ; // d e f i n e s s : : name
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Using symbols

Using the symbol car:

auto x = _car_t : : variable_type<string>() ;
x . car = "BMW" ;
// x . v a l u e ( ) == ”BMW”
// x . symbol ( ) r e t u r n s c a r t ( ) ;
// x . symbol ( ) . name ( ) r e t u r n s ”ca r ”;
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Only one member?

Just one member per object is quite a limitation, so...
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Statically introspectable objects

Let’s stack them together into IOD’s statically introspectable
objects (SIO).

template <typename . . . Members>
struct sio : public Members . . .
{

sio ( Members . . . s ) : Members (s ) . . . {}
} ;

using person_type =
sio<_id_t : : variable_type<int>,

_name_t : : variable_type<string>>;

IOD relies on inheritance to stack the members id and name
together.
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Statically introspectable objects

The D helper is our friend.

auto john = D ( _id = 42 ,
_name = "John" ) ;

// john . i d == 42 ;
// john . name == ”John ”;
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Inside SIOs

Behind the scene, D puts the introspection data in the SIO type:

decltype ( john )

==

iod : : sio<s : : _id_t : : variable_type<int>,
s : : _name_t : : variable_type<string>>
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Foreach

Then, iod::foreach can easily iterate on statically introspectable
objects.
Let’s write a generic serializer:

foreach ( any_sio_object ) | [ ] ( auto& m )
{

std : : cout << m . symbol ( ) . name ( )
<< ": " << m . value ( ) << std : : endl ;

} ;

=> Unrolled at compile time, no runtime cost.
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Foreach

iod::foreach also handles multiple arguments, the creation of new
objects...

auto sum =
foreach (o1 , o2 ) | [ ] ( auto& m1 , auto& m2 )
{

return m1 . symbol ( ) = m1 . value ( ) + m2 . value ( ) ;
} ;

Note: o1 and o2 must have the same number of members.
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Foreach

... and tuples

auto sum =
foreach ( tuple1 , tuple2 ) | [ ] ( auto& e1 , auto& e2 )
{

return e1 + e2 ;
} ;

Note: tuple1 and tuple2 must have the same number of elements.
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Static instropection: What for?

On top of static introspection (and other utilities), the IOD library
implements:

JSON serialization / deserialization

Dependency injection
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The Silicon Web Framework: Goal

The Silicon Web Framework leverages static introspection to
ease the writting of web services, without impacting the
performances.
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The Silicon Web Framework: Hello world

Let’s build a simple hello world api.
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The Silicon Web Framework: Hello world

To serve this simple procedure via http:

[ ] { return "hello world" ; }
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The Silicon Web Framework: Hello world

Wrap it in an API and map the function to the route /hello:

make_api ( _hello = [ ] { return "hello world" ; }) ;

Note the use of IOD statically introspectable objects to model the
API.
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The Silicon Web Framework: Hello world

Let’s launch the microhttpd HTTP backend to serve our API.
Because the API is actually a SIO, the backend can bind the route
/hello to our lambda function.

mhd_json_serve ( make_api ( _hello = [ ] {
return "hello world" ;

}) , 9999) ;

That’s it.

curl "http ://127.0.0.1:9999/ hello"

hello world

Up to 285000 requests/seconds on a 4 cores Intel I5 3GHz: Exactly
what you get with a plain C microhttpd hello world server.
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The Silicon Web Framework: Procedure Arguments?

Procedures can take arguments:

auto api = make_api (
_hello ( _name = string ( ) ) = [ ] ( auto params ) {

return "hello " + params . name ; }
) ;

The backend is responsible for deserialization and validation of the
procedure arguments.
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The Silicon Web Framework: Returning objects

Procedures can also return statically introspectable objects:

auto api = make_api (
_hello ( _name = string ( ) ) = [ ] ( auto params ) {

return D ( _message = "Hello" + params . name ) ; }
) ;

The backend is responsible for serialization of the procedure return
values.
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Middlewares And Dependency injection

We need to provide access to middlewares:

Databases

Sessions

Logging

...
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Middlewares And Dependency injection

However, not all procedures need an access to all middlewares.
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Middlewares And Dependency injection

We want to require access to the middlewares just by declaring
them as argument:

auto api = make_api (
_a_procedure = [ ] ( sqlite_connection& c ,

logger& l ) {
// . . .

}
) ;

The framework introspects the function signature to inject the
matching middlewares as arguments.

High performance web programming with C++14 40 / 61 Matthieu Garrigues



Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Middlewares And Dependency injection

Most middlewares cannot be created from nothing. Some need
factories.
The bind_factories method attaches factories to a given API:

auto api = make_api (
_procedure1 = [ ] ( sqlite_connection& c ) {} ,
_procedure2 = [ ] ( my_logger& l ) {} ,
_procedure3 = [ ] ( my_logger& l , sqlite_connection& c )

{}
) . bind_factories (

sqlite_connection_factory ("blog.sqlite" ) ,
my_logger_factory ("/tmp/server.log" )

) ;

IOD’s dependency injection takes care of binding the right factory
to the right procedure arguments.
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Anatomy of middleware

A middleware factory is a plain C++ class with one instantiate

method: the dependency injection entry point.
Let’s have a look at session_factory::instantiate:

session instantiate ( cookie& ck , db_connection& con )
{

return session (ck , con , this−>sql_session_table ) ;
}

session is the middleware type.

