Regular Model Checking of Epistemic Logic

Daniel Stan ${ }^{1}$

June 27, 2022

1 TECHNISCHE UNIVERSITÄT
2 MAX PLANCK INSTITUTE
joint work with Anthony W. Lin ${ }^{1,2}$, Felix Thoma ${ }^{1}$

Muddy Children Puzzle (Littlewood, 1953)

Muddy Children Puzzle (Littlewood, 1953)

Muddy Children Puzzle (Littlewood, 1953)

Father: at least one of you
is muddy!

Muddy Children Puzzle (Littlewood, 1953)

Father: at least one of you
is muddy!
Children: ???

Muddy Children Puzzle (Littlewood, 1953)

解 $\bar{\equiv}$ Father: at least one of you is muddy!

Children: ???
Father: indeed, no one knows.

Muddy Children Puzzle（Littlewood，1953）

为 is muddy！

Children：？？？
领言 Father：indeed，no one knows．
$5{ }_{5}=$
Muddy children：$a h$ ，yes we know we＇re muddy．

Muddy Children Puzzle（Littlewood，1953）

解 is muddy！

Children：？？？
$45^{2}=$
Father：indeed，no one knows．
解
Muddy children：ah，yes we know we＇re muddy．
领 know we＇re clean．

Setting

- Common Knowledge framework
- Communication primitive: Public Announcement $\beta^{\prime}{ }^{\prime}$
- Model checking problem: given some model \mathcal{M} and some specification φ, decide whether $\mathcal{M} \vDash \varphi$;
- Parameterized problem: the number of agents (children) is not fixed.

Setting

- Common Knowledge framework
- Communication primitive: Public Announcement ${ }^{\circ}$ 三
- Model checking problem: given some model \mathcal{M} and some specification φ, decide whether $\mathcal{M} \vDash \varphi$;
- Parameterized problem: the number of agents (children) is not fixed.
Applications: analysis of communication protocols involving identical arbitrarily many processes

Setting

- Common Knowledge framework
- Communication primitive: Public Announcement ${ }^{\beta}$ 三
- Model checking problem: given some model \mathcal{M} and some specification φ, decide whether $\mathcal{M} \vDash \varphi$;
- Parameterized problem: the number of agents (children) is not fixed.

Applications: analysis of communication protocols involving identical arbitrarily many processes

Outline

1. Parameterized Public Announcement Logic on Regular Structures;
2. Active Learning of Iterated Public Announcement
3. Extensions

1: Parameterized Public Announcement Logic (Modal Logic)

Indistinguishability Relation

Kripke Structures

Case with 3 children

Kripke Structures

Case with 3 children

Kripke Structures

Case with 3 children

From mmm, agent 1 knows that third letter is m

Kripke Structures

Case with 3 children

Parameterized Verification of a property φ

Parameterized Verification of a property φ

Parameterized Verification of a property φ

Parameterized Verification of a property φ

\hookrightarrow Infinite collection of systems

Parameterized Verification of a property φ

$\vDash \varphi$? (for all states of all instances)
\hookrightarrow Infinite collection of systems

PAL: Public Announcement Logic (Plaza, 07)

$\varphi::=p|T| \varphi \wedge \varphi|\neg \varphi| K_{a} \varphi \mid\langle\varphi!\rangle \psi$
Where:
$p \in A P$ is an atomic proposition;
$a \in \mathbb{N}$ is a constant;

PAL: Public Announcement Logic (Plaza, 07)

After announcing φ, ψ holds

Where:
$p \in A P$ is an atomic proposition;
$a \in \mathbb{N}$ is a constant;

PPAL: Parameterized Public Announcement Logic

After announcing φ, ψ holds

Where:
$p \in A P$ is an atomic proposition;
$a \in \mathbb{N}$ is a constant;
i, j are index variables, for agents and atomic propositions.

PPAL: Parameterized Public Announcement Logic

After announcing φ, ψ holds

Where:
$p \in A P$ is an atomic proposition;
$a \in \mathbb{N}$ is a constant;
i, j are index variables, for agents and atomic propositions. Modal logic, also similar to wS1S. Now combined with Public Announcements.

Semantics of a PPAL formula φ

Semantics of a PPAL formula φ

"All children are clean"

Semantics of a PPAL formula φ

"All children are clean"

Semantics of a PPAL formula φ

"All children are clean"

Semantics of a PPAL formula φ

"After announcing there is at least one muddy child, all the muddy children know they're muddy" $\underbrace{}_{\varphi \equiv \forall j: \mathrm{m}_{j} \rightarrow K_{j} \mathrm{~m}_{j}}$

Semantics of a PPAL formula φ

"After announcing there is at least one muddy child, all the muddy children know they're muddy"

Semantics of a PPAL formula φ

"After announcing there is at least one muddy child, all the muddy children know they're muddy" $\underbrace{}_{\varphi \equiv \forall j: \mathrm{m}_{j} \rightarrow K_{j} \mathrm{~m}_{j}}$

