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Muddy Children Puzzle (Littlewood, 1953)

@: Father: at least one of you
is muddy!

_ Children: 777

@: Father: indeed, no one
kngws.

Y% Muddy children: ah, yes
we know we're muddy.

<
@' Clean children: ah, yes we
know we're clean.
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Model checking problem: given some model M and some
specification ¢, decide whether M F ¢;

Parameterized problem: the number of agents (children) is
not fixed.
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» Model checking problem: given some model M and some
specification ¢, decide whether M F ¢;

» Parameterized problem: the number of agents (children) is
not fixed.

Applications: analysis of communication protocols involving
identical arbitrarily many processes

Outline

1. Parameterized Public Announcement Logic on Regular
Structures;

2. Active Learning of Iterated Public Announcement
3. Extensions
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1: Parameterized Public Announcement
Logic (Modal Logic)
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Cod . .
(S5): For every i, ~ is an equivalence relation.
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Kripke Structures

Case with 3 chiIdren
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cmm ————— ccm
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Kripke Structures

Case with 3 chiIdren

cmc

““From a glven state s,
/ / > If s~ t, i may think we are in
cmm ————— ccm
0 » If for all £ such that s ~ ¢, t
0 satisfies some property ¢, then
0 mmc mcc .
5 5 i knows that ¢ holds (from s).
/ / > Any agent knows the structure
mmm B mcm of the graph: common

knowledge.
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Parameterized Verification of a property ¢

cmcc cccce
/ as
1 1 cmmc —— ccmi
cm CC cmc CCC :
} } mmcc '-_mccc;
1 O
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0 v lemem:.iccem
1 01 S
mm——mc ( 9 mmc 5 mcc cmmm ——ccmm
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= 90? (for all states of all instances)

< Infinite collection of systems
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PAL: Public Announcement Logic (Plaza, 07)
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p € AP is an atomic proposition;
a € N is a constant;
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PPAL: Parameterized Public Announcement Logic
After announcing ¢, 1 holds
i knows ¢

er=p| Tlorp 0| Kp [ (oY [Tiie|i=0]i%k=0|i=j+a

Where:
p € AP is an atomic proposition;
a € N is a constant;
i,j are index variables, for agents and atomic propositions.
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PPAL: Parameterized Public Announcement Logic
After announcing ¢, 1 holds
i knows ¢

pu=pi|Tlenp 0| K | (oY [Titp|i=0]i%k=0]i=j+a

Where:
p € AP is an atomic proposition;
a € N is a constant;
i,j are index variables, for agents and atomic propositions. Modal
logic, also similar to wS1S. Now combined with Public Announcements.
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Semantics of a PPAL formula ¢
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Semantics of a PPAL formula ¢
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Semantics of a PPAL formula ¢

“After announcing there is at least one muddy child,

[(3i:m; Nyl

all the muddy children know they're muddy”

= {emc, mcc, ccm}

Pp=Vjm;—Kjm;
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Semantics of ¢ on a paramaterized system

cm cc 2cmc »»»»»2»ccc
.
[(Fi: mihVj: m; - Kimj] o T e =
01
mm mc 0 mmc - mcc
2 2
L
mmm mcm

10/38



Semantics of ¢ on a paramaterized system

[(Fi: mihVj: m; - Kimj]

cm cc 2cmc »»»»»2»ccc
a7
0 0 cmm ccm O
0 0|1
mm mc 0 2mmc <<<<< 2mcc
1
mmm mcm
mccc,
mcc,
mc, cmcc,
cmc,
cm, ccmc,
ccm,
cccm,

10/38



Semantics of ¢ on a paramaterized system

[(Fi: mihVj: m; - Kimj]

{e}* - {m} - {c}*

cm cc 2cmc »»»»»2»ccc
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mm mc 0 2mmc <<<<< 2mcc
1
mmm mcm
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Definition (Regular Kripke structure)
M =(S5,L,AP,~, L) where:
> > finite alphabet;
> AP finite set of atomic propositions;
> SCY*
> Forall 0 <i<|s|, Li(s) C AP;
>

~ is encoded as a length-preserving transducer:

TM=<s® 0....0-1-|0|...0 QKt|s~t
i s|—i—1
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Contribution: Regular Semantics of a PPAL formula
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Theorem

If M is a regular Kripke structure, then [¢](M) is a regular language.
Moreover, the transformation is effective.

