
Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

High performance web programming with C++14

Matthieu Garrigues, ENSTA-ParisTech

May 13, 2015

High performance web programming with C++14 1 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Outline

1 Motivations

2 C++11/14

3 Static introspection in the IOD library

4 The Silicon Web Framework

5 Conclusion

High performance web programming with C++14 2 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Outline

1 Motivations

2 C++11/14

3 Static introspection in the IOD library

4 The Silicon Web Framework

5 Conclusion

High performance web programming with C++14 3 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Motivations

C++ is one of the most efficient language for web programming:
techempower.com/benchmarks

High performance web programming with C++14 4 / 61 Matthieu Garrigues

techempower.com/benchmarks

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Motivations

But, it is not really famous for its productivity and ease of use.

High performance web programming with C++14 5 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Motivations

So, let’s leverage the new C++14 to ease the writting of web
services without impacting its speed of execution...

High performance web programming with C++14 6 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Outline

1 Motivations

2 C++11/14

3 Static introspection in the IOD library

4 The Silicon Web Framework

5 Conclusion

High performance web programming with C++14 7 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

C++11/14

The C++11/14 greatly improves C++, but C/C++ web
frameworks were created with C++98:

TreeFrog

cppnetlib

Wt

CppCMS

lwan

h2o

Facebook Proxygen

....

High performance web programming with C++14 8 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

C++11/14

Let’s take a look at some of the C++11/14 new features.

High performance web programming with C++14 9 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

C++11/14: auto

Automatic type inference

auto i = 42 ;

for (auto it = v . begin () ; it != v . end () ; it++)
{ . . . }

template <typename A , typename B>
auto fun (A a , B b) { return a + b ; }

High performance web programming with C++14 10 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

C++11/14: decltype

Automatic type computation

using a_type =
decltype (/a complex expression .

You do not want to manually compute its

type . /)

High performance web programming with C++14 11 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

C++11/14: lambda functions

Lambda functions

std : : vector<int> V = { 3 , 6 , 2 , 5 , 6 , 7 , 5} ;

std : : sort (V . begin () , V . end () ,
[] (int a , int b) { return a > b ; }) ;

High performance web programming with C++14 12 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

C++11/14: What’s new?

Generic lambda functions

auto print = [] (auto e)
{

cout << e << endl ;
} ;

print (1) ; // i n t
print (2 . 3 f) ; // f l o a t
print ("test") ; // cons t cha r ∗

High performance web programming with C++14 13 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

C++11/14: What’s new?

Variadic templates

void variadic_printf () {}

template <typename A , typename . . . T>
void variadic_printf (const A& a , T&&.. . tail)
{

std : : cout << a ;
variadic_printf (std : : forward<T>(tail) . . .) ;

}

High performance web programming with C++14 14 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

C++11/14: What’s new?

The constexpr keyword

constexpr int

compile_time_add (int a , int b)
{

return a + b ;
}

High performance web programming with C++14 15 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

C++11/14: What’s new?

They are great features. But how do they help Web Programming?

High performance web programming with C++14 16 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Outline

1 Motivations

2 C++11/14

3 Static introspection in the IOD library

4 The Silicon Web Framework

5 Conclusion

High performance web programming with C++14 17 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Our problem

A kind of static introspection exists in C++.
But, it does not help to build:

Automatic serialization / deserialization

Object relational mapping

⇒ Let’s improve C++ introspection.

High performance web programming with C++14 18 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Definition of a symbol

A symbol is a meta object member carrying its own static
introspection data.
Let dig into the symbol car:

struct _car_t

{
// symbol to s t r i n g .
const char∗ name () { return "car" ; }

template <typename T>
struct variable_type // Meta v a r i a b l e
{

T car ; // ca r member .
using symbol_type = _car_t ;
auto symbol () const { return _car_t () ; }

} ;
}

_car_t _car ; // Symbol d e f i n i t i o n .

High performance web programming with C++14 19 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Symbol definition

By convention symbols start with . They are included in the
namespace s to avoid name conflicts.