Semantics of φ on a paramaterized system

Semantics of φ on a paramaterized system

Semantics of φ on a paramaterized system

Regular Encoding

Regular Encoding

Encoded as | \mathbf{m} | \mathbf{c} | \mathbf{m} | \mathbf{c} |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 |
| \mathbf{m} | \mathbf{c} | \mathbf{c} | \mathbf{c} |

Regular Encoding

Definition (Regular Kripke structure)
$\mathcal{M}=(S, \Sigma, A P, \sim, L)$ where:

- Σ finite alphabet;
- $A P$ finite set of atomic propositions;
- $S \subseteq \Sigma^{*}$;
- For all $0 \leq i<|s|, L_{i}(s) \subseteq A P$;
- \sim is encoded as a length-preserving transducer:

$$
T_{\mathcal{M}}=\{s \otimes(\underbrace{0 \ldots 0}_{i} \cdot 1 \cdot \underbrace{0 \ldots 0}_{|s|-i-1}) \otimes t \mid s \stackrel{i}{\sim} t\}
$$

Contribution: Regular Semantics of a PPAL formula

Contribution: Regular Semantics of a PPAL formula

Theorem
If \mathcal{M} is a regular Kripke structure, then $\llbracket \varphi \rrbracket(\mathcal{M})$ is a regular language. Moreover, the transformation is effective.
PPAL model checking is decidable.

Contribution: Regular Semantics of a PPAL formula

Theorem
If \mathcal{M} is a regular Kripke structure, then $\llbracket \varphi \rrbracket(\mathcal{M})$ is a regular language. Moreover, the transformation is uniformly effective.
PPAL model checking is decidable.

Contribution: Regular Semantics of a PPAL formula

Theorem
If \mathcal{M} is a regular Kripke structure, then $\llbracket \varphi \rrbracket(\mathcal{M})$ is a regular language. Moreover, the transformation is uniformly effective.
PPAL model checking is decidable.
Application Verify the parameterized solution of van Ditmarsch (2003) for $3+x+1$ cards.

Another Example: Russian card problem, with $3+3+1$

 cards:

Alice's goal:

- Making Bob aware of her hand;
- Not disclosing any card to Catherine (except her own).

Alice

Bob

Catherine

Another Example: Russian card problem, with $3+3+1$

 cards:

Alice's goal:

- Making Bob aware of her hand;
- Not disclosing any card to Catherine (except her own).

Catherine

Another Example: Russian card problem, with $3+3+1$

 cards:

Alice's goal:
Making Bob aware of her hand;

- Not disclosing any card to Catherine (except her own).

Catherine

Another Example: Russian card problem, with $3+3+1$

 cards:

Alice's goal:
Making Bob aware of her hand;
X Not disclosing any card to Catherine (except her own).

"I have one of these hands:"

Bob

Catherine

Another Example: Russian card problem, with $3+3+1$

 cards:

Alice's goal:

- Making Bob aware of her hand;
- Not disclosing any card to Catherine (except her own).

Catherine

Another Example: Russian card problem, with $3+3+1$

 cards:

Alice's goal:
Making Bob aware of her hand;
\checkmark Not disclosing any card to Catherine (except her own).

Catherine

2: Iterated Announcement

- Safety Regular Model Checking
- Active Learning approach
- Learning Disappearance Relation

How many announcements? Iterated Announcement

How many announcements before a (sub)formula holds?
Muddy Children Example:
One muddy child $\rightarrow 1$ PA;

How many announcements? Iterated Announcement

How many announcements before a (sub)formula holds?
Muddy Children Example:
One muddy child $\rightarrow 1$ PA;
Two muddy children $\rightarrow 2$ PA;
Three muddy children $\rightarrow 3$ PA....

How many announcements? Iterated Announcement

How many announcements before a (sub)formula holds?
Muddy Children Example:
One muddy child $\rightarrow 1$ PA;
Two muddy children $\rightarrow 2$ PA;
Three muddy children $\rightarrow 3$ PA...
\mathbf{k} muddy children require \mathbf{k} announcements to conclude on their state.

