BuDDy: Binary Decision Diagram package
Release 2.2a

Jorn Lind-Nielsen
IT-University of Copenhagen (ITU)

e-mail: buddy @t u. dk
August 6, 2003

This manual documents a few changes not in the official 2.2 version from Jgrn Lind-Nielsen. These are the
following functions: bdd_existcomp, bdd_foral Icomp, bdd_uniguecomp, bdd_appexcomp,
bdd_appal Icomp, bdd_appunicomp, bdd mergepairs, and bdd_copypairs.
Alexandre Duret-Lutz, Liboratoire d’Informatique de Paris 6 (LIP6/SRC)
e-mail: aduret@src.lip6.fr

Contents

1 Introduction
1.1 Acknowledgements e e e e

2 Users Guide

2.1 Getting BuDDY e e e e
2.2 Installing e e e e e
2.3 Compiling e e e
2.4 Programming with BuDDy

241 MoreExamples e e e
25 Mariablesets
2.6 Dynamic Variable Reordering e
2.7 ErrorHandling e e
2.8 TheC++interface e
2.9 Finite Domain Blocks
2.10 Boolean VECtOrS e e e e e e e

2.10.1 CH++lnterface e e e

3 Efficiency Concerns
4 Some Implementation details

5 Reference
bddCacheStat e e e e e
bddGhcStat e e e
bddStat e e e
bdd_addref e e
bdd_addvarblock e e
bdd_intaddvarblock e
bdd_allsat e e e
bdd_and e e
bdd_anodecount e e e
bdd_appall e e
bdd_appallcomp L e e e
bdd_appex e e e
bdd_appexcomp e e e e e
bdd_apply e e e
bdd_appuni e e e e e
bdd_appunicomp e e e e
bdd_autoreorder L e e e e
bdd_autoreorder_times L. e e e
bdd_biimp
bdd_blockfile_hook e
bdd_buildcube L e e
bdd_ibuildcube e e

CONNO O O1OTHAWWwWwww =

[E=Y
(=Y

13

bdd_cachestats L e e e e 30

bdd_clear_error e e e e e 30
bdd_clrvarblocks 30
bdd_compose e e e e 31
bdd_constrain e e e e 31
bdd_copypair e e e e 31
bdd_delref e e e e 32
bdd_disable_reorder 32
bdd_done e e e e 32
bdd_enable_reorder 33
bdd_error_hook L e e e e 33
bdd_errstring e e e e e 34
bdd_exist e e e e e 34
bdd_existcomp e e e e 34
bdd_extvarnum e e e e e e 35
bdd_false e e e 35
bdd_file_hook 36
bdd_forall e e e e 36
bdd_forallcomp e e 37
bdd_freepair 37
bdd_fullsatone 37
bdd_gbc_hook 38
bdd_getallocnum L e e e 38
bdd_getnodenum 39
bdd_getreorder_method L e 39
bdd_getreorder_times 39
bdd_high e 40
bdd_Imp . e e e 40
bdd_init e 41
bdd_isrunning e e e e e 41
bdd_ite . . . e e 42
bdd_ithvar 42
bdd_level2var e e e e 42
bdd_load 43
bdd_fnload e e e e 43
bdd_low 43
bdd_makeset e e e e e 44
bdd_mergepairs e e e e 44
bdd_newpair e e e e e 45
bdd_nithvar e e e e 45
bdd_nodecount 45
bdd_not e e e e 46
bdd_or . . . 46
bdd_pathcount 46
bdd_printall e e 47
bdd_fprintall e e e e e 47
bdd_printdot e e e e 47
bdd_fprintdot e e e 47
bdd_printorder L 48
bdd_printset e e e e 48
bdd_fprintset 48
bdd_printstat e e e 49
bdd_fprintstat 49

bdd_printtable e 49

bdd_fprinttable 49
bdd_relprod e 49
bdd_reorder e e 50
bdd_reorder_gain 50
bdd_reorder_hook L e e e e 51
bdd_reorder_probe 52
bdd_reorder_verbose e e e 52
bdd_replace 53
bdd_resetpair e e e 53
bdd_resize_hook e e 54
bdd_restrict e e e 54
bdd_satcount L e e e e 55
bdd_setcountset e e e 55
bdd_satcountln e e 55
bdd_setcountlnset e 55
bdd_satone e e 56
bdd_satoneset e e e e e 56
bdd_save e e 57
bdd_fnsave e e e 57
bdd_scanset e e e 57
bdd_setcacheratio e e 58
bdd_setmaxinCrease o e e e e e 58
bdd_setmaxnodenum e e e 59
bdd_setminfreenodes e e e 59
bdd_setpair 60
bdd_setbddpair 60
bdd_setpairs e e e e e e 60
bdd_setbddpairs 60
bdd_setvarnum L e e e e e 61
bdd_setvarorder e e e e 61
bdd_simplify e e 61
bdd_stats e e e e 62
bdd_strm_hook e 62
bdd_support 63
bdd_swapvar e e e e 63
bdd_true e e 64
bdd_unique 64
bdd_uniquecomp e e e 64
bdd_var e 65
bdd_var2level e e e 65
bdd_varblockall e 65
bdd_varnum e e 66
bdd_varprofile 66
bdd_veccompose e e e 66
bdd_versionnum e e e e e 67
bdd_versionstr L e e e e 67
bdd_Xor e e e 67
bddfalse e e e 68
bddtrue e e 68
DVEC . . e 68
bvec,add e e 69
bvec_addref e e 69

DVEC_COBICE . . . o o o e e e e 70

DVEC_CON . . . e e e 70
DVEC_COPY . . o o 70
bvec_delref . . . e e 71
bvec_div e e 71
bvec_divfixed e e e 71
bVeC eqQU e e 72
bvecfalse e 72
bvec_free e e 72
bvec_gte 72
bvec _gth e e 73
DVEC_ISCONSE e e e 73
bVeC ite . . . e e 73
Ve It . . e e e 74
bvec_lth . . . e e 74
bvec_mapl e e e e 74
bvec_map2 . . . 75
bvec_map3 . . . e e e e e 75
bvec_mul . . . e e 76
bvec_mulfixed L e e 76
bvec_neq 76
bvec_shl e e 77
bvec_shlfixed e e e 77
bvec Shr . . . e e e 77
bvec_shrfixed e e e e 78
bvec_sub . . . e e 78
bVeC_true . . . e e 79
bvecval e e 79
bVeC_var e e 79
bvec_varfdd e e 80
DVECVAIVEC e 80
fdd_clearall e e 80
fdd_domain e e e 81
fdd_domainnum e 81
fdd_domainsize e e e 81
fdd_equals 82
fdd_extdomain e e e 82
fdd_file_hook e e e 83
fdd_intaddvarblock e e 83
fdd_ithset e e 84
fdd_ithvar e e 84
fdd_makeset e e e 84
fdd_overlapdomain e e 85
fdd_printset e e e e 85
fdd_fprintset L 85
fdd_scanallvar e e 86
fdd_scanset e e 86
fdd_scanvar e e e e 86
fdd_setpair e e e e 87
fdd_setpairs 87
fdd_strm_hook e e 88
fdd_varnum e 88
fddovars e e e 89

operator<<

Vi

Chapter 1

Introduction

BuDDy is a Binary Decision Diagram package that provides all of the most used functions for manipulating
BDDs. The package also includes functions for integer arithmetics such as addition and relational operators.

BuDDy started as a technology transfer project between the Technical University of Denmark and Bann Vi-
sualstate. The later is now using the techniques from BuDDy in their software. See www . visualstate.com.

This manual describes only the interface to BuDDy, not the underlying theory of BDDs. More information
about that can be found in Henrik Reif Andersen’s “An Introduction To Binary Decision Diagrams” which is
supplied with the BuDDY distribution. Even more information can of course be found in the original papers by
Bryant, Rudell and Brace [2, 1, 3, 4]

1.1 Acknowledgements

Thanks to the following people for new ideas, bug hunts and lots of discussions: Gerd Behrmann, Henrik
Reif Andersen, Ken Larsen, Jacob Lichtenberg, Poul Williams, Nikolaj Bjorner, Alan Mishchenko, Henrik
Hulgaard, and Malte Helmert.

Chapter 2

Users Guide

2.1 Getting BubDDy

BuDDy can be found on the server http://www. itu.dk/research/buddy.

2.2 Installing

1. Edit the file "config” to specify your compiler and install options.

N

. Type make to make the binary.

w

. Type make install to copy the BDD files to their appropriate directories

SN

. Type make examples to make the examples

2.3 Compiling

This is rather simple. Just inform the compiler of where the binaries and include files are installed. With
Gnu C this is done with the -1 and —-L options. Assuming that the binary library Fibbdd.a is installed in
/usr/local/lib and the include file bdd.h is installed in Zusr/local/include, then the compile
command should be

cc -1/usr/local/include myfile.c -o myFfile -L/usr/include/lib -1bdd

If the above directories are included in your search path already, then you might be able to reduce the command
to

cc myfile.c -o myfile -1bdd

2.4 Programming with BuDDy

First of all a program needs to call bdd_init(nodenum, cachesize) to initialize the BDD package. The

nodenum parameter sets the initial number of BDD nodes and cachesi ze sets the size of the caches used

for the BDD operators (not the unique node table). These caches are used for bdd _app Iy anmong others.
Good initial values are

Example nodenum cachesize
Small test examples 1000 100
Small examples 10000 1000
Medium sized examples 100000 10000
Large examples 1000000 variable

#include <bdd.h>

main(void)

{
bdd x,y,z;

bdd_init(1000,100);
bdd_setvarnum(5);

X = bdd_ithvar(0);
y = bdd_ithvar(1);
z = bdd_addref(bdd_apply(x,y,bddop_and));

bdd_printtable(z);
bdd_delref(z2);
bdd_done();

Figure 2.1: Standard C interface to BuDDy. In this mode both ’bdd’ and "BDD’ can be used as BuDDy BDD
types. The C interface requires the user to ensure garbage collection is handled correctly. This means calling
’bdd_addref’ every time a new BDD is created, and ’bdd_delref” whenever a BDD is not in use anymore.

Too few nodes will only result in reduced performance as this increases the number of garbage collections
needed. If the package needs more nodes, then it will automatically increase the size of the node table. Use
bdd_setminfreenodes to change the parameters for when this is done and use bdd setcacheratio
to enable dynamical resizing of the operator caches. You may also use the function bdd _setmaxincrease
to adjust how BuDDy resizes the node table.

After the initialization a call must be done to bdd _setvarnumto define how many variables to use in this
session. This number may be increased later on either by calls to bdd_setvarnum or to bdd_extvarnum.

The atomic functions for getting new BDD nodes are bdd_ithvar (i) and bdd_nithvar (i) which
returns references to BDD nodes of the form (v;,0,1) and (v;, 1,0). The nodes constructed in this way corre-
sponds to the positive and negative versions of a single variable. Initially the variable orderisvg < v; < ... <
Upn—1 < Up.

The BDDs returned from bdd_i thvar (i) can then be used to form new BDDs by calling bdd apply(a,b,op)
where op may be bddop_and or any of the other operators defined in bdd . h. The apply function performs
the binary operation indicated by op. Use bdd_not to negate a BDD. The result from bdd _apply and any
other BDD operator must be handed over to bdd_addref to increase the reference count of the node before
any other operation is performed. This is done to prevent the BDD from being garbage collected. When a BDD
is no longer in use, it can be de-referenced by a call to bdd delref. The exceptions to this are the return
values from bdd_ithvar and bdd_nithvar. These do not need to be reference counted, although it is not
an error to do so. The use of the BDD package ends with a call to bdd _done. See the figures 2.1 and 2.2 for
an example.