PPAL model checking is decidable.
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Contribution: Regular Semantics of a PPAL formula

n |

Wi Wi~y Wy p —————— + My,wEop
0’7110’77’71
w2

Theorem

If M is a regular Kripke structure, then [¢](M) is a regular language.
Moreover, the transformation is uniformly effective.

PPAL model checking is decidable.

Application Verify the parameterized solution of van Ditmarsch (2003)
for 34+x+1 cards.
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Another Example: Russian card problem, with 3 +3 + 1
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Alice's goal:
e Making Bob aware of her hand;
e Not disclosing any card to Catherine (except her own).

Alice
Bob

Catherine
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2: Iterated Announcement
» Safety Regular Model Checking
» Active Learning approach

» Learning Disappearance Relation
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How many announcements before a (sub)formula holds?
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One muddy child — 1 PA,;
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How many announcements? lterated Announcement

How many announcements before a (sub)formula holds?
Muddy Children Example:

One muddy child — 1 PA,;

Two muddy children — 2 PA;

Three muddy children — 3 PA .. ..

k muddy children require k announcements to conclude on their
state.

No fixed PPAL formula

PPAL* = PPAL + iterated announcement:

(™ =3k e N: () ... ()9
—_——

k times
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Safety Analysis Strategies

Some techniques:

>

>

Regular Model Checking Using Inference of Regular
Languages (Habermehl and Vojnar, 04)

Parameterized verification through view abstraction
(Abdulla, Haziza, and Holik, 15)

Regular Model Checking using Widening Techniques
(Touili, 01)

Regular Model Checking Using Solver Technologies and
Automata Learning (Neider and Jansen, 13)
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Safety Analysis Strategies
Some techniques:

» Regular Model Checking Using Inference of Regular
Languages (Habermehl and Vojnar, 04)

» Parameterized verification through view abstraction
(Abdulla, Haziza, and Holik, 15)
» Regular Model Checking using Widening Techniques
(Touili, 01)
» Regular Model Checking Using Solver Technologies and
Automata Learning (Neider and Jansen, 13)
Most of these are based on finding a regular invariant:

Definition

I e Reg(Z) such that Contains all reachable
1. Init C [: configurations
2. Iﬂ Bad = @1 Init

3. Post(l) C I
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Active Learning: the 20 questions game example

“Think of a character, object or animal, and let me ask you
questions.”

The learner asks arbitrary ®

The teacher answers by
YES/NO/MAYBE.

https://akinator.com

https://en.wikipedia.org/wiki/Twenty_questions
19/38



Active Machine Learning

atarget T

.[ Queries o _
l@l

b,
‘Learner

Answers

an hypothesis H

The Concept class C describes all possible values of H € C;
Goal for Learner: find H =T or at least H ~= T
Active learning: the learner chooses the questions.

20/38



Regular Language Active Learning (Angluin's L*, 87)

For regular machine learning, the concept to learn is a finite
automaton H:

P> concept class C is the set of all finite automata over *
> The target is a language L C ¥*.

Goal: L(H) =1L

Two types of queries:

» Membership queries: “Does w € L?" for some given w € ¥*
Answer: YES or NO;

» EQuivalence queries: "Is L(H) = L?" for some given DFA H
Answer: YES or NO and a counterexample w € L(H)AL

Symmetric Difference of A and B: AAB := A\BU B\A.
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Example of a Learner: learnlib

Java Library for active learning of regular languages:
https://learnlib.de/

€ > C (0 & github.com/LearnLib/ Jwiki/ 9 ple-learning-setup
This whole procedure can be implemented as follows:

DefaultQuery<Input, Word<string>> counterexample = null;

do {

if (counterexample == null) {
learner.startLearning();

} else {
boolean refined = learner.refineHypothesis(counterexample);
if (!refined) {

System.err.println("No refinement effected by counterexample!");

}

}

counterexample = eqoracle.findCounterExample(learner.getHypothesisModel(), alphabet);
} while (counterexample != null);

// from here on learner.getHypothesisModel() will provide an accurate model

The do-while loop will be executed as long as counterexamples are discovered by the equivalence oracle. Once the loop
terminates the hypothesis model provided by the learner is guaranteed to be an exact representation of the target system if the
equivalence oracle is guaranteed to find any behavioral mismatches between the hypothesis and the target system (which is
the case in this example).