How many announcements? Iterated Announcement

How many announcements before a (sub)formula holds?
Muddy Children Example:
One muddy child $\rightarrow 1$ PA;
Two muddy children $\rightarrow 2$ PA;
Three muddy children $\rightarrow 3$ PA...
\mathbf{k} muddy children require \mathbf{k} announcements to conclude on their state.
No fixed PPAL formula

How many announcements? Iterated Announcement

How many announcements before a (sub)formula holds?
Muddy Children Example:
One muddy child $\rightarrow 1$ PA;
Two muddy children $\rightarrow 2$ PA;
Three muddy children $\rightarrow 3$ PA...
\mathbf{k} muddy children require \mathbf{k} announcements to conclude on their state.
No fixed PPAL formula
$P P A L^{*}=P P A L+$ iterated announcement:

$$
\langle\varphi!\rangle^{*} \psi \equiv \exists k \in \mathbb{N}: \underbrace{\langle\varphi!\rangle \ldots\langle\varphi!\rangle}_{k \text { times }} \psi
$$

Safety Regular Model Checking

Let us first consider a more classical problem:

Safety Regular Model Checking

Let us first consider a more classical problem:
Definition (Safety Analysis)
Given $\mathcal{M}=(S, \Sigma, A P, \sim, L)$ a regular Kripke structure and two regular sets Init, Bad $\in \operatorname{Reg}(\Sigma)$.
Is the system Safe? That is to say:

$$
\forall w \in \operatorname{Init}, \forall w^{\prime} \in \Sigma^{*}, w \sim^{*} w^{\prime} \quad \Rightarrow w^{\prime} \notin \operatorname{Bad}
$$

Safety Regular Model Checking

Let us first consider a more classical problem:
Definition (Safety Analysis)
Given $\mathcal{M}=(S, \Sigma, A P, \sim, L)$ a regular Kripke structure and two regular sets Init, Bad $\in \operatorname{Reg}(\Sigma)$.
Is the system Safe? That is to say:

$$
\forall w \in \operatorname{Init}, \forall w^{\prime} \in \Sigma^{*}, w \sim^{*} w^{\prime} \quad \Rightarrow w^{\prime} \notin \operatorname{Bad}
$$

In other words: Decide whether $($ Init $\otimes B a d) \cap T_{\sim^{*}}=\emptyset$, where $T_{\sim^{*}}$ is the transducer of the transisitive closure of \sim. Decidability:

Safety Regular Model Checking

Let us first consider a more classical problem:
Definition (Safety Analysis)
Given $\mathcal{M}=(S, \Sigma, A P, \sim, L)$ a regular Kripke structure and two regular sets Init, Bad $\in \operatorname{Reg}(\Sigma)$.
Is the system Safe? That is to say:

$$
\forall w \in \operatorname{Init}, \forall w^{\prime} \in \Sigma^{*}, w \sim^{*} w^{\prime} \quad \Rightarrow w^{\prime} \notin \operatorname{Bad}
$$

In other words: Decide whether $($ Init $\otimes B a d) \cap T_{\sim^{*}}=\emptyset$, where $T_{\sim^{*}}$ is the transducer of the transisitive closure of \sim.
Decidability:No

Safety Analysis Strategies

Some techniques:

- Regular Model Checking Using Inference of Regular Languages (Habermehl and Vojnar, 04)
- Parameterized verification through view abstraction (Abdulla, Haziza, and Holik, 15)
- Regular Model Checking using Widening Techniques (Touili, 01)
- Regular Model Checking Using Solver Technologies and Automata Learning (Neider and Jansen, 13)

Safety Analysis Strategies

Some techniques:

- Regular Model Checking Using Inference of Regular Languages (Habermehl and Vojnar, 04)
- Parameterized verification through view abstraction (Abdulla, Haziza, and Holik, 15)
- Regular Model Checking using Widening Techniques (Touili, 01)
- Regular Model Checking Using Solver Technologies and Automata Learning (Neider and Jansen, 13)
Most of these are based on finding a regular invariant:
Definition
$I \in \operatorname{Reg}(\Sigma)$ such that

Active Learning: the 20 questions game example

"Think of a character, object or animal, and let me ask you questions."

The learner asks arbitrary questions

The teacher answers by YES/NO/MAYBE.
https://akinator.com
https://en.wikipedia.org/wiki/Twenty_questions

Active Machine Learning

The Concept class \mathcal{C} describes all possible values of $H \in \mathcal{C}$;
Goal for Learner: find $H=T$ or at least $H \sim=T$; Active learning: the learner chooses the questions.

Regular Language Active Learning (Angluin's L*, 87)

For regular machine learning, the concept to learn is a finite automaton \mathcal{H} :

- concept class \mathcal{C} is the set of all finite automata over Σ
- The target is a language $L \subseteq \Sigma^{*}$.

$$
\text { Goal: } \mathcal{L}(\mathcal{H})=L
$$

Two types of queries:

- Membership queries: "Does $w \in L$?" for some given $w \in \Sigma^{*}$ Answer: YES or NO;
- EQuivalence queries: "Is $\mathcal{L}(\mathcal{H})=L$?" for some given DFA \mathcal{H} Answer: YES or NO and a counterexample $w \in \mathcal{L}(\mathcal{H}) \Delta L$
Symmetric Difference of A and $B: A \Delta B:=A \backslash B \cup B \backslash A$.