Information on the BDDs can be found using the bdd_var, bdd _1owand bdd_high functions that returns
the variable labelling a BDD, the low branch and the high branch of a BDD.

Printing BDDs is done using the functions bdd_printal I that prints all used nodes, bdd printtable
that prints the part of the nodetable that corresponds to a specific BDD and bdd printset that prints a
specific BDD as a list of elements in a set (all paths ending in the true terminal).

24.1 MoreExamples

More complex examples can be found in the buddy/examp 1 es directory.

#include <bdd.h>

main(void)

{
bdd x,y,z;

bdd_init(1000,100);
bdd_setvarnum(5);

X = bdd_ithvar(0);
y = bdd_ithvar(1);
Z =X&Y;

cout << bddtable << z << endl;

bdd_done();

Figure 2.2: C++ interface to BuDDy. In this mode *bdd’ is a C++ class that wraps a handler around the standard
C interface, and the "BDD’ type referes to the standard C BDD type. The C++ interface handles all garbage
collection, so no calls to bdd_addref’ and *bdd _delref’ are needed.

2.5 Variable sets

For some functions like bdd_exist it is possible to pass a whole set of variables to be quantified, using BDDs
that represent the variables. These BDDs are simply the conjunction of all the variables in their positive form
and can either be build that way or by a call to bdd_makeset. For the bdd _restrict function the variables
need to be included in both positive and negative form which can only be done manually.

If for example variable 1 and variable 3 are to be included in a set, then it can be done in two ways, as
shown in figure 2.3.

2.6 Dynamic Variable Reordering

Dynamic variable reordering can be done using the functions bdd _reorder (int method) and bdd autoreorder (i
method). Where the parameter method, for instance can be BDD_REORDER WIN2ITE. The package must

know how the BDD variables are related to each other, so the user must define blocks of BDD variables, using
bdd_addvarblock(bdd var, int fixed). A block is a range of BDD variables that should be kept

together. It may either be a simple contiguous sequence of variables or a sequence of other blocks with ranges

inside their parents range. In this way all the blocks form a tree of ranges. Partially overlapping blocks are not

allowed.

Example: Assume the block v ... vg, is added as the first block and then the block vy ... wvs. This yields
the vy ... vg block at the top, with the v ... vg block as a child. If now the block v ... v4 Was added, it would
become a child of the v ... vg block, similarly the block vs . .. vg would be a child of the vy ... vg block. If
we add the variables vq, vo, v3 and vy as single variable blocks we at last get tree showed in figure 2.4. If all
variables should be added as single variable blocks then bdd_varblockal I can be used instead of doing it
manually.

The reordering algorithm is then to first reorder the top most blocks and there after descend into each block
and reorder these recursively - unless the block is defined as a fixed block.

If the user want to control the swapping of variables himself, then the functions bdd _swapvar bdd _setvarorder
may be used. But this is not possible in conjunction with the use of variable blocks and the bdd _swapvar is
unfortunately quite slow since a full scan of all the nodes must be done both before and after the swap. Other
reordering functions are bdd_autoreorder_times, bdd_reorder _verbose, bdd_sizeprobe hook

and bdd_reorder_hook. 5

#include <bdd.h>

main()
{
bdd v1, v3;
bdd seta, setb;
static int v[2] = {1,3};

bdd_init(100,100);
bdd_setvarnum(5);

vl = bdd_ithvar(l);
v3 bdd_ithvar(3);

/* One way */
seta = bdd_addref(bdd_apply(vl,v3,bddop_and));
bdd_printtable(seta);

/* Another way */
setb = bdd_addref(bdd_makeset(v,2));
bdd_printtable(setb);

Figure 2.3: Two ways to create a variable set.

Vo...Vg

|

V1...08

N

V1...04 Vs ...U8

AN

U1 Vo V3 V4

Figure 2.4: The variable tree for the variable blocks vg ... vg, v1 ... vg, V1 ... 04, V5 ... Vs, V1, V2, v3 aNd vy.

2.7 Error Handling

If an error occurs then a check is done to see if there is any error handler defined and if so it is called with
the error code of interest. The default error handler prints an error message on stderr and then aborts the
program. A handler can also be defined by the user with a call to bdd_error_hook.

2.8 TheC++interface

Mostly this consists of a set of overloaded function wrappers that takes a bdd class and calls the appropri-
ate C functions with the root number stored in the bdd class. The names of these wrappers are exactly the
same as for the C functions. In addition to this a lot of the C++ operators like | & - = == are overloaded in or-
der to perform most of the bdd_apply () operations. These are listed together with bdd _apply. The rest are

Operator Description Return value

= assignment

== test returns 1 if two BDDs are equal, otherwise 0
1= test returns 0 if two BDDs are equal, otherwise 1
bdd.id() identity returns the root number of the BDD

The default constructor for the bdd class initializes the bdds to the constant false value. Reference counting is
totally automatic when the bdd class is used, here the constructors and destructors takes care of all reference
counting! The C++ interface is also defined in bdd . h so nothing extra is needed to use it.

2.9 Finite Domain Blocks

Included in the BDD package is a set of functions for manipulating values of finite domains, like for example
finite state machines. These functions are used to allocate blocks of BDD variables to represent integer values
instead of only true and false.

New finite domain blocks are allocated using fdd_extdomainand BDDs representing integer values can
be build using Fdd_ithvar. The BDD representing identity between two sets of different domains can be
build using fdd_equal's. BDDs representing finite domain sets can be printed using fdd printset and
the overloaded C++ operator <<. Pairs for bdd_replace can be made using fdd_setpair and variable
sets can be made using fdd_ithset and Fdd makeset. The finite domain block interface is defined for
both C and C++. To use this interface you must include "*fdd.h"".

Encoding using FDDs are done with the Least Significant Bits first in the ordering (top of the BDD).
Assume variables V4 ... V3 are used to encode the value 12 - this would yield V, = 0,74, =0,15, = 1,V3 = 1.

An example program using the FDD interface can be found in the examples directory.

2.10 Boolean Vectors

Another interface layer for BuDDy implements boolean vectors for use with integer arithmetics. A boolean
vector is simply an array of BDDs where each BDD represents one bit of an expression. To use this interface
you must include ""bvec.h"". As an example, suppose we want to express the following assignment from an
expression

z:=y+10

what we do is to encode the variable y and the value 10 as boolean vectors y and v of a fixed length. Assume
we use four bits with LSB to the right, then we get

Yy = <y47"'7y1>
v=(1,0,1,0)

where each y; is the BDD variable used to encode the integer variable y. Now the result of the addition can be
expressed as the vector z = (z4, ..., z1) where each z; is:

2; = y; XOr v; XOr ¢;_1
and the carry in ¢; is
¢i = (y; and v;) or (¢;—1 and (y; or v;)).
with ¢o = 0. What is left now is to assign the result to z. This is a conjunction of a biimplication of each element

in the vectors, so the result is
4
R = /\ T; & 2.
=1
The above example could be carried out with the following C++ program that utilizes the FDD interface for

printing the result. 7

#include "bvec.h"

main()

{
int domain[2] = {16,16};

bdd_init(100,100);
fdd_extdomain(domain, 2);

bvec y = bvec_varfdd(0);
bvec v = bvec con(4, 10);
bvec z = bvec_add(y, Vv);

bvec x = bvec_varfdd(1);
bdd result = bddtrue;

for (int n=0 ; n<x.bitnum() ; n++)
result &= bdd_apply(x[n], z[n], bddop_biimp);

cout << fddset << result << endl << endl;

}

The relational operators <, >, <, >, =, 2 can also be encoded. Assume we want to encode x < y using the
same variables as in the above example. This would be done as:

#include "bvec.h"

main()

{
int domain[2] = {16,16};

bdd_init(100,100);
fdd_extdomain(domain, 2);

bvec y = bvec_varfdd(1);
bvec x bvec_varfdd(0);

bdd result = bvec lte(Xx,y);

cout << fddset << result << endl << endl;

}

Please note that all vectors that are returned from any of the bvec xxx functions are referenced counted by
the system.

2.10.1 C++Interface

The C++ interface defines the class

class bvec

{
public:

bvec(void);
bvec(int bitnum);
bvec(int bitnum, int val);

bvec(const bvec &v);
“bvec(void);

void set(int i, const bdd &b);
bdd operator[](int i) const;
int bitnum(void) const;

int empty(void) const;

bvec operator=(const bvec &src);

}

The default constructor makes an empty vector with no elements, the integer constructor creates a vector with
bitnumelements (all set to false) and the third constructor creates a vector with b i thum elements and assigns
the integer value val to the vector. Reference counting is done automatically. The i’th element in the vector

can be changed with set and read with operator[]. The number of bits can be found with bitnum and
the method empty returns true if the vector is a NULL vector.

10

Chapter 3

Efficiency Concerns

Getting the most out of any BDD package is not always easy. It requires some knowledge about the optimal
order of the BDD variables and it also helps if you have some knowledge of the internals of the package.

First of all — a good initial variable order is a must. Using the automatic reordering methods may be an
easy solution, but without a good initial order it may also be a waste of time.

Second — memory is speed. If you allocate as much memory as possible from the very beginning, then
BuDDy does not have to waste time trying to allocate more whenever it is needed. So if you really want speed
then bdd_init should be called with as many nodes as possible. This does unfortunately have the side effect
that variable reordering becomes extremely slow since it has to reorder an enormous amount of nodes the first
time it is triggered.

Third — the operator caches should be as big as possible. Use the function bdd _setcacheratio to
make sure the size of these is increased whenever more nodes are allocated. Please note that BuDDy uses a
fixed number of elements for these caches as default. You must call bdd_setcacheratio to change this. |
have found a cache ratio of 1:64 fitting for BDDs of more than one million nodes (the solitare example). This
may be a bit overkill, but it works.

Fourth — BuDDy allocates by default a maximum of 50000 nodes (LMb RAM) every time it resizes the
node table. If your problem needs millions of nodes, then this is way too small a number. Use bdd setmaxincrease
to increase this number. In the solitare example something like 5000000 nodes seems more reasonable.

Fifth — by default, BuDDy increases the node table whenever there is less than 20% nodes free. By
increasing this value you can make BuDDy go faster and use more memory or vice versa. You can change the
value with bdd_setminfreenodes.

So, to sum it up: if you want speed, then allocate as many nodes as possible, use small cache ratios and set
maxincrease. If you need memory, then allocate a small number of nodes from the beginning, use a fixed
size cache, do not change maxincrease and lower minfreenodes.

11

12

Chapter 4

Some Implementation details

e Negated pointers are not used.

o All nodes are stored in one big contiguous array which is also used as the hash table for finding identical
nodes.

e The hash function used to find identical nodes from the triple (level, low, high) spreads all nodes evenly
in the table. This means the average length of a hash chain is at most 1.

e Each node in the node table contains a reference count, the Ievel of the variable (this is its position in
the current variable order), the high and Tow part, a hash index used to find the first node in a hash
chain and a next index used to link the hash chains. Each node fits into 20 bytes of memory. Other
packages uses only 16 bytes for each node but in addition to this they must keep separate tables with
hash table entries. The effect of this is that the total memory consumption is 20 bytes for each node on
average.

e Reference counting are done on the externally referenced nodes only.
e The ANSI-C bdd type is an integer number referring to an index in the node table. In C++ it is a class.
e New nodes are created by doubling (or just extending) the node table, not by adding new blocks of nodes.

e Garbage collection recursively marks all nodes reachable from the externally referenced nodes before
dead nodes are removed.

e Reordering interrupts the current BDD operation and restarts it again afterwards.

e Reordering changes the hash function to one where all nodes of a specific level is placed in one continuous
block and updates the reference count field to include all recursive dependencies. After reordering the
package returns to the normal hash function.