22/38
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Implementation of a Teacher

Isaac L?

il

Teacher

NO, b is also in

A teacher provides Oracles (here: a M oracle and a EQ oracle).
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Implementation of a Teacher

Isaac L?

NO, b is also in

Teacher

A teacher provides Oracles (here: a M oracle and a EQ oracle).

P In practice, the teacher may not know the target L, this is
fine as long as he can answers the queries.

> The target might not be regular. In this case, the learner will
to find a suitable automaton H.

23/38



A safety teacher

A regular invariant is defined as first-order properties.

Definition (Regular Invariant)
I € Reg(X) such that

1. Init C I;

2. 1N Bad = 0;

3. Post(l) C I
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A safety teacher
A regular invariant is defined as first-order properties.
Definition (Regular Invariant)
| € Reg(X) such that
1. Init C I;
2. 1N Bad = 0;
3. Post(l) C I or equivalently: (/@ X*)N T, C¥X*® |/

Oracle for learning some target /:
» Membership: Given w, check whether 3w’ € Init : w/' ~* w.
» EQuivalence queries: Check that the three above properties
hold for the hypothesis.
Consequence: using Angluin’'s L* algorithm, the learning
procedure terminates, iff Post” (Init) is regular, or contain a bad
state.
Uncovered here: there might be more than one invariant, so there
is some slack in the oracle’s answer (for membership queries, and

for counterexample in (3)). 238



How many announcements? lterated Announcement

Muddy Children Example: k muddy children require k
announcements to conclude on their state.
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How many announcements? lterated Announcement

Muddy Children Example: k muddy children require k
announcements to conclude on their state.

No fixed PPAL formula
PPAL* = PPAL + iterated announcement:

(Y =3k e N: (ph) ... (ph)
—_—

k times

Theorem
Model checking of a regular Kripke structure against:

» a PPAL formula is decidable;
» a PPAL* formula is undecidable.

We design a semi-decision procedure.
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Disappearance relation for ¢
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Abstracting away from the iteration

Claim: M, s E (pY*¢ if, and only if,
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Abstracting away from the iteration

Claim: M, s E (pY*¢ if, and only if,

It ¢ Soo Nt =< SA M|{u‘tju}’5hw

JkeN T

Consequence: if M and L< = {

then [(p!)*y] (M) is effectively regular.

s= t} are regular,
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Contribution: Learning <

Theorem

Given some PPAL formula ¢, and =< its disappearance relation.

The learning procedure terminates and returns L< if, and only if,
L< is regular.
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Contribution: Learning <

Theorem

Given some PPAL formula ¢, and =< its disappearance relation.

The learning procedure terminates and returns L< if, and only if,
L< is regular.

We run L* algorithm (Angluin, 87) by implementing:
?
1. A membership oracle: given s,t € S, s < t;

2. An equivalence oracle: given L’ regular, does L’ = L~ and
if not, provide counterexample w € L\L< U L<\L.
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Theorem (Unique Characterization)
ForRCS xS, R=X, iff:

where sR- = {u | (s,u) € R} is the set of all states (presumably)
not deleted when s is about to disappear.

Two cases:
(1) s really disappears;
(2) s never disappears.
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3: Applications and extensions
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Muddy Children
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“After arbitrary but finitely many rounds, all the muddy
children know they're muddy.”
Y = <E|I . m,|><E|I tm; A —|K,-m,-!>*J_

-~

¥

- {
-
is not regular
Counter measure: restrict to states s € {m}* - {c}*.
Soundness: the model and the formula are stable by
permutation.
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Muddy Children

“After arbitrary but finitely many rounds, all the muddy
children know they’'re muddy.”