Example of a Learner: learnlib
 Java Library for active learning of regular languages: https://learnlib.de/

$\leftarrow \rightarrow$ C 气 github.com/LeamLib/leamlib/wiki/Instantiating-a-simple-leaming-setup

This whole procedure can be implemented as follows:

```
DefaultQuery<Input, Word<String>> counterexample = null;
do {
    if (counterexample == null) {
        learner.startLearning();
    } else {
        boolean refined = learner.refineHypothesis(counterexample);
        if (|refined) {
            System.err.println("No refinement effected by counterexample!");
        }
    }
    counterexample = eqoracle.findCounterExample(learner.getHypothesisModel(), alphabet);
} while (counterexample != null);
// from here on learner.getHypothesisModel() will provide an accurate model
```

The do-while loop will be executed as long as counterexamples are discovered by the equivalence oracle. Once the loop terminates the hypothesis model provided by the learner is guaranteed to be an exact representation of the target system if the equivalence oracle is guaranteed to find any behavioral mismatches between the hypothesis and the target system (which is the case in this example).

Implementation of a Teacher

A teacher provides Oracles (here: a \mathbf{M} oracle and a EQ oracle).

Implementation of a Teacher

A teacher provides Oracles (here: a \mathbf{M} oracle and a EQ oracle).

- In practice, the teacher may not know the target L, this is fine as long as he can answers the queries.

Implementation of a Teacher

A teacher provides Oracles (here: a \mathbf{M} oracle and a EQ oracle).

- In practice, the teacher may not know the target L, this is fine as long as he can answers the queries.
- The target might not be regular. In this case, the learner will never manage to find a suitable automaton \mathcal{H}.

A safety teacher

A regular invariant is defined as first-order properties.
Definition (Regular Invariant)
$I \in \operatorname{Reg}(\Sigma)$ such that

1. Init $\subseteq I$;
2. $I \cap B a d=\emptyset$;
3. $\operatorname{Post}(I) \subseteq I$

A safety teacher

A regular invariant is defined as first-order properties.
Definition (Regular Invariant)
$I \in \operatorname{Reg}(\Sigma)$ such that

1. Init $\subseteq I$;
2. $I \cap B a d=\emptyset$;
3. $\operatorname{Post}(I) \subseteq I$ or equivalently: $\left(I \otimes \Sigma^{*}\right) \cap T_{\sim} \subseteq \Sigma^{*} \otimes I$

A safety teacher

A regular invariant is defined as first-order properties.
Definition (Regular Invariant)
$I \in \operatorname{Reg}(\Sigma)$ such that

1. Init $\subseteq I$;
2. $I \cap B a d=\emptyset$;
3. $\operatorname{Post}(I) \subseteq I$ or equivalently: $\left(I \otimes \Sigma^{*}\right) \cap T_{\sim} \subseteq \Sigma^{*} \otimes I$

Oracle for learning some target I :

- Membership: Given w, check whether $\exists w^{\prime} \in \operatorname{Init}: w^{\prime} \sim^{*} w$.
- EQuivalence queries: Check that the three above properties hold for the hypothesis.
Consequence: using Angluin's L* algorithm, the learning procedure terminates, iff Post* (Init) is regular, or contain a bad state.

A safety teacher

A regular invariant is defined as first-order properties.
Definition (Regular Invariant)
$I \in \operatorname{Reg}(\Sigma)$ such that

1. Init $\subseteq I$;
2. $I \cap B a d=\emptyset$;
3. $\operatorname{Post}(I) \subseteq I$ or equivalently: $\left(I \otimes \Sigma^{*}\right) \cap T_{\sim} \subseteq \Sigma^{*} \otimes I$

Oracle for learning some target I :

- Membership: Given w, check whether $\exists w^{\prime} \in \operatorname{Init}: w^{\prime} \sim^{*} w$.
- EQuivalence queries: Check that the three above properties hold for the hypothesis.
Consequence: using Angluin's L* algorithm, the learning procedure terminates, iff Post* (Init) is regular, or contain a bad state.
Uncovered here: there might be more than one invariant, so there is some slack in the oracle's answer (for membership queries, and for counterexample in (3)).

How many announcements? Iterated Announcement

Muddy Children Example: \mathbf{k} muddy children require \mathbf{k} announcements to conclude on their state.

How many announcements? Iterated Announcement

Muddy Children Example: \mathbf{k} muddy children require \mathbf{k} announcements to conclude on their state.
No fixed PPAL formula

How many announcements? Iterated Announcement

Muddy Children Example: \mathbf{k} muddy children require \mathbf{k} announcements to conclude on their state.
No fixed PPAL formula
$P P A L^{*}=P P A L+$ iterated announcement:

$$
\langle\varphi!\rangle^{*} \psi \equiv \exists k \in \mathbb{N}: \underbrace{\langle\varphi!\rangle \ldots\langle\varphi!\rangle}_{k \text { times }} \psi
$$

How many announcements? Iterated Announcement

Muddy Children Example: \mathbf{k} muddy children require \mathbf{k} announcements to conclude on their state.
No fixed PPAL formula
$P P A L^{*}=P P A L+$ iterated announcement:

$$
\langle\varphi!\rangle^{*} \psi \equiv \exists k \in \mathbb{N}: \underbrace{\langle\varphi!\rangle \ldots\langle\varphi!\rangle}_{k \text { times }} \psi
$$

Theorem
Model checking of a regular Kripke structure against:

- a PPAL formula is decidable;
- a $P P A L^{*}$ formula is undecidable.