13

14

Chapter 5

Reference

Boolean vectors

bvec

a boolean vector

bvec_add

builds a boolean vector for addition

bvec_addref

increase reference count of a boolean vector

bvec_coerce

adjust the size of a boolean vector

bvec_con build a boolean vector representing an integer value
bvec_copy create a copy of a bvec

bvec delref decrease the reference count of a boolean vector
bvec div builds a boolean vector for division

bvec_divfixed | builds a boolean vector for division by a constant
bvec_equ calculates the truth value of x = y

bvec _false build a vector of constant false BDDs

bvec _free frees all memory used by a boolean vector

bvec_gte calculates the truth value of x > y

bvec_gth calculates the truth value of x > y

bvec_isconst test a vector for constant true/false BDDs

bvec_ite calculates the if-then-else operator for a boolean vector
bvec_lte calculates the truth value of x < y

bvec_lth calculates the truth value of z < y

bvec_mapl map a function onto a boolean vector

bvec_map2 map a function onto a boolean vector

bvec_map3 map a function onto a boolean vector

bvec_mul builds a boolean vector for multiplication

bvec_ mulfixed | builds a boolean vector for multiplication with a constant
bvec_neq calculates the truth value of = # y

bvec_shl shift left operation (symbolic)

bvec_shlfixed | shift left operation (fixed number of bits)

bvec_shr shift right operation (symbolic)

bvec_shrfixed | shift right operation

bvec_sub builds a boolean vector for subtraction

bvec_true build a vector of constant true BDDs

bvec_val calculate the integer value represented by a boolean vector
bvec_var build a boolean vector with BDD variables

bvec_varfdd

build a boolean vector from a FDD variable block

bvec_varvec

build a boolean vector with the variables passed in an array

Finite domain variable blocks

15

fdd_clearall

clear all allocated FDD blocks

fdd_domain

bDD encoding of the domain of a FDD variable

fdd_domainnum

number of defined finite domain blocks

fdd_domainsize

real size of a finite domain block

fdd_equals

returns a BDD setting two FD. blocks equal

fdd_extdomain

adds another set of finite domain blocks

fdd_file_hook

specifies a printing callback handler

fdd_intaddvarblock

adds a new variable block for reordering

fdd_ithset

the variable set for the i’th finite domain block

fdd_ithvar

the BDD for the i’th FDD set to a specific value

fdd_makeset

creates a variable set for N finite domain blocks

fdd_overlapdomain

combine two FDD blocks into one

fdd_printset
fdd_fprintset

prints a BDD for a finite domain block

fdd_scanal lvar

finds one satisfying value of all FDD variables

fdd_scanset

scans a variable set

fdd_scanvar

finds one satisfying value of a FDD variable

fdd_setpair

defines a pair for two finite domain blocks

fdd_setpairs

defines N pairs for finite domain blocks

fdd_strm_hook

specifies a printing callback handler

fdd_varnum

binary size of a finite domain block

fdd_vars all BDD variables associated with a finite domain block
File input/output

bdd_load loads a BDD from a file

bdd_fnload

bdd printall
bdd_fprintall

prints all used entries in the node table

bdd_printdot
bdd _fprintdot

prints a description of a BDD in DOT format

bdd printset
bdd_fprintset

prints the set of truth assignments specified by a BDD

bdd_printtable
bdd fprinttable

prints the node table entries used by a BDD

bdd_save saves a BDD to a file
bdd_fnsave
operator<< c++ output operator for BDDs

Information on BDDs

bdd_anodecount

counts the number of shared nodes in an array of BDDs

bdd_high

gets the true branch of a bdd

bdd_low

gets the false branch of a bdd

bdd_nodecount

counts the number of nodes used for a BDD

bdd_pathcount

count the number of paths leading to the true terminal

bdd_satcount
bdd_setcountset

calculates the number of satisfying variable assignments

bdd_satcountlin
bdd_setcountlnset

calculates the log. number of satisfying variable assignments

bdd_support

returns the variable support of a BDD

bdd_var

gets the variable labeling the bdd

16

bdd_varprofile

\ returns a variable profile

Kernel BDD operations and data structures

bddCacheStat status information about cache usage
bddGbcStat status information about garbage collections
bddStat status information about the bdd package
bdd_addref increases the reference count on a node

bdd_cachestats

fetch cache access usage

bdd_clear_error

clears an error condition in the kernel

bdd_copypair

clone a pair table

bdd_delref

decreases the reference count on a node

bdd_done

resets the bdd package

bdd_error_hook

set a handler for error conditions

bdd_errstring

converts an error code to a string

bdd_extvarnum

add extra BDD variables

bdd_false

returns the constant false bdd

bdd_file_hook

specifies a printing callback handler

bdd_freepair

frees a table of pairs

bdd_gbc_hook

set a handler for garbage collections

bdd_getal locnhum

get the number of allocated nodes

bdd_getnodenum

get the number of active nodes in use

bdd_init initializes the BDD package
bdd_isrunning test whether the package is started or not
bdd_ithvar returns a bdd representing the 1’th variable

bdd_makeset

builds a BDD variable set from an integer array

bdd_mergepairs

merge two pair tables

bdd_newpair

creates an empty variable pair table

bdd_nithvar

returns a bdd representing the negation of the I’th variable

bdd_printstat
bdd _fprintstat

print cache statistics

bdd_resetpair

clear all variable pairs

bdd_resize_hook

set a handler for nodetable resizes

bdd_scanset

returns an integer representation of a variable set

bdd_setcacheratio

sets the cache ratio for the operator caches

bdd_setmaxincrease

set max. number of nodes used to increase node table

bdd_setmaxnodenum

set the maximum available number of bdd nodes

bdd_setminfreenodes

set min. no. of nodes to be reclaimed after GBC.

bdd_setpair
bdd_setbddpair

set one variable pair

bdd_setpairs
bdd_setbddpairs

defines a whole set of pairs

bdd_setvarnum

set the number of used bdd variables

bdd_stats returns some status information about the bdd package
bdd_strm_hook specifies a printing callback handler

bdd_true returns the constant true bdd

bdd_varnum returns the number of defined variables

bdd_versionnum

returns the version number of the bdd package

bdd_versionstr

returns a text string with version information

bddfalse

the constant false bdd

17

bddtrue

| the constant true bdd

BDD operators

bdd_allsat finds all satisfying variable assignments

bdd_and the logical "and’ of two BDDs

bdd_appall apply operation and universal quantification

bdd_appal Icomp apply operation and universal (complemented) quantification
bdd_appex apply operation and existential quantification
bdd_appexcomp apply operation and existential (complemented) quantification
bdd_apply basic bdd operations

bdd_appuni apply operation and unique quantification
bdd_appunicomp apply operation and unique (complemented) quantification
bdd_biimp the logical *bi-implication’ between two BDDs

bdd_bui ldcube
bdd_ibui ldcube

build a cube from an array of variables

bdd_compose

functional composition

bdd_constrain

generalized cofactor

bdd_exist existential quantification of variables
bdd_existcomp existential quantification of other variables
bdd_forall universal quantification of variables

bdd_foral Icomp

universal quantification of other variables

bdd_ful Isatone

finds one satisfying variable assignment

bdd_imp the logical “implication’ between two BDDs
bdd_ite if-then-else operator

bdd_not negates a bdd

bdd_or the logical "or’ of two BDDs

bdd_relprod

relational product

bdd_replace

replaces variables with other variables

bdd_restrict

restric a set of variables to constant values

bdd_satone

finds one satisfying variable assignment

bdd_satoneset

finds one satisfying variable assignment

bdd_simplify

coudert and Madre’s restrict function

bdd_unique

unique quantification of variables

bdd_uniquecomp

unique quantification of other variables

bdd_veccompose

simultaneous functional composition

bdd_xor

the logical "xor’ of two BDDs

Variable reordering

bdd_addvarblock
bdd_intaddvarblock

adds a new variable block for reordering

bdd_autoreorder
bdd_autoreorder_times

enables automatic reordering

bdd_blockfile_hook

specifies a printing callback handler

bdd_clrvarblocks

clears all variable blocks

bdd_disable_reorder

disable automatic reordering

bdd_enable_reorder

enables automatic reordering

bdd_getreorder_method

fetch the current reorder method

bdd_getreorder_times

fetch the current number of allowed reorderings

bdd_level2var

fetch the variable number of a specific level

bdd_printorder

prints the current order

18

bdd_reorder

start dynamic reordering

bdd_reorder_gain

calculate the gain in size after a reordering

bdd_reorder_hook

sets a handler for automatic reorderings

bdd_reorder_probe

define a handler for minimization of BDDs

bdd_reorder_verbose

enables verbose information about reorderings

bdd_setvarorder

set a specific variable order

bdd_swapvar

swap two BDD variables

bdd_var2level

fetch the level of a specific BDD variable

bdd_varblockall

add a variable block for all variables

19

bddCacheStat - Status information about cache usage

typedef struct s_bddCacheStat

{
long unsigned int uniqueAccess;
long unsigned int uniqueChain;
long unsigned int uniqueHit;
long unsigned iInt uniqueMiss;
long unsigned int opHit;
long unsigned int opMiss;
long unsigned int swapCount;

} bddCacheStat;

Description

The fields are

Name Number of
uniqueAccess accesses to the unique node table
uniqueChain iterations through the cache chains in the unique node table

uniqueHit entries actually found in the the unique node table
uniqueMiss entries not found in the the unique node table
opHit entries found in the operator caches

opMiss entries not found in the operator caches

swapCount number of variable swaps in reordering

See also

bdd_cachestats

bddGbcStat - Status information about garbage collections

typedef struct s _bddGbcStat
{

int nodes;

int freenodes;

long time;

long sumtime;

int num;
} bddGbcStat;

Description

The fields are

nodes Total number of allocated nodes in the nodetable

freenodes Number of free nodes in the nodetable

time Time used for garbage collection this time

sumtime Total time used for garbage collection

num number of garbage collections done until now
See also

bdd_gbc_hook

20

bddStat - Status information about the bdd package

typedef struct s bddStat
{
long int produced;
int nodenum;
int maxnodenum;
int freenodes;
int minfreenodes;
int varnum;
int cachesize;
int gbcnum;
} bddStat;

Description

The fields are

produced total number of new nodes ever produced
nodenum currently allocated number of bdd nodes
maxnodenum user defined maximum number of bdd nodes
freenodes number of currently free nodes
minfreenodes minimum number of nodes that should be left after a garbage
collection.
varnum number of defined bdd variables
cachesize number of entries in the internal caches
gbcnum number of garbage collections done until now
See also
bdd_stats

bdd_addref - increases the reference count on a node

BDD bdd_addref(BDD r)

Description

Reference counting is done on externaly referenced nodes only and the count for a specific node r can and must
be increased using this function to avoid loosing the node in the next garbage collection.

Return value
The BDD node r.

See also
bdd_delref

21

bdd_addvarblock - adds a new variable block for reordering

int bdd_addvarblock(BDD var, int Ffixed)
int bdd_intaddvarblock(int first, int last, int Fixed)

Description

Creates a new variable block with the variables in the variable set var. The variables in var must be contigu-
ous. In the second form the argument First is the first variable included in the block and last is the last
variable included in the block. This order does not depend on current variable order.

The variable blocks are ordered as a tree, with the largest ranges at top and the smallest at the bottom.
Example: Assume the block 0-9 is added as the first block and then the block 0-6. This yields the 0-9 block at
the top, with the 0-6 block as a child. If now the block 2-4 was added, it would become a child of the 0-6 block.
A block of 0-8 would be a child of the 0-9 block and have the 0-6 block as a child. Partially overlapping blocks
are not allowed.

