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Muddy Children Puzzle (Littlewood, 1953)

Father: at least one of you
is muddy!

Children: ???

Father: indeed, no one
knows.

Muddy children: ah, yes
we know we’re muddy.

Clean children: ah, yes we
know we’re clean.
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Setting

I Common Knowledge framework

I Communication primitive: Public Announcement

I Model checking problem: given some model M and some
specification ϕ, decide whether M � ϕ;

I Parameterized problem: the number of agents (children) is
not fixed.

Applications: analysis of communication protocols involving
identical arbitrarily many processes

Outline
1. Parameterized Public Announcement Logic on Regular

Structures;

2. Active Learning of Iterated Public Announcement

3. Extensions
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1: Parameterized Public Announcement
Logic (Modal Logic)

4 / 38



Indistinguishability Relation

m c m c

2∼ m c c c

(S5): For every i ,
i∼ is an equivalence relation.
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Kripke Structures

Case with 3 children

cmm

mmm mcm

ccm

mmc mcc

cmc ccc

1

0
2

0

2

1

2 2

0
1

0

1

From mmm, agent 1 knows
that third letter is m

From a given state s,

I If s
i∼ t, i may think we are in

t.

I If for all t such that s
i∼ t, t

satisfies some property ϕ, then
i knows that ϕ holds (from s).

I Any agent knows the structure
of the graph: common
knowledge.
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Parameterized Verification of a property ϕ

mm mc

cm cc

1

0 0

1

� ϕ?cmm

mmm mcm

ccm

mmc mcc

cmc ccc
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0
2

0
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1
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0
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0
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cmmm

mmmm mcmm

ccmm

mmcm mccm

cmcm cccm

cmmc

mmmc mcmc

ccmc

mmcc mccc

cmcc cccc

. . .

� ϕ? (for all states of all instances)

↪→ Infinite collection of systems
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P

PAL: Public Announcement Logic (Plaza, 07)

ϕ ::= p

pi

| > | ϕ∧ϕ | ¬ϕ |

Kiϕ

Kaϕ | 〈ϕ!〉ψ

| ∃i : ϕ | i = 0 | i%k = 0 | i = j + a

a knows ϕ

After announcing ϕ, ψ holds

Where:
p ∈ AP is an atomic proposition;
a ∈ N is a constant;

i , j are index variables, for agents and atomic propositions. Modal
logic, also similar to wS1S. Now combined with Public Announcements.
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Semantics of a PPAL formula ϕ

“All children are clean”“After announcing there is at least one muddy child,
all the muddy children know they’re muddy︸ ︷︷ ︸

ϕ≡∀j :mj→Kjmj

”

J〈 ∃i : mi !〉ϕK

JϕK

J∀i : ¬miK


cmm

mmm mcm

ccm

mmc mcc

cmc ccc

1

0

2

0

2

1

2 2

0

1

0

1


= {s | s � ϕ}

{ccc}JϕK


cmm

mmm mcm

ccm

mmc mcc

cmc

1

0

2

0

2

1

2

0

1


= {cmc,mcc, ccm}
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Semantics of ϕ on a paramaterized system

J〈∃i : mi !〉∀j : mj → KjmjK

 mm mc

cm cc

1

0 0

1

cmm

mmm mcm

ccm

mmc mcc

cmc ccc

1

0
2

0

2

1

2 2

0
1

0

1

. . .

 =


mc,

cm,

mcc,

cmc,

ccm,

mccc,

cmcc,

ccmc,

cccm,

. . .



=

{c}∗ · {m} · {c}∗
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Regular Encoding

m c m c

m c c c

2∼

Encoded as 0

m

m

0

c

c

1

m

c

0

c

c

∈


{m, c}
×

{0, 1}
×
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∗
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c

0

c
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m
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Definition (Regular Kripke structure)

M = (S ,Σ,AP,∼, L) where:

I Σ finite alphabet;

I AP finite set of atomic propositions;

I S ⊆ Σ∗;

I For all 0 ≤ i < |s|, Li (s) ⊆ AP;

I ∼ is encoded as a length-preserving transducer:

TM =

s ⊗

0 . . . 0︸ ︷︷ ︸
i

·1 · 0 . . . 0︸ ︷︷ ︸
|s|−i−1

⊗ t

∣∣∣∣∣∣ s i∼ t
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Contribution: Regular Semantics of a PPAL formula


w1

0i−110n−i−1

w2

∣∣∣∣∣∣w1
i∼ w2

 JϕK−−−−−−→
{

w
∣∣M,w � ϕ

}

Theorem
If M is a regular Kripke structure, then JϕK(M) is a regular language.
Moreover, the transformation is effective.