Y = <VI7 m;;; — m,') <E|I . m,'><§|/ - m; A —|K,mL|)*J_

L= {F el < ltln A5t € m) - (61} € ((m.ch e,y

P
is regular
Counter measure: restrict to states s € {m}* - {c}*.
Soundness: the model and the formula are stable by
permutation.
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Dining Cryptographer algorithm

2
20 2

O

» Every cryptographer i has a private boolean p;.
» Goal: Decide whether 3, p; > 0 without disclosing the p;'s

5 3
O

Algorithm:
» For each i, sample a boolean ¢; shared between i and i + 1%N.
> Publicly announce the result of ¢; ® ¢;_19n © p;
> Compute @); ;.
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Dining Cryptographer algorithm

2
20 2

O

» Every cryptographer i has a private boolean p;.
» Goal: Decide whether 3, p; > 0 without disclosing the p;'s

5 3
O

Algorithm:

» For each i, sample a boolean ¢; shared between i and i + 1%N.

> Publicly announce the result of ¢; ® ¢;_19n © p;
> Compute @); ;.

Simplifications: non-probabilistic setting, sequential announcements.
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Mechanization

How to mechanize these announcements, to verify the following
properties?

Formalization

Private Variables: (pi)icp;n € {0, 1}V

Goall: “Everyone knows whether someone paid”
Vi, (K,H_] : pj) V (K,V_j : —|pj)

Goal2: “No knows who paid”

Vi # j, ~(Kipj)
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Mechanization

How to mechanize these announcements, to verify the following
properties?

Formalization
Private Variables: (pi)icp;n € {0, 1}V
Goall: “Everyone knows whether someone paid”

Vi, (Ki3j - pj) V (KiVj - —|pj)
Goal2: “No knows who paid”
Vi # j,~(Kip;)

“sampling random variables”: (¢;)ic[1:n
Announcement of agent i: result of computation
ri = ¢ @ Ciy1%n D pi

Agents compute D, ri = D, pi
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Public Announcement Whether

We introduce the new construct (p!!)e).
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[{ 3i:m; My

35/38



Public Announcement Whether

We introduce the new construct (p!!)e).
“After announcing whether there is at least one muddy child, ¢"

[{3i:m; M)

35/38



Public Announcement Whether

We introduce the new construct (p!!)e).

“After announcing whether there is at least one muddy child, ¢"

[{ 3i:m; My

cmc CCC

35/38



Public Announcement Whether

We introduce the new construct (p!!)e).

“After announcing whether there is at least one muddy child, ¢"

[{ 3i:m; My

Good news

» Still regular: [{(@!MY](M) = [¥](...)

cmc CCC

» (p!1)*1) can be computed with a disappearance relation on pair of

states:

L<C (X xY)

where ¥’ =¥ x {0,1} x
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or one single formula ¢(i) :arameterized by i € Agt.

Theorem (Addressed in Felix Thoma's BA thesis)

There exists @' without free variables, such that
<C0 D ® po!!><C1 Dod P1”> ce <CN Sad pO!!><F7correct = <90/”>*90correct

Key ideas:

» Track the announcements already been made, by evaluating the
current common knowledge.

» The same announcement should be made from all the states, at the
same time.

*

» Solution 1: common knowledge operator ~
analysis).

(similar to safety
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Sequentialization
In the dining cryptographer, all announcements are different formula. ..

or one single formula ¢(i) :arameterized by i € Agt.

Theorem (Addressed in Felix Thoma's BA thesis)

There exists @' without free variables, such that
<C0 D ® po!!><C1 Dod P1”> ce <CN Sad pO!!><F7correct = <90/”>*90correct

Key ideas:

» Track the announcements already been made, by evaluating the
current common knowledge.

» The same announcement should be made from all the states, at the
same time.

*

» Solution 1: common knowledge operator ~
analysis).

(similar to safety

> Solution 2: introducing All(¢) operator, whose semantics is regular.
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Summary

Regular Model Checking approach to

Knowledge Reasoning over Parameterized Systems
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Summary
/ Learning of <'s regular encoding

Regular Model Checking approach to

Knowledge Reasoning over Parameterized Systems

e e
QB//EPPAL (@,”:Y Iterated Announcements

Regular Models

Future work:

» Dynamic Epistemic Logic (more systematic way to dining
cryptographer, stochastic behaviours).

» Planning: how to synthesize announcements (card protocols).

v

Mechanize the symmetry reductions (Parikh images).

» More succint models (expressing fixed point in MONA).
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Thanks for your attention
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