We design a semi-decision procedure.

Disappearance relation for φ

$$
s \preceq t \text { if, and only if, } \forall k, s \in S_{k} \Rightarrow t \in S_{k}
$$

where S_{k} state space left after k announcements $\langle\varphi!\rangle$.

$$
S_{0}=S
$$

Disappearance relation for φ

$$
s \preceq t \text { if, and only if, } \forall k, s \in S_{k} \Rightarrow t \in S_{k}
$$

where S_{k} state space left after k announcements $\langle\varphi!\rangle$.

$$
S_{0}=S \quad S_{1}
$$

Disappearance relation for φ

$$
s \preceq t \text { if, and only if, } \forall k, s \in S_{k} \Rightarrow t \in S_{k}
$$

where S_{k} state space left after k announcements $\langle\varphi!\rangle$.

$$
S_{0}=S \quad S_{1} \quad S_{2}
$$

Disappearance relation for φ

$$
s \preceq t \text { if, and only if, } \forall k, s \in S_{k} \Rightarrow t \in S_{k}
$$

where S_{k} state space left after k announcements $\langle\varphi!\rangle$.

$$
\begin{array}{llll}
S_{0}=S & S_{1} & S_{2} & S_{3}
\end{array}
$$

Disappearance relation for φ

$$
s \preceq t \text { if, and only if, } \forall k, s \in S_{k} \Rightarrow t \in S_{k}
$$

where S_{k} state space left after k announcements $\langle\varphi!\rangle$.

$$
\begin{equation*}
S_{0}=S \quad S_{1} \tag{array}
\end{equation*}
$$

$$
S_{\infty}=\cap_{k} S_{k}
$$

Abstracting away from the iteration

Claim: $\mathcal{M}, s \vDash\langle\varphi!\rangle^{*} \psi$ if, and only if,

$$
\underbrace{\exists t \notin S_{\infty} \wedge t \preceq s \wedge}_{\exists k \in \mathbb{N}} \mathcal{M}_{\mid} \underbrace{\{u \mid t \preceq u\}}_{s_{k}}, s \vDash \psi
$$

Abstracting away from the iteration

Claim: $\mathcal{M}, s \vDash\langle\varphi!\rangle^{*} \psi$ if, and only if,

$$
\underbrace{\exists t \notin S_{\infty} \wedge t \preceq s \wedge}_{\exists k \in \mathbb{N}} \mathcal{M}_{\mid} \underbrace{\{u \mid t \preceq u\}}_{s_{k}}, s \vDash \psi
$$

Consequence: if \mathcal{M} and $L_{\preceq}=\left\{\begin{array}{|c|c}\hline \mathrm{s} \\ \hline \mathrm{t} & s \preceq t\} \text { are regular, }, ~ \text {. }\end{array}\right.$
then $\llbracket\langle\varphi!\rangle^{*} \psi \rrbracket(\mathcal{M})$ is effectively regular.

Contribution: Learning \preceq

Theorem

Given some PPAL formula φ, and \preceq its disappearance relation. The learning procedure terminates and returns L_{\preceq} if, and only if, L_{\preceq} is regular.

Contribution: Learning \preceq

Theorem

Given some PPAL formula φ, and \preceq its disappearance relation.
The learning procedure terminates and returns L_{\preceq} if, and only if, L_{\preceq} is regular.
We run L^{*} algorithm (Angluin, 87) by implementing:

1. A membership oracle: given $s, t \in S, s \stackrel{?}{\preceq} t$;
2. An equivalence oracle: given L^{\prime} regular, does $L^{\prime}=L_{\preceq}$ and if not, provide counterexample $w \in L \backslash L_{\preceq} \cup L_{\preceq} \backslash L$.

Theorem (Unique Characterization)
For $R \subseteq S \times S, R=\preceq$, iff:
1.

Reflexive
 and

2.

3.

4.