PPAL model checking is decidable.
Application Verify the parameterized solution of van Ditmarsch (2003)
for 3+x+1 cards.
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Another Example: Russian card problem, with 3 + 3 + 1

cards:

Alice’s goal:
• Making Bob aware of her hand;
• Not disclosing any card to Catherine (except her own).

Alice

Bob

Catherine

“I have one of these hands:”
, ,

, ,

,
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2: Iterated Announcement

I Safety Regular Model Checking

I Active Learning approach

I Learning Disappearance Relation
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How many announcements? Iterated Announcement

How many announcements before a (sub)formula holds?
Muddy Children Example:
One muddy child → 1 PA;

Two muddy children → 2 PA;
Three muddy children → 3 PA . . ..
k muddy children require k announcements to conclude on their
state.
No fixed PPAL formula
PPAL∗ = PPAL + iterated announcement:

〈ϕ!〉∗ψ ≡ ∃k ∈ N : 〈ϕ!〉 . . . 〈ϕ!〉︸ ︷︷ ︸
k times

ψ
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Safety Regular Model Checking

Let us first consider a more classical problem:

Definition (Safety Analysis)

Given M = (S ,Σ,AP,∼, L) a regular Kripke structure and two
regular sets Init,Bad ∈ Reg(Σ).
Is the system Safe? That is to say:

∀w ∈ Init, ∀w ′ ∈ Σ∗,w ∼∗ w ′ ⇒ w ′ /∈ Bad

In other words: Decide whether (Init ⊗ Bad) ∩ T∼∗ = ∅, where
T∼∗ is the transducer of the transisitive closure of ∼.
Decidability:No
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Safety Analysis Strategies
Some techniques:

I Regular Model Checking Using Inference of Regular
Languages (Habermehl and Vojnar, 04)

I Parameterized verification through view abstraction
(Abdulla, Haziza, and Holik, 15)

I Regular Model Checking using Widening Techniques
(Touili, 01)

I Regular Model Checking Using Solver Technologies and
Automata Learning (Neider and Jansen, 13)

Most of these are based on finding a regular invariant:

Definition
I ∈ Reg(Σ) such that

1. Init ⊆ I ;

2. I ∩ Bad = ∅;
3. Post(I ) ⊆ I
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Active Learning: the 20 questions game example

“Think of a character, object or animal, and let me ask you
questions.”

The learner asks arbitrary
questions

The teacher answers by
YES/NO/MAYBE.

https://akinator.com

https://en.wikipedia.org/wiki/Twenty questions
19 / 38



Active Machine Learning

Learner Teacher

a target T

an hypothesis H

Queries

Answers

The Concept class C describes all possible values of H ∈ C;
Goal for Learner: find H = T or at least H ∼= T ;
Active learning: the learner chooses the questions.
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Regular Language Active Learning (Angluin’s L*, 87)

For regular machine learning, the concept to learn is a finite
automaton H:

I concept class C is the set of all finite automata over Σ

I The target is a language L ⊆ Σ∗.

Goal: L(H) = L

Two types of queries:

I Membership queries: “Does w ∈ L?” for some given w ∈ Σ∗

Answer: YES or NO;

I EQuivalence queries: “Is L(H) = L?” for some given DFA H
Answer: YES or NO and a counterexample w ∈ L(H)∆L

Symmetric Difference of A and B: A∆B := A\B ∪ B\A.

21 / 38



Example of a Learner: learnlib
Java Library for active learning of regular languages:
https://learnlib.de/

22 / 38
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Implementation of a Teacher

Teacher

Some L ⊆ Σ∗

Is aa ∈ L?