Its instantiation depends on two middlewares: cookie and
db_connection.
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Inter Middleware Dependencies

cookie and db_connection also have factories, and their instantiation
may depend on other middlewares.

⇒ This leads to a dependency tree, resolved by IOD’s dependency
injection at compile time.
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Inter Middleware Dependencies

In other words, if a procedure requires a session object:

auto api = make_api ( _procedure1 = [ ] ( session& s ) {}) ;
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Inter Middleware Dependencies

The framework generates a code similar to this:

cookie ck = cookie_factory . instantiate ( ) ;
db_connection con= db_connection_factory . instantiate ( ) ;
session s = session_factory . instantiate (ck , con ) ;

api . procedure1 (s ) ;
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SQL Middlewares

Silicon SQL middlewares provide a basic interface with SQL
databases.
Sqlite and MySQL are already available.

[ ] ( sqlite_connection& c ) {
int i ;
c ("Select 1 + 2" ) >> i ;

}
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SQL Middlewares: Iterations on Result Sets

Straightforward iteration on a result set:

c ("SELECT name , age from users" ) ( ) |
[ ] ( std : : string& name , int& age )
{

std : : cout << name << " " << age << std : : endl ;
} ;

Again, introspection on the lambda function arguments helps to
write zero cost abstractions.
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SQL Middlewares: Prepared statements

For better performance, prepared statements are created, cached,
and reused whenever a request is triggered more than once.

// F i r s t c a l l , p r e pa r e the SQL sta tement .
c ("INSERT into users(name , age) VALUES (?, ?)" )
("John" , 12) ;

// Second c a l l , r e u s e the cached s ta tement .
c ("INSERT into users(name , age) VALUES (?, ?)" )
("Bob" , 14) ;
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SQL ORM Middlewares

It is pretty easy to generate SQL requests from statically
introspectable objects.
Let’s declare our statically introspectable User data type:

typedef

decltype (D ( _id = int ( ) ,
_login = string ( ) ,
_password = string ( ) ) )

User ;
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SQL ORMs

And give the ORM hints for the SQL generation:

typedef

decltype (D ( _id ( _auto_increment ,
_primary_key ) = int ( ) ,

_login = string ( ) ,
_password = string ( ) ) )

User ;
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SQL ORM Middlewares: Example

// The midd leware type .
typedef sqlite_orm<User> user_orm ;
typedef sqlite_orm_factory<User> user_orm_factory ;

// An API making use o f the ORM.
auto api = make_api (

_test_orm ( _id = int ( ) ) = [ ] ( auto p , user_orm& users )
{

User u = users . find_by_id (p . id ) ;
u . login = "Rob" ;
users . update (u ) ;

}
// The f a c t o r i e s .
) . bind_factories ( sqlite_connection_factory ("db.sql" ) ,

user_orm_factory ("user_table" ) ) ;
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SQL CReate Update Delete

sql_crud generates Create Update and Delete routes for a given
ORM type:

auto api = make_api ( _user = sql_crud<user_orm>() ) ;
mhd_json_serve ( api , 9999) ;

Creates the following routes:

/user/create
/user/update
/user/destroy

And saves you tens of lines of code.
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SQL CReate Update Delete

The parameters of sql_crud allow to handle:

validation of objects

user authentication

pre/post processing.
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SQL CReate Update Delete

This parameterization relies on lambda functions and dependency
injection (DI). Let’s write an example with the _write_access

option:

sql_crud<user_orm>(
_write_access = [ ] ( user& u , session& s ) {

return u . id == s . user_id ;
}

)

Thanks to dependency propagation, the middlewares (session in
this example) and the current user object are accessible from the
callback.
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Silicon Backends

We have APIs and middlewares, let’s plug everything into the
network.
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Silicon Backends

Silicon backends leverage the introspection on Silicon APIs to serve
them via:

Differents protocols: HTTP/1, HTTP/2, Websockets...

Differents message formats: JSON, XML, ...

Differents protocol implementations: microhttpd, h2o, ...

As of today, April 2015, Silicon includes microhttpd/json and
websocketpp/json.
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Limitations of the framework

Slow compilation

2s for the hello world one liner

35s for a complex 110 lines API

GCC error messages

Static introspection can generate very, very long types

GCC error messages get hard to digest

Much better with Clang shortening long types
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Future works

Lower compilation time

More database middlewares (PostgreSQL, Redis, ...)

More backends (HTTP/2, ...)

Suggestions?

⇒ Contributions are welcome
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Conclusion

The new C++ features enabled us to build zero cost abstractions
for building web services:

Simple to write

Without impacting running time

Where most bugs are reported by the compiler at compile time

With a tiny framework of less than 10000 C++ lines.

Open source (MIT): github.com/matt-42/silicon
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Question?

_ask ( _question ) = [ ] ( auto p , my_smart_middleware& m )
{

return m . answer (p . question ) ;
}

Or visit http://siliconframework.org
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