A macro function helps the definition of symbols:

iod_define_symbol (car) ; // d e f i n e s s : : c a r
iod_define_symbol (name) ; // d e f i n e s s : : name

High performance web programming with C++14 20 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Using symbols

Using the symbol car:

auto x = _car_t : : variable_type<string>() ;
x . car = "BMW" ;
// x . v a l u e () == ”BMW”
// x . symbol () r e t u r n s c a r t () ;
// x . symbol () . name () r e t u r n s ”ca r ”;

High performance web programming with C++14 21 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Only one member?

Just one member per object is quite a limitation, so...

High performance web programming with C++14 22 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Statically introspectable objects

Let’s stack them together into IOD’s statically introspectable
objects (SIO).

template <typename . . . Members>
struct sio : public Members . . .
{

sio (Members . . . s) : Members (s) . . . {}
} ;

using person_type =
sio<_id_t : : variable_type<int>,

_name_t : : variable_type<string>>;

IOD relies on inheritance to stack the members id and name
together.

High performance web programming with C++14 23 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Statically introspectable objects

The D helper is our friend.

auto john = D (_id = 42 ,
_name = "John") ;

// john . i d == 42 ;
// john . name == ”John ”;

High performance web programming with C++14 24 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Inside SIOs

Behind the scene, D puts the introspection data in the SIO type:

decltype (john)

==

iod : : sio<s : : _id_t : : variable_type<int>,
s : : _name_t : : variable_type<string>>

High performance web programming with C++14 25 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Foreach

Then, iod::foreach can easily iterate on statically introspectable
objects.
Let’s write a generic serializer:

foreach (any_sio_object) | [] (auto& m)
{

std : : cout << m . symbol () . name ()
<< ": " << m . value () << std : : endl ;

} ;

=> Unrolled at compile time, no runtime cost.

High performance web programming with C++14 26 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Foreach

iod::foreach also handles multiple arguments, the creation of new
objects...

auto sum =
foreach (o1 , o2) | [] (auto& m1 , auto& m2)
{

return m1 . symbol () = m1 . value () + m2 . value () ;
} ;

Note: o1 and o2 must have the same number of members.

High performance web programming with C++14 27 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Foreach

... and tuples

auto sum =
foreach (tuple1 , tuple2) | [] (auto& e1 , auto& e2)
{

return e1 + e2 ;
} ;

Note: tuple1 and tuple2 must have the same number of elements.

High performance web programming with C++14 28 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Static instropection: What for?

On top of static introspection (and other utilities), the IOD library
implements:

JSON serialization / deserialization

Dependency injection

High performance web programming with C++14 29 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Outline

1 Motivations

2 C++11/14

3 Static introspection in the IOD library

4 The Silicon Web Framework

5 Conclusion

High performance web programming with C++14 30 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

The Silicon Web Framework: Goal

The Silicon Web Framework leverages static introspection to
ease the writting of web services, without impacting the
performances.

High performance web programming with C++14 31 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

The Silicon Web Framework: Hello world

Let’s build a simple hello world api.

High performance web programming with C++14 32 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

The Silicon Web Framework: Hello world

To serve this simple procedure via http:

[] { return "hello world" ; }

High performance web programming with C++14 33 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

The Silicon Web Framework: Hello world

Wrap it in an API and map the function to the route /hello:

make_api (_hello = [] { return "hello world" ; }) ;

Note the use of IOD statically introspectable objects to model the
API.

High performance web programming with C++14 34 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

The Silicon Web Framework: Hello world

Let’s launch the microhttpd HTTP backend to serve our API.
Because the API is actually a SIO, the backend can bind the route
/hello to our lambda function.

mhd_json_serve (make_api (_hello = [] {
return "hello world" ;

}) , 9999) ;

That’s it.

curl "http ://127.0.0.1:9999/ hello"

hello world

Up to 285000 requests/seconds on a 4 cores Intel I5 3GHz: Exactly
what you get with a plain C microhttpd hello world server.