YES

Is L = aa∗?

NO, b is also in L

A teacher provides Oracles (here: a M oracle and a EQ oracle).

I In practice, the teacher may not know the target L, this is
fine as long as he can answers the queries.

I The target might not be regular. In this case, the learner will
never manage to find a suitable automaton H.
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A safety teacher
A regular invariant is defined as first-order properties.

Definition (Regular Invariant)

I ∈ Reg(Σ) such that

1. Init ⊆ I ;

2. I ∩ Bad = ∅;
3. Post(I ) ⊆ I

or equivalently: (I ⊗ Σ∗) ∩ T∼ ⊆ Σ∗ ⊗ I

Oracle for learning some target I :
I Membership: Given w , check whether ∃w ′ ∈ Init : w ′ ∼∗ w .
I EQuivalence queries: Check that the three above properties

hold for the hypothesis.

Consequence: using Angluin’s L* algorithm, the learning
procedure terminates, iff Post∗∼(Init) is regular, or contain a bad
state.
Uncovered here: there might be more than one invariant, so there
is some slack in the oracle’s answer (for membership queries, and
for counterexample in (3)).
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How many announcements? Iterated Announcement

Muddy Children Example: k muddy children require k
announcements to conclude on their state.

No fixed PPAL formula
PPAL∗ = PPAL + iterated announcement:

〈ϕ!〉∗ψ ≡ ∃k ∈ N : 〈ϕ!〉 . . . 〈ϕ!〉︸ ︷︷ ︸
k times

ψ

Theorem
Model checking of a regular Kripke structure against:

I a PPAL formula is decidable;

I a PPAL∗ formula is undecidable.

We design a semi-decision procedure.
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Disappearance relation for ϕ

s � t if, and only if, ∀k , s ∈ Sk ⇒ t ∈ Sk

where Sk state space left after k announcements 〈ϕ!〉.

S0 = S S1 S2 S3
. . . S∞ = ∩kSk
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Abstracting away from the iteration

Claim: M, s � 〈ϕ!〉∗ψ if, and only if,

∃t /∈ S∞ ∧ t � s∧︸ ︷︷ ︸
∃k∈N

M|{u | t � u}︸ ︷︷ ︸
Sk

, s � ψ

Consequence: if M and L� =

{
s

t

∣∣∣∣ s � t

}
are regular,

then J〈ϕ!〉∗ψK(M) is effectively regular.
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Contribution: Learning �

Theorem
Given some PPAL formula ϕ, and � its disappearance relation.
The learning procedure terminates and returns L� if, and only if,
L� is regular.

We run L* algorithm (Angluin, 87) by implementing:

1. A membership oracle: given s, t ∈ S , s
?
� t;

2. An equivalence oracle: given L′ regular, does L′ = L� and
if not, provide counterexample w ∈ L\L� ∪ L�\L.
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Theorem (Unique Characterization)

For R ⊆ S × S , R =�, iff:

1. ∀s : (s, s) ∈ R

and

2. ∀s1, s2, s3 : (s1, s2) ∈ R ∧ (s2, s3) ∈ R → (s1, s3) ∈ R

and

3. ∀s, t : (s, t) ∈ R ∨ (t, s) ∈ R

and

4. ∀s

{
either ∀t : (s, t) ∈ R → (t, s) /∈ R ↔ t ∈ F (sR·)

or ∀t : (s, t) ∈ R → (t, s) ∈ R ∧ t ∈ F (sR·)

All quantifications are made over Σk ∩ S for some fixed length k .

Reflexive

Transitive

Total

FO properties over R

→ Regular Language Queries

{
w

w

∣∣∣∣w ∈ LS

}
⊆ LR

Some “F” property
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All quantifications are made over Σk ∩ S for some fixed length k .
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Transitive
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not deleted when s is about to disappear.

Two cases:
(1) s really disappears;
(2) s never disappears.

Some “F” property

FO Property over R and {(u, v) | v ∈ F(uR·)}
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3: Applications and extensions
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Muddy Children

“After arbitrary but finitely many rounds, all the muddy
children know they’re muddy.”