Some "F" property

Theorem (Unique Characterization)
For $R \subseteq S \times S, R=\preceq$, iff:

1. $\forall s:(s, s) \in R$
and
2. $\forall s_{1}, s_{2}, s_{3}:\left(s_{1}, s_{2}\right) \in R \wedge\left(s_{2}, s_{3}\right) \in R \rightarrow\left(s_{1}, s_{3}\right) \in R$ and
3. $\forall s, t:(s, t) \in R \vee(t, s) \in R$ and
4. Some "F" property

Theorem (Unique Characterization)
For $R \subseteq S \times S, R=\preceq$, iff:

$$
\begin{aligned}
& \text { 1. } \forall s:(s, s) \in R \\
& \text { and }
\end{aligned}
$$

2. $\forall s_{1}, s_{2}, s_{3}:\left(s_{1}, s_{2}\right) \in R \wedge\left(s_{2}, s_{3}\right) \in R \rightarrow\left(s_{1}, s_{3}\right) \in R$ and
3. $\forall s, t:(s, t) \in R \vee(t, s) \in R$ and
4.

Some "F" property

All quantifications are made over $\Sigma^{k} \cap S$ for some fixed length k.

Theorem (Unique Characterization)
For $R \subseteq S \times S, R=\preceq$, iff:

4.

Some "F" property

All quantifications are made over $\Sigma^{k} \cap S$ for some fixed length k.

Theorem (Unique Characterization)
For $R \subseteq S \times S, R=\preceq$, iff:

4.

Some "F" property

All quantifications are made over $\Sigma^{k} \cap S$ for some fixed length k.

Theorem (Unique Characterization)
For $R \subseteq S \times S, R=\preceq$, iff:

2. $\left.\forall_{1}, s_{2}, s_{3}:(s) \rightarrow R_{\text {Poperties }} \rightarrow s_{2}\right) \in R$ and Resular Lansuage Over R
3.

Draserticc $-\frac{s 3) \in R}{}$ ${ }_{R}^{\text {Language }} \mathrm{Qvereries} R$ and
4.

Some "F" property

All quantifications are made over $\Sigma^{k} \cap S$ for some fixed length k.

Theorem (Unique Characterization)
For $R \subseteq S \times S, R=\preceq$, iff:
4.

Some "F" property

Theorem (Unique Characterization)
For $R \subseteq S \times S, R=\preceq$, iff:
4. Some "F" property
where $s R \cdot=\{u \mid(s, u) \in R\}$ is the set of all states (presumably) not deleted when s is about to disappear.

Two cases:

Theorem (Unique Characterization)
For $R \subseteq S \times S, R=\preceq$, iff:
4. Some "F" property
where $s R \cdot=\{u \mid(s, u) \in R\}$ is the set of all states (presumably) not deleted when s is about to disappear.

Two cases:
(1) s really disappears;
(2) s never disappears.

Theorem (Unique Characterization)
For $R \subseteq S \times S, R=\preceq$, iff:
4. $\forall s\left\{\begin{array}{r}\text { either (1) } \forall t:(s, t) \in R \rightarrow(t, s) \notin R \leftrightarrow t \in F(s R \cdot) \\ \text { or }(2) \forall t:(s, t) \in R \rightarrow(t, s) \in R \wedge t \in F(s R \cdot)\end{array}\right.$
where $s R \cdot=\{u \mid(s, u) \in R\}$ is the set of all states (presumably) not deleted when s is about to disappear.

Two cases:
(1) s really disappears;
(2) s never disappears.

Theorem (Unique Characterization)
For $R \subseteq S \times S, R=\preceq$, iff:
4. FO Property over R and $\{(\mathbf{u}, \mathbf{v}) \mid \mathbf{v} \in \mathbf{F}(\mathbf{u R} \cdot)\}$
where $s R \cdot=\{u \mid(s, u) \in R\}$ is the set of all states (presumably) not deleted when s is about to disappear.

Two cases:
(1) s really disappears;
(2) s never disappears.

Theorem (Unique Characterization)
For $R \subseteq S \times S, R=\preceq$, iff:
4. FO Property over R and $\{(\mathbf{u}, \mathbf{v}) \mid \mathbf{v} \in \mathbf{F}(\mathbf{u R} \cdot)\}$
where $s R \cdot=\{u \mid(s, u) \in R\}$ is the set of all states (presumably) not deleted when s is about to disappear.

Two cases:
(1) s really disappears;
(2) s never disappears.

3: Applications and extensions

Muddy Children

"After arbitrary but finitely many rounds, all the muddy children know they're muddy."

$$
\varphi=\left\langle\exists i: \mathbf{m}_{i}!\right\rangle\langle\underbrace{\exists i: \mathbf{m}_{i} \wedge \neg K_{i} \mathbf{m}_{i}!}_{\psi}\rangle^{*} \perp
$$

Muddy Children

"After arbitrary but finitely many rounds, all the muddy children know they're muddy."

$$
\begin{gathered}
\varphi=\left\langle\exists i: \mathbf{m}_{i}!\right\rangle\langle\underbrace{\exists i: \mathbf{m}_{i} \wedge \neg K_{i} \mathbf{m}_{i}!}_{\psi}!\rangle^{*} \perp \\
L_{\preceq}=\left\{\begin{array}{|c|c|c|}
\hline \mathbf{t} \\
\hline
\end{array}|s|_{\mathbf{m}} \leq|t|_{\mathbf{m}}\right\} \subseteq(\{\mathbf{m}, \mathbf{c}\} \times\{\mathbf{m}, \mathbf{c}\})^{*}
\end{gathered}
$$