The Fixed parameter sets the block to be fixed (no reordering of its child blocks is allowed) or free, using
the constants BDD_REORDER_FIXED and BDD_REORDER FREE. Reordering is always done on the top most
blocks first and then recursively downwards.

The return value is an integer that can be used to identify the block later on - with for example
bdd_blockfile hook. The values returned will be in the sequence 0, 1,2, 3,

Return value

A non-negative identifier on success, otherwise a negative error code.

See also
bdd_varblockall, fdd_intaddvarblock, bdd _clrvarblocks

22

bdd_allsat - finds all satisfying variable assignments

BDD bdd_allsat(BDD r, bddallsathandler handler)

Description

Iterates through all legal variable assignments (those that make the BDD come true) for the bdd r and calls the
callback handler handler for each of them. The array passed to handler contains one entry for each of the
globally defined variables. Each entry is either O if the variable is false, 1 if it is true, and -1 if it is a don’t care.

The following is an example of a callback handler that prints "X’ for don’t cares, ’0’ for zero, and ’1’ for
one:

void allsatPrintHandler(char* varset, int size)

{

for (int v=0; v<size ; ++v)

{
cout << (varset[v] <0 ? °X* - (char)(C0” + varset[v])):

}

cout << endl;

3
The handler can be used like this: bdd_allsat(r, allsatPrintHandler);

See also

bdd_satone bdd_satoneset, bdd_fullsatone, bdd_satcount, bdd_satcountin

bdd_and - The logical and’ of two BDDs

BDD bdd_and(BDD I, BDD r)

Description

This a wrapper that calls bdd_apply(l, r,bddop.and).

Return value

The logical ’and’ of 1 and r.

See also

bdd_apply, bdd_or, bdd xor

23

bdd_anodecount - counts the number of shared nodes in an array of BDDs

int bdd_anodecount(BDD *r, int num)

Description

Traverses all of the BDDs in r and counts all distinct nodes that are used in the BDDs—if a node is used in more
than one BDD then it only counts once. The num parameter holds the size of the array.

Return value

The number of nodes

See also

bdd_nodecount

bdd_appall - apply operation and universal quantification

BDD bdd_appall(BDD left, BDD right, int opr, BDD var)

Description

Applies the binary operator opr to the arguments Ieft and rightand then performs an universal quantifica-
tion of the variables from the variable set var. This is done in a bottom up manner such that both the apply and
quantification is done on the lower nodes before stepping up to the higher nodes. This makes the bdd appall
function much more efficient than an apply operation followed by a quantification.

Return value

The result of the operation.

See also

bdd_appex, bdd_appexcomp, bdd_appallcomp, bdd appuni, bdd_appunicomp, bdd_apply, bdd exist,
bdd_existcomp, bdd_forall, bdd_forallcomp, bdd_unique, bdd _uniquecomp, bdd_makeset

24

bdd_appallcomp - apply operation and universal (complemented) quantification

BDD bdd_appall(BDD left, BDD right, int opr, BDD var)

Description

Applies the binary operator opr to the arguments Ieft and right and then performs an universal quantifi-
cation of the variables which are not in the variable set var. This is done in a bottom up manner such that both
the apply and quantification is done on the lower nodes before stepping up to the higher nodes. This makes the
bdd_appal Icomp function much more efficient than an apply operation followed by a quantification.

Return value

The result of the operation.

See also

bdd_appex, bdd_appexcomp, bdd_appall, bdd_appuni, bdd_appunicomp, bdd_apply, bdd_exist, bdd _existcomp,
bdd_forall, bdd_forallcomp, bdd_unique, bdd_uniquecomp, bdd_makeset

bdd_appex - apply operation and existential quantification

BDD bdd_appex(BDD left, BDD right, int opr, BDD var)

Description

Applies the binary operator opr to the arguments Ieft and right and then performs an existential quan-
tification of the variables from the variable set var. This is done in a bottom up manner such that both the
apply and quantification is done on the lower nodes before stepping up to the higher nodes. This makes the
bdd_appex function much more efficient than an apply operation followed by a quantification. If the operator
is a conjunction then this is similar to the relational product of the two BDDs.

Return value

The result of the operation.

See also

bdd_appexcomp, bdd_appall, bdd_appallcomp, bdd_appuni, bdd_appunicomp, bdd_apply, bdd exist,
bdd_existcomp, bdd_forall, bdd_forallcomp, bdd_unique, bdd _uniquecomp, bdd_makeset

25

bdd_appexcomp - apply operation and existential (complemented) quantification

BDD bdd_appexcomp(BDD left, BDD right, int opr, BDD var)

Description

Applies the binary operator opr to the arguments Ieft and right and then performs an existential quantifi-
cation of the variables which are not in the variable set var. This is done in a bottom up manner such that both
the apply and quantification is done on the lower nodes before stepping up to the higher nodes. This makes the
bdd_appexcomp function much more efficient than an apply operation followed by a quantification.

Return value

The result of the operation.

See also

bdd_appex, bdd_appall, bdd_appallcomp, bdd_appuni, bdd _appunicomp, bdd_apply, bdd_exist, bdd _existcomp,
bdd_forall, bdd_forallcomp, bdd_unique, bdd_uniquecomp, bdd_makeset

bdd_apply - basic bdd operations

BDD bdd_apply(BDD left, BDD right, int opr)

Description

The bdd_apply function performs all of the basic bdd operations with two operands, such as AND, OR
etc. The left argument is the left bdd operand and right is the right operand. The opr argument is the
requested operation and must be one of the following

Identifier Description Truth table C++ opr.
bddop_and logical and (A A B) [0,0,0,1] &
bddop_xor logical xor (A & B) [0,1,1,0] -
bddop_or logical or (A V B) [0,1,1,1] |
bddop_nand logical not-and [1,1,1,0]
bddop_nor logical not-or [1,0,0,0]
bddop_imp implication (A = B) [1,1,0,1] >>
bddop biimp bi-implication (A < B) [1,0,0,1]
bddop_diff set difference (A \ B) [0,0,1,0] -
bddop_less less than (A < B) [0,1,0,0] <
bddop_invimp reverse implication (A < B) [1,0,1,1] <<

Return value

The result of the operation.

See also

bdd_ite

26

bdd_appuni - apply operation and unique quantification

BDD bdd_appuni(BDD left, BDD right, int opr, BDD var)

Description

Applies the binary operator opr to the arguments left and right and then performs a unique quantification
of the variables from the variable set var. This is done in a bottom up manner such that both the apply and
quantification is done on the lower nodes before stepping up to the higher nodes. This makes the bdd appuni
function much more efficient than an apply operation followed by a quantification.

Return value

The result of the operation.

See also

bdd_appex, bdd_appexcomp, bdd_appall, bdd_appallcomp, bdd _appuni, bdd _appunicomp, bdd_apply, bdd _exist,
bdd_existcomp, bdd_forall, bdd_forallcomp, bdd_unique, bdd_uniquecomp, bdd makeset

bdd_appunicomp - apply operation and unique (complemented) quantification

BDD bdd_appunicomp(BDD left, BDD right, int opr, BDD var)

Description

Applies the binary operator opr to the arguments left and right and then performs a unique quantification
of the variables which are not in the variable set var. This is done in a bottom up manner such that both the
apply and quantification is done on the lower nodes before stepping up to the higher nodes. This makes the
bdd_appunicomp function much more efficient than an apply operation followed by a quantification.

Return value

The result of the operation.

See also

bdd_appex, bdd_appexcomp, bdd_appall, bdd_appallcomp, bdd_appuni, bdd _apply, bdd _exist, bdd _existcomp,
bdd_forall, bdd_forallcomp, bdd_unique, bdd_uniquecomp, bdd_makeset

27

bdd_autoreorder - enables automatic reordering

int bdd_autoreorder(int method)
int bdd_autoreorder_times(int method, int num)

Description

Enables automatic reordering using method as the reordering method. If method is BDD REORDER NONE
then automatic reordering is disabled. Automatic reordering is done every time the number of active nodes in
the node table has been doubled and works by interrupting the current BDD operation, doing the reordering
and the retrying the operation.

In the second form the argument num specifies the allowed number of reorderings. So if for example a ”one
shot” reordering is needed, then the num argument would be set to one.

Values for method can be found under bdd_reorder.

Return value

Returns the old value of method

See also
bdd_reorder

bdd_biimp - The logical ’bi-implication’ between two BDDs

BDD bdd_biimp(BDD I, BDD r)

Description

This a wrapper that calls bdd_apply (1, r,bddop biimp).

Return value

The logical ’bi-implication” of I and r (I < 7).

See also

bdd_apply, bdd_imp

28

bdd_blockfile_hook - Specifies a printing callback handler

bddfilehandler bdd_blockfile_hook(bddfilehandler handler)

Description

A printing callback handler is used to convert the variable block identifiers into something readable by the end
user. Use bdd_blockfi le_hook to pass a handler to BuDDy. A typical handler could look like this:

void printhandler(FILE *o, int block)
{

extern char **blocknames;
fprintf(o, "%s'", blocknames[block]);

}

The handler is then called from bdd_printorder and bdd_reorder (depending on the verbose level)
with the block numbers returned by bdd_addvarblock as arguments. No default handler is supplied. The
argument hand ler may be NULL if no handler is needed.

Return value
The old handler

See also

bdd_printorder

bdd_buildcube - build a cube from an array of variables

BDD bdd_buildcube(int value, int width, BDD *var)
BDD bdd_ibuildcube(int value, int width, int *var)

Description

This function builds a cube from the variables in var. It does so by interpreting the width low order bits of
value as a bit mask-a set bit indicates that the variable should be added in it’s positive form, and a cleared bit
the opposite. The most significant bits are encoded with the first variables in var. Consider as an example the
call bdd_buildcube(0OxB, 4, var). This corresponds to the expression: var[0] A —var[l] A var[2] A
var[3]. The first version of the function takes an array of BDDs, whereas the second takes an array of variable
numbers as used in bdd_ithvar.

Return value

The resulting cube

See also
bdd_ithvar, fdd_ithvar

29

bdd_cachestats - Fetch cache access usage

void bdd_cachestats(bddCacheStat *s)

Description

Fetches cache usage information and stores it in s. The fields of s can be found in the documentaion for
bddCacheStat. This function may or may not be compiled into the BuDDy package - depending on the
setup at compile time of BuDDy.

See also
bddCacheStat, bdd_printstat

bdd_clear_error - clears an error condition in the kernel

void bdd_clear_error(void)

Description

The BuDDy kernel may at some point run out of new ROBDD nodes if a maximum limit is set with
bdd_setmaxnodenum. In this case the current error handler is called and an internal error flag is set.
Further calls to BuDDy will always return bddfalse. From here BuDDy must either be restarted or
bdd_clear_error may be called after action is taken to let BuDDy continue. This may not be especially
usefull since the default error handler exits the program - other needs may of course exist.

See also

bdd_error_hook, bdd_setmaxnodenum

bdd_clrvarblocks - clears all variable blocks

void bdd_clrvarblocks(void)

Description

Clears all the variable blocks that has been defined by calls to bdd_addvarblock.

See also
bdd_addvarblock

30

bdd_compose - functional composition

BDD bdd_compose(BDD ¥, BDD g, int var)

Description

Substitutes the variable var with the BDD g in the BDD f: result = f[g/var].

Return value

The composed BDD

See also

bdd_veccompose, bdd_replace, bdd _restrict

bdd_constrain - generalized cofactor

BDD bdd_constrain(BDD ¥, BDD c)

Description

Computes the generalized cofactor of ¥ with respect to c.