High performance web programming with C++14 35 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

The Silicon Web Framework: Procedure Arguments?

Procedures can take arguments:

auto api = make_api (
_hello (_name = string ()) = [] (auto params) {

return "hello " + params . name ; }
) ;

The backend is responsible for deserialization and validation of the
procedure arguments.

High performance web programming with C++14 36 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

The Silicon Web Framework: Returning objects

Procedures can also return statically introspectable objects:

auto api = make_api (
_hello (_name = string ()) = [] (auto params) {

return D (_message = "Hello" + params . name) ; }
) ;

The backend is responsible for serialization of the procedure return
values.

High performance web programming with C++14 37 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Middlewares And Dependency injection

We need to provide access to middlewares:

Databases

Sessions

Logging

...

High performance web programming with C++14 38 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Middlewares And Dependency injection

However, not all procedures need an access to all middlewares.

High performance web programming with C++14 39 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Middlewares And Dependency injection

We want to require access to the middlewares just by declaring
them as argument:

auto api = make_api (
_a_procedure = [] (sqlite_connection& c ,

logger& l) {
// . . .

}
) ;

The framework introspects the function signature to inject the
matching middlewares as arguments.

High performance web programming with C++14 40 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Middlewares And Dependency injection

Most middlewares cannot be created from nothing. Some need
factories.
The bind_factories method attaches factories to a given API:

auto api = make_api (
_procedure1 = [] (sqlite_connection& c) {} ,
_procedure2 = [] (my_logger& l) {} ,
_procedure3 = [] (my_logger& l , sqlite_connection& c)

{}
) . bind_factories (

sqlite_connection_factory ("blog.sqlite") ,
my_logger_factory ("/tmp/server.log")

) ;

IOD’s dependency injection takes care of binding the right factory
to the right procedure arguments.

High performance web programming with C++14 41 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Anatomy of middleware

A middleware factory is a plain C++ class with one instantiate

method: the dependency injection entry point.
Let’s have a look at session_factory::instantiate:

session instantiate (cookie& ck , db_connection& con)
{

return session (ck , con , this−>sql_session_table) ;
}

session is the middleware type.

Its instantiation depends on two middlewares: cookie and
db_connection.

High performance web programming with C++14 42 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Inter Middleware Dependencies

cookie and db_connection also have factories, and their instantiation
may depend on other middlewares.

⇒ This leads to a dependency tree, resolved by IOD’s dependency
injection at compile time.

High performance web programming with C++14 43 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Inter Middleware Dependencies

In other words, if a procedure requires a session object:

auto api = make_api (_procedure1 = [] (session& s) {}) ;

High performance web programming with C++14 44 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Inter Middleware Dependencies

The framework generates a code similar to this:

cookie ck = cookie_factory . instantiate () ;
db_connection con= db_connection_factory . instantiate () ;
session s = session_factory . instantiate (ck , con) ;

api . procedure1 (s) ;

High performance web programming with C++14 45 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

SQL Middlewares

Silicon SQL middlewares provide a basic interface with SQL
databases.
Sqlite and MySQL are already available.

[] (sqlite_connection& c) {
int i ;
c ("Select 1 + 2") >> i ;

}

High performance web programming with C++14 46 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

SQL Middlewares: Iterations on Result Sets

Straightforward iteration on a result set:

c ("SELECT name , age from users") () |
[] (std : : string& name , int& age)
{

std : : cout << name << " " << age << std : : endl ;
} ;

Again, introspection on the lambda function arguments helps to
write zero cost abstractions.

High performance web programming with C++14 47 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

SQL Middlewares: Prepared statements

For better performance, prepared statements are created, cached,
and reused whenever a request is triggered more than once.