Muddy Children

"After arbitrary but finitely many rounds, all the muddy children know they're muddy."

$$
\begin{gathered}
\varphi=\left\langle\exists i: \mathbf{m}_{i}!\right\rangle\langle\underbrace{\exists i: \mathbf{m}_{i} \wedge \neg K_{i} \mathbf{m}_{i}}_{\psi}!\rangle^{*} \perp \\
L_{\preceq}=\left\{\begin{array}{|c|c|c|}
\hline \mathbf{t} \\
\mid & \left.|s|_{\mathbf{m}} \leq|t|_{\mathbf{m}}\right\} \subseteq(\{\mathbf{m}, \mathbf{c}\} \times\{\mathbf{m}, \mathbf{c}\})^{*}
\end{array}\right.
\end{gathered}
$$

is not regular

Muddy Children

"After arbitrary but finitely many rounds, all the muddy children know they're muddy."

$$
\begin{gathered}
\varphi=\left\langle\exists i: \mathbf{m}_{i}!\right\rangle\langle\underbrace{\left.\exists i: \mathbf{m}_{i} \wedge \neg K_{i} \mathbf{m}_{i}!\right\rangle^{*} \perp}_{\psi} \\
L_{\preceq}=\left\{\left|\begin{array}{l}
\mathrm{s} \\
\mathrm{t}
\end{array}\right||\mathrm{s}|_{\mathrm{m}} \leq|t|_{\mathrm{m}}\right\} \subseteq(\{\mathbf{m}, \mathbf{c}\} \times\{\mathbf{m}, \mathbf{c}\})^{*}
\end{gathered}
$$

is not regular
Counter measure: restrict to states $s \in\{\mathbf{m}\}^{*} \cdot\{\mathbf{c}\}^{*}$. Soundness: the model and the formula are stable by permutation.

Muddy Children

"After arbitrary but finitely many rounds, all the muddy children know they're muddy."

$$
\begin{gathered}
\varphi=\left\langle\forall i, \mathbf{m}_{i+1} \rightarrow \mathbf{m}_{i}!\right\rangle\left\langle\exists i: \mathbf{m}_{i}!\right\rangle\langle\underbrace{\exists i: \mathbf{m}_{i} \wedge \neg K_{i} \mathbf{m}_{i}!}_{\psi}\rangle^{*} \perp \\
L_{\preceq}=\left\{\begin{array}{|c|}
\hline \mathrm{s} \\
\mathrm{t} \\
\left.|s|_{\mathbf{m}} \leq|t|_{\mathbf{m}} \wedge s, t \in\{\mathbf{m}\}^{*} \cdot\{\mathbf{c}\}^{*}\right\} \subseteq(\{\mathbf{m}, \mathbf{c}\} \times\{\mathbf{m}, \mathbf{c}\})^{*}
\end{array} .\right.
\end{gathered}
$$

is regular
Counter measure: restrict to states $s \in\{\mathbf{m}\}^{*} \cdot\{\mathbf{c}\}^{*}$. Soundness: the model and the formula are stable by permutation.

Dining Cryptographer algorithm

- Every cryptographer i has a private boolean p_{i}.
- Goal: Decide whether $\sum_{i} p_{i}>0$ without disclosing the p_{i} 's

Algorithm:

- For each i, sample a boolean c_{i} shared between i and $i+1 \% N$.
- Publicly announce the result of $c_{i} \oplus c_{i-1 \% N} \oplus p_{i}$
- Compute $\bigoplus_{i} c_{i}$.

Dining Cryptographer algorithm

- Every cryptographer i has a private boolean p_{i}.
- Goal: Decide whether $\sum_{i} p_{i}>0$ without disclosing the p_{i} 's

Algorithm:

- For each i, sample a boolean c_{i} shared between i and $i+1 \% N$.
- Publicly announce the result of $c_{i} \oplus c_{i-1 \% N} \oplus p_{i}$
- Compute $\bigoplus_{i} c_{i}$.

Simplifications: non-probabilistic setting, sequential announcements.

Mechanization

How to mechanize these announcements, to verify the following properties?

Formalization

Private Variables: $\left(p_{i}\right)_{i \in[1 ; N]} \in\{0,1\}^{N}$
Goal1: "Everyone knows whether someone paid"

$$
\forall i,\left(K_{i} \exists j: p_{j}\right) \vee\left(K_{i} \forall j: \neg p_{j}\right)
$$

Goal2: "No knows who paid"

$$
\forall i \neq j, \neg\left(K_{i} p_{j}\right)
$$

Mechanization

How to mechanize these announcements, to verify the following properties?