Return value

The constrained BDD

See also

bdd_restrict, bdd_simplify

bdd_copypair - clone a pair table

bddPair *bdd_copypair(bddPair *from)

Description

Duplicate the table of pairs from. This function allocates the cloned table. The table can be freed by a call to
bdd_freepair.

Return value

Returns a new table of pairs.

See also

bdd_newpair, bdd_freepair, bdd_replace, bdd_setpair, bdd _setpairs

31

bdd_delref - decreases the reference count on a node

BDD bdd_delref(BDD r)

Description

Reference counting is done on externaly referenced nodes only and the count for a specific node r can and must
be decreased using this function to make it possible to reclaim the node in the next garbage collection.

Return value

The BDD node r.

See also

bdd_addref

bdd_disable_reorder - Disable automatic reordering

void bdd_disable_reorder(void)

Description

Disables automatic reordering until bdd_enable_reorder is called. Reordering is enabled by default as
soon as any variable blocks have been defined.

See also

bdd_enable_reorder

bdd_done - resets the bdd package

void bdd _done(void)

Description

This function frees all memory used by the bdd package and resets the package to it’s initial state.

See also

bdd_init

32

bdd_enable_reorder - Enables automatic reordering

void bdd_enable_ reorder(void)

Description

Re-enables reordering after a call to bdd_disable_reorder.

See also

bdd_disable_reorder

bdd_error_hook - set a handler for error conditions

bddinthandler bdd_error_hook(bddinthandler handler)

Description

Whenever an error occurs in the bdd package a test is done to see if an error handler is supplied by the user and
if such exists then it will be called with an error code in the variable errcode. The handler may then print
any usefull information and return or exit afterwards.

This function sets the handler to be handler. If a NULL argument is supplied then no calls
are made when an error occurs. Possible error codes are found in bdd.h. The default handler is
bdd_default_errhandler which will use exit() to terminate the program.

Any handler should be defined like this:

void my error_handler(int errcode)

{
}

Return value

The previous handler

See also

bdd_errstring

33

bdd_errstring - converts an error code to a string

const char *bdd_errstring(int errorcode)

Description

Converts a negative error code errorcode to a descriptive string that can be used for error handling.

Return value

An error description string if e is known, otherwise NULL.

See also

bdd_err_hook

bdd_exist - existential quantification of variables

BDD bdd_exist(BDD r, BDD var)

Description

Removes all occurences in r of variables in the set var by existential quantification.

Return value

The quantified BDD.

See also

bdd_existcomp, bdd_forall, bdd_forallcomp, bdd_unique, bdd_uniquecomp, bdd _makeset

bdd_existcomp - existential quantification of other variables

BDD bdd_existcomp(BDD r, BDD var)

Description

Removes all occurences in r of variables not in the set var by existential quantification.

Return value

The quantified BDD.

See also

bdd_exist, bdd_existcomp, bdd_forall, bdd _forallcomp, bdd_unique, bdd _uniqguecomp, bdd_makeset

34

bdd_extvarnum - add extra BDD variables

int bdd_extvarnum(int num)

Description

Extends the current number of allocated BDD variables with num extra variables.

Return value

The old number of allocated variables or a negative error code.

See also
bdd_setvarnum, bdd_ithvar, bdd_nithvar

bdd_false - returns the constant false bdd

BDD bdd_false(void)

Description

This function returns the constant false bdd and can freely be used together with the bddtrue and bddfalse
constants.

Return value

The constant false bdd

See also
bdd_true, bddtrue, bddfalse

35

bdd_file_hook - Specifies a printing callback handler

bddfilehandler bdd_file_hook(bddfilehandler handler)

Description

A printing callback handler for use with BDDs is used to convert the BDD variable humber into something
readable by the end user. Typically the handler will print a string name instead of the number. A handler could
look like this:

void printhandler(FILE *o, int var)
{

extern char **names;
fprintf(o, "%s", names[var]);

}

The handler can then be passed to BuDDy like this: bdd_file_hook(printhandler).
No default handler is supplied. The argument handler may be NULL if no handler is needed.

Return value

The old handler

See also

bdd_printset, bdd_strm_hook, fdd_file_hook

bdd_forall - universal quantification of variables

BDD bdd_forall(BDD r, BDD var)

Description

Removes all occurences in r of variables in the set var by universal quantification.

Return value

The quantified BDD.

See also

bdd_exist, bdd_existcomp, bdd _forallcomp, bdd _unique, bdd_uniquecomp, bdd_makeset

36

bdd_forallcomp - universal quantification of other variables

BDD bdd_forallcomp(BDD r, BDD var)

Description

Removes all occurences in r of variables not in the set var by universal quantification.

Return value

The quantified BDD.

See also

bdd_exist, bdd_existcomp, bdd_forall, bdd_unique, bdd_uniquecomp, bdd_makeset

bdd_freepair - frees a table of pairs

void bdd_freepair(bddPair *pair)

Description

Frees the table of pairs pai r that has been allocated by a call to bdd_newpair.

See also

bdd_replace, bdd_newpair, bdd_setpair, bdd_resetpair

bdd_fullsatone - finds one satisfying variable assignment

BDD bdd_fullsatone(BDD r)

Description

Finds a BDD with exactly one variable at all levels. This BDD implies r and is not false unless r is false.

Return value

The result of the operation.

See also

bdd_allsat bdd_satone, bdd_satoneset, bdd_satcount, bdd _satcountin

37

bdd_gbc_hook - set a handler for garbage collections

bddgbchandler bdd_gbc hook(bddgbchandler handler)

Description

Whenever a garbage collection is required, a test is done to see if a handler for this event is supplied by the user
and if such exists then it is called, both before and after the garbage collection takes places. This is indicated by
an integer flag pre passed to the handler, which will be one before garbage collection and zero after garbage
collection.

This function sets the handler to be handler. If a NULL argument is supplied then no calls are
made when a garbage collection takes place. The argument pre indicates pre vs. post garbage collec-
tion and the argument stat contains information about the garbage collection. The default handler is
bdd_default gbchandler.

Any handler should be defined like this:

void my gbc handler(int pre, bddGbcStat *stat)
{

}

Return value

The previous handler

See also

bdd_resize_hook, bdd_reorder_hook

bdd_getallocnum - get the number of allocated nodes

int bdd_getallocnum(void)

Description

Returns the number of nodes currently allocated. This includes both dead and active nodes.

Return value

The number of nodes.

See also

bdd_getnodenum, bdd_setmaxnodenum

38

bdd_getnodenum - get the number of active nodes in use

int bdd_getnodenum(void)

Description

Returns the number of nodes in the nodetable that are currently in use. Note that dead nodes that have not been
reclaimed yet by a garbage collection are counted as active.

Return value

The number of nodes.

See also

bdd_getallocnum, bdd_setmaxnodenum

bdd_getreorder_method - Fetch the current reorder method

int bdd_getreorder_method(void)

Description

Returns the current reorder method as defined by bdd_autoreorder.

See also

bdd_reorder, bdd_getreorder _times

bdd_getreorder_times - Fetch the current number of allowed reorderings

int bdd_getreorder_times(void)

Description

Returns the current number of allowed reorderings left. This value can be defined by
bdd_autoreorder _times.

See also

bdd_reorder_times, bdd_getreorder_method

39

bdd_high - gets the true branch of a bdd

BDD bdd_high(BDD r)

Description

Gets the true branch of the bdd r.

Return value

The bdd of the true branch

See also

bdd_low

bdd_imp - The logical *implication’ between two BDDs

BDD bdd_imp(BDD I, BDD r)

Description

This a wrapper that calls bdd_apply(l, r,bddop_imp).

Return value

The logical ’implication’ of L and r (I =).

See also

bdd_apply, bdd_biimp

40

bdd_init - initializes the BDD package

int bdd_init(int nodesize, int cachesize)

Description

This function initiates the bdd package and must be called before any bdd operations are done. The argument
nodesize is the initial number of nodes in the nodetable and cachesize is the fixed size of the internal
caches. Typical values for nodesize are 10000 nodes for small test examples and up to 1000000 nodes for
large examples. A cache size of 10000 seems to work good even for large examples, but lesser values should
do it for smaller examples.

The number of cache entries can also be set to depend on the size of the nodetable using a call to
bdd_setcacheratio.

The initial number of nodes is not critical for any bdd operation as the table will be resized whenever there
are to few nodes left after a garbage collection. But it does have some impact on the efficency of the operations.

Return value

If no errors occur then 0 is returned, otherwise a negative error code.

See also
bdd_done, bdd_resize_hook

bdd_isrunning - test whether the package is started or not

void bdd_isrunning(void)

Description

This function tests the internal state of the package and returns a status.

Return value

1 (true) if the package has been started, otherwise 0.

See also

bdd_init, bdd_done

41

bdd_ite - if-then-else operator

BDD bdd_ite(BDD ¥, BDD g, BDD h)

Description

Calculates the BDD for the expression (f A g) V (—f A h) more efficiently than doing the three operations
separately. bdd_ite can also be used for conjunction, disjunction and any other boolean operator, but is not
as efficient for the binary and unary operations.

Return value
The BDD for (f Ag) V (=f Ah)

See also

bdd_apply

bdd_ithvar - returns a bdd representing the I’th variable

BDD bdd_ithvar(int var)

Description

This function is used to get a bdd representing the I’th variable (one node with the childs true and false).
The requested variable must be in the range define by bdd_setvarnum starting with 0 being the first. For
ease of use then the bdd returned from bdd_ithvar does not have to be referenced counted with a call to
bdd_addref. The initial variable order is defined by the the index var that also defines the position in the
variable order — variables with lower indecies are before those with higher indecies.

Return value

The I’th variable on succes, otherwise the constant false bdd

See also

bdd_setvarnum, bdd_nithvar, bddtrue, bddfalse

bdd_level2var - Fetch the variable number of a specific level

int bdd_level2var(int level)

Description

Returns the variable placed at position Ievel in the current variable order.

See also

bdd_reorder, bdd_var2level

42

bdd_load - loads a BDD from a file

int bdd_fnload(char *fname, BDD *r)
int bdd_load(FILE *ifile, BDD *r)

Description

Loads a BDD from a file into the BDD pointed to by r. The file can either be the file 1 i le which must be
opened for reading or the file named fname which will be opened automatically for reading.

The input file format consists of integers arranged in the following manner. First the number of nodes NV
used by the BDD and then the number of variables V' allocated and the variable ordering in use at the time the
BDD was saved. If V and V" are both zero then the BDD is either the constant true or false BDD, indicated by
a 1 or a0 as the next integer.

In any other case the next NV sets of 4 integers will describe the nodes used by the BDD. Each set consists of
first the node number, then the variable number and then the low and high nodes.

The nodes must be saved in a order such that any low or high node must be defined before it is mentioned.

Return value

Zero on succes, otherwise an error code from bdd . h.

See also
bdd_save

bdd_low - gets the false branch of a bdd

BDD bdd_low(BDD r)

Description

Gets the false branch of the bdd r.

Return value
The bdd of the false branch

See also
bdd_high

43

bdd_makeset - builds a BDD variable set from an integer array

BDD bdd_makeset(int *v, int n)

Description

Reads a set of variable numbers from the integer array v which must hold exactly n integers and then builds a
BDD representing the variable set.

The BDD variable set is represented as the conjunction of all the variables in their positive form and may just
as well be made that way by the user. The user should keep a reference to the returned BDD instead of building
it every time the set is needed.

Return value
A BDD variable set.