ϕ = 〈∃i : mi !〉〈∃i : mi ∧ ¬Kimi︸ ︷︷ ︸
ψ

!〉∗⊥

L� =

{
s
t

∣∣∣∣|s|m ≤ |t|m} ⊆ ({m, c} × {m, c})∗

is not regular
Counter measure: restrict to states s ∈ {m}∗ · {c}∗.
Soundness: the model and the formula are stable by
permutation.
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Muddy Children

“After arbitrary but finitely many rounds, all the muddy
children know they’re muddy.”

ϕ = 〈∀i ,mi+1 → mi !〉 〈∃i : mi !〉〈∃i : mi ∧ ¬Kimi︸ ︷︷ ︸
ψ

!〉∗⊥

L� =

{
s
t

∣∣∣∣|s|m ≤ |t|m ∧ s, t ∈ {m}∗ · {c}∗
}
⊆ ({m, c}×{m, c})∗

is

not

regular
Counter measure: restrict to states s ∈ {m}∗ · {c}∗.
Soundness: the model and the formula are stable by
permutation.

32 / 38



Dining Cryptographer algorithm

I Every cryptographer i has a private boolean pi .

I Goal: Decide whether
∑

i pi > 0 without disclosing the pi ’s

Algorithm:

I For each i , sample a boolean ci shared between i and i + 1%N.

I Publicly announce the result of ci ⊕ ci−1%N ⊕ pi
I Compute

⊕
i ci .

Simplifications: non-probabilistic setting, sequential announcements.
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Mechanization

How to mechanize these announcements, to verify the following
properties?

Formalization
Private Variables: (pi )i∈[1;N] ∈ {0, 1}N
Goal1: “Everyone knows whether someone paid”

∀i , (Ki∃j : pj) ∨ (Ki∀j : ¬pj)

Goal2: “No knows who paid”

∀i 6= j ,¬(Kipj)

“sampling random variables”: (ci )i∈[1;N]

Announcement of agent i : result of computation
ri = ci ⊕ ci+1%N ⊕ pi
Agents compute

⊕
i ri =

⊕
i pi
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Public Announcement Whether
We introduce the new construct 〈ϕ!!〉ψ.
“After announcing whether there is at least one muddy child, ϕ”

J〈 ∃i : mi !!〉ϕK


cmm

mmm mcm

ccm

mmc mcc

cmc ccc

1

0

2

0

2

1

2 2

0

1

0

1


=

JϕK


cmm

mmm mcm

ccm

mmc mcc

cmc ccc

1

0

2

0

2

1

2

0

1


Good news

I Still regular: J〈ϕ!!〉ψK(M) = JψK(. . .)

I 〈ϕ!!〉∗ψ can be computed with a disappearance relation on pair of
states:

L� ⊆ (Σ′ × Σ′)∗ where Σ′ = Σ× {0, 1} × Σ
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Sequentialization

In the dining cryptographer, all announcements are different formula. . .

or one single formula ϕ(i) :arameterized by i ∈ Agt.

Theorem (Addressed in Felix Thoma’s BA thesis)
There exists ϕ′ without free variables, such that

〈c0⊕ c1⊕ p0!!〉〈c1⊕ c2⊕ p1!!〉 . . . 〈cN ⊕ c0⊕ p0!!〉ϕcorrect ≡ 〈ϕ′!!〉∗ϕcorrect

Key ideas:

I Track the announcements already been made, by evaluating the
current common knowledge.

I The same announcement should be made from all the states, at the
same time.

I Solution 1: common knowledge operator ∼∗ (similar to safety
analysis).

I Solution 2: introducing All(ϕ) operator, whose semantics is regular.
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Summary

Regular Model Checking approach to

overKnowledge Reasoning Parameterized Systems

PPAL

( )∗
Iterated Announcements

Regular Models

Learning of �’s regular encoding

Future work:

I Dynamic Epistemic Logic (more systematic way to dining
cryptographer, stochastic behaviours).

I Planning: how to synthesize announcements (card protocols).

I Mechanize the symmetry reductions (Parikh images).

I More succint models (expressing fixed point in MONA).
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Thanks for your attention
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