Formalization

Private Variables: $\left(p_{i}\right)_{i \in[1 ; N]} \in\{0,1\}^{N}$
Goal1: "Everyone knows whether someone paid"

$$
\forall i,\left(K_{i} \exists j: p_{j}\right) \vee\left(K_{i} \forall j: \neg p_{j}\right)
$$

Goal2: "No knows who paid"

$$
\forall i \neq j, \neg\left(K_{i} p_{j}\right)
$$

"sampling random variables": $\left(c_{i}\right)_{i \in[1 ; N]}$

Mechanization

How to mechanize these announcements, to verify the following properties?

Formalization

Private Variables: $\left(p_{i}\right)_{i \in[1 ; N]} \in\{0,1\}^{N}$
Goal1: "Everyone knows whether someone paid"

$$
\forall i,\left(K_{i} \exists j: p_{j}\right) \vee\left(K_{i} \forall j: \neg p_{j}\right)
$$

Goal2: "No knows who paid"

$$
\forall i \neq j, \neg\left(K_{i} p_{j}\right)
$$

"sampling random variables": $\left(c_{i}\right)_{i \in[1 ; N]}$
Announcement of agent i : result of computation
$r_{i}=c_{i} \oplus c_{i+1 \% N} \oplus p_{i}$
Agents compute $\bigoplus_{i} r_{i}=\bigoplus_{i} p_{i}$

Public Announcement Whether

We introduce the new construct $\langle\varphi!!\rangle \psi$.
"After announcing whether there is at least one muddy child, φ "

Public Announcement Whether

We introduce the new construct $\langle\varphi!!\rangle \psi$.
"After announcing whether there is at least one muddy child, φ "

Public Announcement Whether

We introduce the new construct $\langle\varphi!!\rangle \psi$.
"After announcing whether there is at least one muddy child, φ "

Public Announcement Whether

We introduce the new construct $\langle\varphi!!\rangle \psi$.
"After announcing whether there is at least one muddy child, φ "

Good news

- Still regular: $\llbracket\langle\varphi!!\rangle \psi \rrbracket(\mathcal{M})=\llbracket \psi \rrbracket(\ldots)$
- $\langle\varphi!!\rangle^{*} \psi$ can be computed with a disappearance relation on pair of states:

$$
L_{\preceq} \subseteq\left(\Sigma^{\prime} \times \Sigma^{\prime}\right)^{*} \text { where } \Sigma^{\prime}=\Sigma \times\{0,1\} \times \Sigma
$$

Sequentialization

In the dining cryptographer, all announcements are different formula...

Sequentialization

In the dining cryptographer, all announcements are different formula... or one single formula $\varphi(i)$:arameterized by $i \in A g t$.
Theorem (Addressed in Felix Thoma's BA thesis)
There exists φ^{\prime} without free variables, such that
$\left\langle c_{0} \oplus c_{1} \oplus p_{0}!!\right\rangle\left\langle c_{1} \oplus c_{2} \oplus p_{1}!!\right\rangle \ldots\left\langle c_{N} \oplus c_{0} \oplus p_{0}!!\right\rangle \varphi_{\text {correct }} \equiv\left\langle\varphi^{\prime}!!\right\rangle^{*} \varphi_{\text {correct }}$

Key ideas:

- Track the announcements already been made, by evaluating the current common knowledge.
- The same announcement should be made from all the states, at the same time.
- Solution 1: common knowledge operator \sim^{*} (similar to safety analysis).

Sequentialization

In the dining cryptographer, all announcements are different formula... or one single formula $\varphi(i)$:arameterized by $i \in$ Agt.
Theorem (Addressed in Felix Thoma's BA thesis)
There exists φ^{\prime} without free variables, such that
$\left\langle c_{0} \oplus c_{1} \oplus p_{0}!!\right\rangle\left\langle c_{1} \oplus c_{2} \oplus p_{1}!!\right\rangle \ldots\left\langle c_{N} \oplus c_{0} \oplus p_{0}!!\right\rangle \varphi_{\text {correct }} \equiv\left\langle\varphi^{\prime}!!\right\rangle^{*} \varphi_{\text {correct }}$

Key ideas:

- Track the announcements already been made, by evaluating the current common knowledge.
- The same announcement should be made from all the states, at the same time.
- Solution 1: common knowledge operator \sim^{*} (similar to safety analysis).
- Solution 2: introducing $A I /(\varphi)$ operator, whose semantics is regular.

Summary

> Regular Model Checking approach to

Knowledge Reasoning over Parameterized Systems

Summary

Regular Model Checking approach to

Summary

Regular Model Checking approach to

Future work:

- Dynamic Epistemic Logic (more systematic way to dining cryptographer, stochastic behaviours).
- Planning: how to synthesize announcements (card protocols).
- Mechanize the symmetry reductions (Parikh images).
- More succint models (expressing fixed point in MONA).

Thanks for your attention