See also

bdd_scanset

bdd_mergepairs — merge two pair tables

bddPair *bdd_mergepairs(bddPair *left, bddPairs *right)

Description

Create a table of pairs that can be used to perform the rewritings of both Ieft and right. This cannot work
if the two tables contain incompatible rewrite pairs (for instance if left rewrite 1 to 2, and right rewrite 1 to 3).
This function allocates a new table. The table can be freed by a call to bdd _freepair.

Return value

Returns a new table of pairs.

See also

bdd_newpair, bdd_freepair, bdd_replace, bdd_setpair, bdd setpairs

44

bdd_newpair - creates an empty variable pair table

bddPair *bdd_newpair(void)

Description

Variable pairs of the type bddPair are used in bdd_replace to define which variables to replace with other
variables. This function allocates such an empty table. The table can be freed by a call to bdd freepair.

Return value

Returns a new table of pairs.

See also

bdd_freepair, bdd_replace, bdd_setpair, bdd _setpairs

bdd_nithvar - returns a bdd representing the negation of the I’th variable

BDD bdd_nithvar(int var)

Description

This function is used to get a bdd representing the negation of the I'th variable (one node with the childs false
and true). The requested variable must be in the range define by bdd _setvarnum starting with 0 being the
first. For ease of use then the bdd returned from bdd _nithvar does not have to be referenced counted with a
call to bdd_addref.

Return value

The negated I’th variable on succes, otherwise the constant false bdd

See also
bdd_setvarnum, bdd_ithvar, bddtrue, bddfalse

bdd_nodecount - counts the number of nodes used for a BDD

int bdd_nodecount(BDD r)

Description

Traverses the BDD and counts all distinct nodes that are used for the BDD.

Return value

The number of nodes.

See also

bdd_pathcount, bdd_satcount, bdd__anodecount
45

bdd_not - negates a bdd

BDD bdd_not(BDD r)

Description

Negates the BDD r by exchanging all references to the zero-terminal with references to the one-terminal and
vice versa.

Return value

The negated bdd.

bdd_or - The logical "or’ of two BDDs

BDD bdd_or(BDD I, BDD r)

Description

This a wrapper that calls bdd_apply (1, r,bddop_or).

Return value

The logical ’or’ of I and r.

See also

bdd_apply, bdd_xor, bdd_and

bdd_pathcount - count the number of paths leading to the true terminal

double bdd_pathcount(BDD r)

Description

Counts the number of paths from the root node r leading to the terminal true node.

Return value

The number of paths

See also

bdd_nodecount, bdd_satcount

46

bdd_printall - prints all used entries in the node table

void bdd _printall(void)
void bdd_fprintall (FILE* ofile)

Description

Prints to either stdout or the file oFi e all the used entries in the main node table. The format is:
[Nodenum] Var/level Low High

Where Nodenum is the position in the node table and level is the position in the current variable order.

See also

bdd_printtable, bdd_printset, bdd_printdot

bdd_printdot - prints a description of a BDD in DOT format

void bdd_printdot(BDD r)
int bdd_fnprintdot(char* fname, BDD r)
void bdd_fprintdot(FILE* ofile, BDD r)

Description

Prints a BDD in a format suitable for use with the graph drawing program DOT to either stdout, a designated
file ofile or the file named by fname. In the last case the file will be opened for writing, any previous
contents destroyed and then closed again.

See also

bdd_printall, bdd_printtable, bdd_printset

47

bdd_printorder - prints the current order

void bdd_printorder(void)
bdd_fprint_order(FILE *F)

Description

Prints an indented list of the variable blocks, showing the top most blocks to the left and the lower blocks to
the right. Example:

2{
0
1
2}
3
4

This shows 5 variable blocks. The first one added is block zero, which is on the same level as block one. These
two blocks are then sub-blocks of block two and block two is on the same level as block three and four. The
numbers are the identifiers returned from bdd_addvarblock. The block levels depends on the variables
included in the blocks.

See also
bdd_reorder, bdd_addvarblock

bdd_printset - prints the set of truth assignments specified by a BDD

bdd_printset(BDD r)
bdd_fprintset(FILE* ofile, BDD r)

Description

Prints all the truth assignments for r that would yield it true. The format is:

< ZTr1iCly---5%ing P Clpg 2
< T21:C215---3T2my C2ng =
< IN1:CN1s---sTNmns3 :CNng =

Where the x’s are variable numbers (and the position in the current order) and the ¢’s are the possible assign-
ments to these. Each set of brackets designates one possible assignment to the set of variables that make up the
BDD. All variables not shown are don’t cares. It is possible to specify a callback handler for printing of the
variables using bdd_fi le_hook or bdd_strm_hook.

See also
bdd_printall, bdd_printtable, bdd_printdot, bdd_file_hook, bdd_strm _hook

48

bdd_printstat - print cache statistics

void bdd_printstat(void)
void bdd_fprintstat(FILE *ofile)

Description

Prints information about the cache performance on standard output (or the supplied file). The information
contains the number of accesses to the unique node table, the number of times a node was (not) found there and
how many times a hash chain had to traversed. Hit and miss count is also given for the operator caches.

See also

bddCacheStat, bdd_cachestats

bdd_printtable - prints the node table entries used by a BDD

void bdd_printtable(BDD r)
void bdd_fprinttable(FILE* ofile, BDD r)

Description

Prints to either stdout or the file ofi L e all the entries in the main node table used by r. The format is:
[Nodenum] Var/level - Low High

Where Nodenum is the position in the node table and level is the position in the current variable order.

See also

bdd_printall, bdd_printset, bdd_printdot

bdd_relprod - relational product

#define bdd_relprod(a,b,var) bdd_appex(a,b,bddop_and,var)

Description

Calculates the relational product of a and b as a AND b with the variables in var quantified out afterwards.

Return value

The relational product or bddfalse on errors.

See also

bdd_appex

49

bdd_reorder - start dynamic reordering

void bdd_reorder(int method)

Description

This function initiates dynamic reordering using the heuristic defined by method, which may be one of the
following

BDD_REORDER_WIN2
Reordering using a sliding window of size 2. This algorithm swaps two adjacent variable blocks and if
this results in more nodes then the two blocks are swapped back again. Otherwise the result is kept in the
variable order. This is then repeated for all variable blocks.

BDD_REORDER WIN2ITE
The same as above but the process is repeated until no further progress is done. Usually a fast and
efficient method.

BDD_REORDER_WIN3
The same as above but with a window size of 3.

BDD_REORDER_WIN2ITE
The same as above but with a window size of 3.

BDD_REORDER_SIFT
Reordering where each block is moved through all possible positions. The best of these is then used as
the new position. Potentially a very slow but good method.

BDD_REORDER SIFTITE
The same as above but the process is repeated until no further progress is done. Can be extremely slow.

BDD_REORDER _RANDOM
Mostly used for debugging purpose, but may be usefull for others. Selects a random position for each
variable.

See also

bdd_autoreorder, bdd_reorder_verbose, bdd_addvarblock, bdd_clrvarblocks

bdd_reorder_gain - Calculate the gain in size after a reordering

int bdd_reorder_gain(void)

Description

Returns the gain in percent of the previous number of used nodes. The value returned is
(100 (A—B))/A

Where A is previous number of used nodes and B is current number of used nodes.

50

bdd_reorder_hook - sets a handler for automatic reorderings

bddinthandler bdd_reorder_hook(bddinthandler handler)

Description

Whenever automatic reordering is done, a check is done to see if the user has supplied a handler for that event. If
so then it is called with the argument prestate being 1 if the handler is called immediately before reordering
and prestate being 0 if it is called immediately after. The default handler is bdd default_reohandler
which will print information about the reordering.

A typical handler could look like this:

void reorderhandler(int prestate)

{
if (prestate)
printf(*'Start reordering™);
else
printf(""End reordering');
}

Return value

The previous handler

See also

bdd_reorder, bdd_autoreorder, bdd_resize _hook

51

bdd_reorder_probe - Define a handler for minimization of BDDs

bddsizehandler bdd_reorder_ probe(bddsizehandler handler)

Description

Reordering is typically done to minimize the global number of BDD nodes in use, but it may in some cases
be usefull to minimize with respect to a specific BDD. With bdd_reorder _probe it is possible to define a
callback function that calculates the size of a specific BDD (or anything else in fact). This handler will then be
called by the reordering functions to get the current size information. A typical handle could look like this:

int sizehandler(void)

{
extern BDD mybdd;

return bdd_nodecount(mybdd);
}

No default handler is supplied. The argument handler may be NULL if no handler is needed.

Return value
The old handler

See also
bdd_reorder

bdd_reorder_verbose - enables verbose information about reorderings

int bdd_reorder_verbose(int v)

Description

With bdd_reorder_verbose it is possible to set the level of information which should be printed during
reordering. A value of zero means no information, a value of one means some information and any greater
value will result in a lot of reordering information. The default value is zero.

Return value

The old verbose level

See also
bdd_reorder

52

bdd_replace - replaces variables with other variables

BDD bdd_replace(BDD r, bddPair *pair)

Description

Replaces all variables in the BDD r with the variables defined by pair. Each entry in pair consists of a old
and a new variable. Whenever the old variable is found in r then a new node with the new variable is inserted
instead.

Return value

The result of the operation.

See also

bdd_newpair, bdd_setpair, bdd_setpairs

bdd_resetpair - clear all variable pairs

void bdd_resetpair(bddPair *pair)

Description

Resets the table of pairs pair by setting all substitutions to their default values (that is no change).

See also

bdd_newpair, bdd_setpair, bdd_freepair

53

bdd_resize_hook - set a handler for nodetable resizes

bdd2inthandler bdd_resize hook(bdd2inthandler handler)

Description

Whenever it is impossible to get enough free nodes by a garbage collection then the node table is resized and a
test is done to see if a handler is supllied by the user for this event. If so then it is called with oldsize being
the old nodetable size and newsi ze being the new nodetable size.

This function sets the handler to be handler. If a NULL argument is supplied then no calls are made when
a table resize is done. No default handler is supplied.

Any handler should be defined like this:

void my resize handler(int oldsize, int newsize)

{
}

Return value

The previous handler

See also

bdd_gbc_hook, bdd_reorder_hook, bdd_setminfreenodes

bdd_restrict - restric a set of variables to constant values

BDD bdd_restrict(BDD r, BDD var)

Description

This function restricts the variables in r to constant true or false. How this is done depends on how the variables
are included in the variable set var. If they are included in their positive form then they are restricted to true
and vice versa. Unfortunately it is not possible to insert variables in their negated form using bdd _makeset,
so the variable set has to be build manually as a conjunction of the variables. Example: Assume variable 1
should be restricted to true and variable 3 to false.

bdd X = make_user_bdd();

bdd R1 bdd_ithvar(l);

bdd R2 bdd_nithvar(3);

bdd R = bdd_addref(bdd_apply(R1,R2, bddop_and));
bdd RES = bdd_addref(bdd_restrict(X,R));

Return value

The restricted bdd.

See also
bdd_makeset, bdd_exist, bdd_forall

54

bdd_satcount - calculates the number of satisfying variable assignments

double bdd_satcount(BDD r)
double bdd_satcountset(BDD r, BDD varset)

Description

Calculates how many possible variable assignments there exists such that r is satisfied (true). All defined
variables are considered in the first version. In the second version, only the variables in the variable set varset
are considered. This makes the function a lot slower.

Return value

The number of possible assignments.

See also

bdd_satone, bdd_fullsatone, bdd_satcountin

bdd_satcountln - calculates the log. number of satisfying variable assignments

double bdd_satcountIn(BDD r)
double bdd_satcountlnset(BDD r, BDD varset)

Description

Calculates how many possible variable assignments there exists such that r is satisfied (true) and returns the
logarithm of this. The result is calculated in such a manner that it is practically impossible to get an overflow,
which is very possible for bdd_satcount if the number of defined variables is too large. All defined variables
are considered in the first version. In the second version, only the variables in the variable set varset are
considered. This makes the function a lot slower!