// F i r s t c a l l , p r e pa r e the SQL sta tement .
c ("INSERT into users(name , age) VALUES (?, ?)")
("John" , 12) ;

// Second c a l l , r e u s e the cached s ta tement .
c ("INSERT into users(name , age) VALUES (?, ?)")
("Bob" , 14) ;

High performance web programming with C++14 48 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

SQL ORM Middlewares

It is pretty easy to generate SQL requests from statically
introspectable objects.
Let’s declare our statically introspectable User data type:

typedef

decltype (D (_id = int () ,
_login = string () ,
_password = string ()))

User ;

High performance web programming with C++14 49 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

SQL ORMs

And give the ORM hints for the SQL generation:

typedef

decltype (D (_id (_auto_increment ,
_primary_key) = int () ,

_login = string () ,
_password = string ()))

User ;

High performance web programming with C++14 50 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

SQL ORM Middlewares: Example

// The midd leware type .
typedef sqlite_orm<User> user_orm ;
typedef sqlite_orm_factory<User> user_orm_factory ;

// An API making use o f the ORM.
auto api = make_api (

_test_orm (_id = int ()) = [] (auto p , user_orm& users)
{

User u = users . find_by_id (p . id) ;
u . login = "Rob" ;
users . update (u) ;

}
// The f a c t o r i e s .
) . bind_factories (sqlite_connection_factory ("db.sql") ,

user_orm_factory ("user_table")) ;

High performance web programming with C++14 51 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

SQL CReate Update Delete

sql_crud generates Create Update and Delete routes for a given
ORM type:

auto api = make_api (_user = sql_crud<user_orm>()) ;
mhd_json_serve (api , 9999) ;

Creates the following routes:

/user/create
/user/update
/user/destroy

And saves you tens of lines of code.

High performance web programming with C++14 52 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

SQL CReate Update Delete

The parameters of sql_crud allow to handle:

validation of objects

user authentication

pre/post processing.

High performance web programming with C++14 53 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

SQL CReate Update Delete

This parameterization relies on lambda functions and dependency
injection (DI). Let’s write an example with the _write_access

option:

sql_crud<user_orm>(
_write_access = [] (user& u , session& s) {

return u . id == s . user_id ;
}

)

Thanks to dependency propagation, the middlewares (session in
this example) and the current user object are accessible from the
callback.

High performance web programming with C++14 54 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Silicon Backends

We have APIs and middlewares, let’s plug everything into the
network.

High performance web programming with C++14 55 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Silicon Backends

Silicon backends leverage the introspection on Silicon APIs to serve
them via:

Differents protocols: HTTP/1, HTTP/2, Websockets...

Differents message formats: JSON, XML, ...

Differents protocol implementations: microhttpd, h2o, ...

As of today, April 2015, Silicon includes microhttpd/json and
websocketpp/json.

High performance web programming with C++14 56 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Limitations of the framework

Slow compilation

2s for the hello world one liner

35s for a complex 110 lines API

GCC error messages

Static introspection can generate very, very long types

GCC error messages get hard to digest

Much better with Clang shortening long types

High performance web programming with C++14 57 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Future works

Lower compilation time

More database middlewares (PostgreSQL, Redis, ...)

More backends (HTTP/2, ...)

Suggestions?

⇒ Contributions are welcome

High performance web programming with C++14 58 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Outline

1 Motivations

2 C++11/14

3 Static introspection in the IOD library

4 The Silicon Web Framework

5 Conclusion

High performance web programming with C++14 59 / 61 Matthieu Garrigues

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Conclusion

The new C++ features enabled us to build zero cost abstractions
for building web services:

Simple to write

Without impacting running time

Where most bugs are reported by the compiler at compile time

With a tiny framework of less than 10000 C++ lines.

Open source (MIT): github.com/matt-42/silicon

High performance web programming with C++14 60 / 61 Matthieu Garrigues

github.com/matt-42/silicon

Motivations C++11/14 Static introspection in the IOD library The Silicon Web Framework Conclusion

Question?

_ask (_question) = [] (auto p , my_smart_middleware& m)
{

return m . answer (p . question) ;
}

Or visit http://siliconframework.org

High performance web programming with C++14 61 / 61 Matthieu Garrigues

http://siliconframework.org

	Motivations
	C++11/14
	Static introspection in the IOD library
	The Silicon Web Framework
	Conclusion