Return value

The logarithm of the number of possible assignments.

See also

bdd_satone, bdd_fullsatone, bdd_satcount

55

bdd_satone - finds one satisfying variable assignment

BDD bdd_satone(BDD r)

Description

Finds a BDD with at most one variable at each level. This BDD implies r and is not false unless r is false.

Return value

The result of the operation.

See also

bdd_allsat bdd_satoneset, bdd_fullsatone, bdd_satcount, bdd _satcountin

bdd_satoneset - finds one satisfying variable assignment

BDD bdd_satoneset(BDD r, BDD var, BDD pol)

Description

Finds a minterm in r. The var argument is a variable set that defines a set of variables that must be mentioned
in the result. The polarity of these variables in result—in case they are undefined in r—are defined by the pol
parameter. If pol is the false BDD then the variables will be in negative form, and otherwise they will be in
positive form.

Return value

The result of the operation.

See also

bdd_allsat bdd_satone, bdd_fullsatone, bdd_satcount, bdd _satcountin

56

bdd_save - savesa BDD to a file

int bdd_fnsave(char *fname, BDD r)
int bdd_save(FILE *ofile, BDD r)

Description

Saves the nodes used by r to either a file oFi I'e which must be opened for writing or to the file named Fname.
In the last case the file will be truncated and opened for writing.

Return value

Zero on succes, otherwise an error code from bdd . h.

See also
bdd_load

bdd_scanset - returns an integer representation of a variable set

int bdd_scanset(BDD r, int **v, int *n)

Description

Scans a variable set r and copies the stored variables into an integer array of variable numbers. The argument
Vv is the address of an integer pointer where the array is stored and n is a pointer to an integer where the number
of elements are stored. It is the users responsibility to make sure the array is deallocated by a call to Free(v).
The numbers returned are guaranteed to be in ascending order.

Return value

Zero on success, otherwise a negative error code.

See also

bdd_makeset

57

bdd_setcacheratio - Sets the cache ratio for the operator caches

int bdd_setcacheratio(int r)

Description

The ratio between the number of nodes in the nodetable and the number of entries in the operator cachetables is
called the cache ratio. So a cache ratio of say, four, allocates one cache entry for each four unique node entries.
This value can be set with bdd_setcacheratio to any positive value. When this is done the caches are
resized instantly to fit the new ratio. The default is a fixed cache size determined at initialization time.

Return value

The previous cache ratio or a negative number on error.

See also
bdd_init

bdd_setmaxincrease - set max. number of nodes used to increase node table

int bdd_setmaxincrease(int size)

Description

The node table is expanded by doubling the size of the table when no more free nodes can be found, but a
maximum for the number of new nodes added can be set with bdd maxincrease to size nodes. The
default is 50000 nodes (1 Mb).

Return value

The old threshold on succes, otherwise a negative error code.

See also

bdd_setmaxnodenum, bdd_setminfreenodes

58

bdd_setmaxnodenum - set the maximum available number of bdd nodes

int bdd_setmaxnodenum(int size)

Description

This function sets the maximal number of bdd nodes the package may allocate before it gives up a bdd operation.
The argument size is the absolute maximal number of nodes there may be allocated for the nodetable. Any
attempt to allocate more nodes results in the constant false being returned and the error handler being called
until some nodes are deallocated. A value of 0 is interpreted as an unlimited amount. It is not possible to
specify fewer nodes than there has already been allocated.

Return value

The old threshold on succes, otherwise a negative error code.

See also

bdd_setmaxincrease, bdd_setminfreenodes

bdd_setminfreenodes - set min. no. of nodes to be reclaimed after GBC.

int bdd_setminfreenodes(int n)

Description

Whenever a garbage collection is executed the number of free nodes left are checked to see if a resize of the
node table is required. If X = (bddfreenum *100)/maznum is less than or equal to n then a resize is initiated.
The range of X is of course 0...100 and has some influence on how fast the package is. A low number
means harder attempts to avoid resizing and saves space, and a high number reduces the time used in garbage
collections. The default value is 20.

Return value

The old threshold on succes, otherwise a negative error code.

See also

bdd_setmaxnodenum, bdd_setmaxincrease

59

bdd_setpair - set one variable pair

int bdd_setpair(bddPair *pair, int oldvar, int newvar)
int bdd_setbddpair(bddPair *pair, int oldvar, BDD newvar)

Description

Adds the pair (oldvar ,newvar) to the table of pairs pair. This results in oldvar being substituted with
newvar in a call to bdd_replace. In the first version newvar is an integer representing the variable to
be replaced with the old variable. In the second version oldvar is a BDD. In this case the variable oldvar
is substituted with the BDD newvar. The possibility to substitute with any BDD as newvar is utilized in
bdd_compose, whereas only the topmost variable in the BDD is used in bdd_replace.

Return value

Zero on success, otherwise a negative error code.

See also

bdd_newpair, bdd_setpairs, bdd_resetpair, bdd_replace, bdd_compose

bdd_setpairs - defines a whole set of pairs

int bdd_setpairs(bddPair *pair, int *oldvar, int *newvar, int size)
int bdd_setbddpairs(bddPair *pair, int *oldvar, BDD *newvar, int size)

Description

As for bdd_setpair but with oldvar and newvar being arrays of variables (BDDs) of size size.

Return value

Zero on success, otherwise a negative error code.

See also

bdd_newpair, bdd_setpair, bdd_replace, bdd_compose

60

bdd_setvarnum - set the number of used bdd variables

int bdd_setvarnum(int num)

Description

This function is used to define the number of variables used in the bdd package. It may be called more than one
time, but only to increase the number of variables. The argument num is the number of variables to use.

Return value

Zero on succes, otherwise a negative error code.

See also

bdd_ithvar, bdd_varnum, bdd_extvarnum

bdd_setvarorder - set a specific variable order

void bdd_setvarorder(int *neworder)

Description

This function sets the current variable order to be the one defined by neworder. The parameter neworder
is interpreted as a sequence of variable indecies and the new variable order is exactly this sequence. The array
must contain all the variables defined so far. If for instance the current number of variables is 3 and neworder
contains [1,0, 2] then the new variable order is v; < vy < ve.

See also

bdd_reorder, bdd_printorder

bdd_simplify - coudert and Madre’s restrict function

BDD bdd_simplify(BDD ¥, BDD d)

Description

Tries to simplify the BDD T by restricting it to the domain covered by d. No checks are done to see if the result
is actually smaller than the input. This can be done by the user with a call to bdd_nodecount.

Return value
The simplified BDD

See also

bdd_restrict

61

bdd_stats - returns some status information about the bdd package

void bdd_stats(bddStat* stat)

Description

This function acquires information about the internal state of the bdd package. The status information is written
into the stat argument.

See also

bddStat

bdd_strm_hook - Specifies a printing callback handler

bddstrmhandler bdd_strm_hook(bddstrmhandler handler)

Description

A printing callback handler for use with BDDs is used to convert the BDD variable number into something
readable by the end user. Typically the handler will print a string name instead of the number. A handler could
look like this:

void printhandler(ostream &o, int var)

{

extern char **names;
0 << names|var];

}

The handler can then be passed to BuDDy like this: bdd_strm_hook(printhandler).
No default handler is supplied. The argument handler may be NULL if no handler is needed.

Return value

The old handler

See also

bdd_printset, bdd_file_hook, fdd_strm_hook

62

bdd_support - returns the variable support of a BDD

BDD bdd_support(BDD r)

Description

Finds all the variables that r depends on. That is the support of r.

Return value

A BDD variable set.

See also

bdd_makeset

bdd_swapvar - Swap two BDD variables

int bdd_swapvar(int v1, int v2)

Description

Use bdd_swapvar to swap the position (in the current variable order) of the two BDD variables v1 and v2.
There are no constraints on the position of the two variables before the call. This function may not be used
together with user defined variable blocks. The swap is done by a series of adjacent variable swaps and requires
the whole node table to be rehashed twice for each call to bdd_swapvar. It should therefore not be used were
efficiency is a major concern.

Return value

Zero on succes and a negative error code otherwise.

See also

bdd_reorder, bdd_addvarblock

63

bdd_true - returns the constant true bdd

BDD bdd_true(void)

Description

This function returns the constant true bdd and can freely be used together with the bddtrue and bddfalse
constants.

Return value

The constant true bdd

See also

bdd_false, bddtrue, bddfalse

bdd_unique - unique quantification of variables

BDD bdd_unique(BDD r, BDD var)

Description

Removes all occurences in r of variables in the set var by unique quantification. This type of quantification
uses a XOR operator instead of an OR operator as in the existential quantification, and an AND operator as in
the universal quantification.

Return value

The quantified BDD.

See also

bdd_exist, bdd_existcomp, bdd_forall, bdd_forallcomp, bdd_unique, bdd _uniqguecomp, bdd_makeset

bdd_uniquecomp - unique quantification of other variables

BDD bdd_uniquecomp(BDD r, BDD var)

Description

Removes all occurences in r of variables now not in the set var by unique quantification.

Return value
The quantified BDD.

See also

bdd_exist, bdd_existcomp, bdd _forall, bdd_forallcomp, bdd_uniquecomp, bdd_makeset

64

bdd_var - gets the variable labeling the bdd

int bdd_var(BDD r)

Description

Gets the variable labeling the bdd r.

Return value

The variable number.

bdd_var2level - Fetch the level of a specific BDD variable

int bdd_var2level (int var)

Description

Returns the position of the variable var in the current variable order.

See also

bdd_reorder, bdd_level2var

bdd_varblockall —add a variable block for all variables

void bdd_varblockall(void)

Description

Adds a variable block for all BDD variables declared so far. Each block contains one variable only. More
variable blocks can be added later with the use of bdd_addvarblock — in this case the tree of variable
blocks will have the blocks of single variables as the leafs.

See also
bdd_addvarblock, bdd_intaddvarblock

65

bdd_varnum - returns the number of defined variables

int bdd_varnum(void)

Description

This function returns the number of variables defined by a call to bdd_setvarnum.

Return value

The number of defined variables

See also

bdd_setvarnum, bdd_ithvar

bdd_varprofile - returns a variable profile

int *bdd_varprofile(BDD r)

Description

Counts the number of times each variable occurs in the bdd r. The result is stored and returned in an integer
array where the i’th position stores the number of times the i’th variable occured in the BDD. It is the users
responsibility to free the array again using a call to free.

Return value

A pointer to an integer array with the profile or NULL if an error occured.

bdd_veccompose - simultaneous functional composition

BDD bdd_veccompose(BDD f, bddPair *pair)

Description

Uses the pairs of variables and BDDs in pai r to make the simultaneous substitution: f[g1/Vi,...,gn/Va]. In
this way one or more BDDs may be substituted in one step. The BDDs in pair may depend on the variables
they are substituting. bdd_compose may be used instead of bdd _replace but is not as efficient when g; is a
single variable, the same applies to bdd_restrict. Note that simultaneous substitution is not necessarily the
same as repeated substitution. Example: (z1V z2)[x3/z1, x4/23] = (23V 22) # (21 V 22)[23/21])[24/ 23] =
(x4 V z2).

Return value
The composed BDD

See also

bdd_compose, bdd_replace, bdd _restrict
66

bdd_versionnum - returns the version number of the bdd package

int bdd_versionnum(void)

Description

This function returns the version number of the bdd package. The number is in the range 10-99 for version 1.0
t0 9.9.

See also

bdd_versionstr

bdd_versionstr - returns a text string with version information

char* bdd_versionstr(void)

Description

This function returns a text string with information about the version of the bdd package.

See also

bdd_versionnum

bdd xor - The logical xor’ of two BDDs

BDD bdd_xor(BDD I, BDD r)

Description

This a wrapper that calls bdd_apply(l, r,bddopxor).

Return value

The logical *xor’ of I and r.

See also

bdd_apply, bdd_or, bdd_and

67

bddfalse - the constant false bdd

extern const BDD bddfalse;

Description

This bdd holds the constant false value

See also

bddtrue, bdd_true, bdd_false

bddtrue - the constant true bdd

extern const BDD bddtrue;

Description

This bdd holds the constant true value

See also

bddfalse, bdd_true, bdd_false

bvec - A boolean vector

typedef struct s _bvec

{
int bitnum;
BDD *bitvec;
} BVEC;

typedef BVEC bvec;

Description

This data structure is used to store boolean vectors. The field bitnum is the number of elements in the vector
and the field bitvec contains the actual BDDs in the vector. The C++ version of bvec is documented at the
beginning of this document

68

bvec_add - builds a boolean vector for addition

bvec bvec _add(bvec 1, bvec r)

Description

Builds a new boolean vector that represents the addition of two other vectors. Each element x; in the result will
represent the function

x; = l; XOr r; Xor ¢;_1
where the carry in ¢; is
¢; = (I and r;) or (¢;—q and (I; or r;)).

It is important for efficency that the BDD variables used in 1 and r are interleaved.

Return value

The result of the addition (which is already reference counted)

See also

bvec_sub, bvec_mul, bvec_shl

bvec_addref - increase reference count of a boolean vector

bvec bvec addref(bvec v)

Description

Use this function to increase the reference count of all BDDs in a v. Please note that all boolean vectors
returned from BuDDy are reference counted from the beginning.

Return value

The boolean vector v

See also

bvec_delref

69

bvec_coerce - adjust the size of a boolean vector

bvec bvec coerce(int bitnum, bvec v)

Description

Build a boolean vector with bitnum elements copied from v. If the number of elements in v is greater than
bitnum then the most significant bits are removed, otherwise if number is smaller then the vector is padded
with constant false BDDs (zeros).

Return value

The new boolean vector (which is already reference counted)

bvec_con - Build a boolean vector representing an integer value

bvec bvec_con(int bitnum, int val)

Description

Builds a boolean vector that represents the value val using bitnum bits. The value will be represented with
the LSB at the position 0 and the MSB at position bitnum-1.

Return value

The boolean vector (which is already reference counted)

See also

bvec_true, bvec_false, bvec_var

bvec_copy - create a copy of a bvec

bvec bvec copy(bvec src)

Description

Returns a copy of src. The result is reference counted.

See also

bvec_con

70

bvec_delref — decrease the reference count of a boolean vector

bvec bvec delref(bvec v)

Description

Use this function to decrease the reference count of all the BDDs in v.

Return value

The boolean vector v

See also

bvec_addref

bvec_div - builds a boolean vector for division

int bvec div(bvec I, bvec r, bvec *res, bvec *rem)

Description

Builds a new boolean vector representing the integer division of I with r. The result of the division will be
stored in res and the remainder of the division will be stored in rem. Both vectors should be initialized as the
function will try to release the nodes used by them. If an error occurs then the nodes will not be freed.

Return value

Zero on success or a negative error code on error.

See also

bvec_mul, bvec_divfixed, bvec_add, bvec_shl

bvec_divfixed - builds a boolean vector for division by a constant

int bvec div(bvec e, int c, bvec *res, bvec *rem)

Description

Builds a new boolean vector representing the integer division of e with c. The result of the division will be
stored in res and the remainder of the division will be stored in rem. Both vectors should be initialized as the
function will try to release the nodes used by them. If an error occurs then the nodes will not be freed.

Return value

Zero on success or a negative error code on error.

See also

bvec_div, bvec_mul, bvec_add, bvec_shl
71

bvec_equ - calculates the truth value of z = y

bdd bvec _equ(bvec I, bvec r)

Description

Returns the BDD representing I = r (not reference counted). Both vectors must have the same number of
bits.

See also

bvec_lth, bvec_lte, bvec_gth, bvec_gte, bvec_neq

bvec_false - build a vector of constant false BDDs

bvec bvec false(int bitnum)

Description

Builds a boolean vector with bi tnum elements, each of which are the constant false BDD.

Return value

The boolean vector (which is already reference counted)

See also

bvec_true, bvec_con, bvec_var

bvec_free - frees all memory used by a boolean vector

void bvec_ free(bvec v)

Description

Use this function to release any unused boolean vectors. The decrease of the reference counts on the BDDs in
v is done by bvec_free.

bvec_gte - calculates the truth value of z > y

bdd bvec gte(bvec I, bvec r)

Description

Returns the BDD representing 1 >r (not reference counted). Both vectors must have the same number of bits.

See also

bvec_Ith, bvec_gth, bvec_gth, bvec_equ, bvec_neq 79

bvec_gth - calculates the truth value of x > y

bdd bvec _gth(bvec I, bvec r)

Description

Returns the BDD representing I > r (not reference counted). Both vectors must have the same number of
bits.

See also

bvec_Ith, bvec_lte, bvec_gte, bvec_equ, bvec_neq

bvec_isconst - test a vector for constant true/false BDDs

int bvec_ isconst(bvec v)

Description

Returns non-zero if the vector v consists of only constant true or false BDDs. Otherwise zero is returned. This
test should prelude any call to bvec_val.

See also

bvec_val, bvec_con

bvec_ite - calculates the if-then-else operator for a boolean vector

bvec bvec_ite(bdd a, bvec b, bvec c)

Description

Builds a vector where the bdd a has been applied bitwise to b and c in an if-then-else operation, such that the
result r is:

r; = ite(a, b, ¢;);

Return value

The if-then-else result.

See also
bdd_ite

73

bvec_Ite - calculates the truth value of z < y

bdd bvec Ite(bvec I, bvec r)

Description

Returns the BDD representing 1 <r (not reference counted). Both vectors must have the same number of bits.

See also

bvec_lth, bvec_gth, bvec_gte, bvec_equ, bvec_neq

bvec_Ith - calculates the truth value of x < y

bdd bvec Ith(bvec I, bvec r)

Description

Returns the BDD representing I < r (not reference counted). Both vectors must have the same number of
bits.

See also

bvec_lte, bvec_gth, bvec_gte, bvec_equ, bvec_neq

bvec_mapl - map a function onto a boolean vector

bvec bvec _mapl(bvec a, bdd (*fun)(bdd))

Description

Maps the function fun onto all the elements in a. The value returned from Fun is stored in a new vector
which is then returned. An example of a mapping function is bdd_not which can be used like this

bvec res = bvecmapl(a, bdd_not)

to negate all the BDDs in a.

Return value

The new vector (which is already reference counted)

See also

bvec_map2, bvec_map3

74

bvec_map2 - map a function onto a boolean vector

bvec bvec _map2(bvec a, bvec b, bdd (*fun)(bdd,bdd))

Description

Maps the function Fun onto all the elements in a and b. The value returned from fun is stored in a new vector
which is then returned. An example of a mapping function is bdd_and which can be used like this

bvec res = bvecmap2(a, b, bdd_.and)

to calculate the logical ’and’ of all the BDDs in a and b.

Return value

The new vector (which is already reference counted)

See also

bvec_mapl, bvec_map3

bvec_map3 - map a function onto a boolean vector

bvec bvec _map3(bvec a, bvec b, bvec c, bdd (*fun)(bdd,bdd,bdd))

Description

Maps the function fun onto all the elements in a, b and c. The value returned from fun is stored in a new
vector which is then returned. An example of a mapping function is bdd_i te which can be used like this

bvec res = bvecmap3(a, b, c, bdd.ite)

to calculate the if-then-else function for each element in a, b and c.

Return value

The new vector (which is already reference counted)

See also

bvec_mapl, bvec_map?2

75

bvec_mul - builds a boolean vector for multiplication

bvec bvec _mul(bvec I, bvec r)

Description

Builds a boolean vector representing the multiplication of I and r.

Return value

The result of the multiplication (which is already reference counted)

See also

bvec_mulfixed, bvec_div, bvec_add, bvec_shl

bvec_mulfixed - builds a boolean vector for multiplication with a constant

bvec bvec mulfixed(bvec e, iInt ¢)

Description

Builds a boolean vector representing the multiplication of e and c.

Return value

The result of the multiplication (which is already reference counted)

See also

bvec_mul, bvec_div, bvec_add, bvec_shl

bvec_neq - calculates the truth value of = # y

bdd bvec _neq(bvec I, bvec r)

Description

Returns the BDD representing 141 (not reference counted). Both vectors must have the same number of bits.

See also

bvec_lte, bvec_Ith, bvec_gth, bvec_gth, bvec_equ

76

bvec_shl - shift left operation (symbolic)

bvec bvec_shl(bvec I, bvec r, BDD ¢)

Description

Builds a boolean vector that represents I shifted r times to the left. The new empty elements will be set to c.
The shift operation is fully symbolic and the number of bits shifted depends on the current value encoded by r.

Return value

The result of the operation (which is already reference counted)

See also

bvec_add, bvec_mul, bvec_shlfixed, bvec_shr

bvec_shlfixed - shift left operation (fixed number of bits)

bvec bvec_shlfixed(bvec v, int pos, BDD c)

Description

Builds a boolean vector that represents v shifted pos times to the left. The new empty elements will be set to
C.

Return value

The result of the operation (which is already reference counted)

See also

bvec_add, bvec_mul, bvec_shl, bvec_shr

bvec_shr - shift right operation (symbolic)

bvec bvec_shr(bvec I, bvec r, BDD c)

Description

Builds a boolean vector that represents I shifted r times to the right. The new empty elements will be set to c.
The shift operation is fully symbolic and the number of bits shifted depends on the current value encoded by r.

Return value

The result of the operation (which is already reference counted)

See also

bvec_add, bvec_mul, bvec_shl, bvec_shrfixed

77

bvec_shrfixed - shift right operation

bvec bvec_shrfixed(bvec v, int pos, BDD c¢)

Description

Builds a boolean vector that represents v shifted pos times to the right. The new empty elements will be set to
C.

Return value

The result of the operation (which is already reference counted)

See also

bvec_add, bvec_mul, bvec_shr, bvec_shl

bvec_sub - builds a boolean vector for subtraction

bvec bvec_sub(bvec I, bvec r)

Description

Builds a new boolean vector that represents the subtraction of two other vectors. Each element x; in the result
will represent the function

x; = l; XOr r; Xor ¢;_1
where the carry in ¢; is
¢i = (l; and r; and ¢; 1) or (not I; and (r; or ¢;—1)).

It is important for efficency that the BDD variables used in 1 and r are interleaved.

Return value

The result of the subtraction (which is already reference counted)

See also

bvec_add, bvec_mul, bvec_shl

78

bvec_true - build a vector of constant true BDDs

bvec bvec_ true(int bitnum)

Description

Builds a boolean vector with b i tnum elements, each of which are the constant true BDD.

Return value

The boolean vector (which is already reference counted)

See also

bvec_false, bvec_con, bvec_var

bvec_val - calculate the integer value represented by a boolean vector

int bvec val(bvec Vv)

Description

Calculates the value represented by the bits in v assuming that the vector v consists of only constant true or
false BDDs. The LSB is assumed to be at position zero.

Return value

The integer value represented by v.

See also

bvec_isconst, bvec_con

bvec_var - build a boolean vector with BDD variables

bvec bvec_var(int bitnum, int offset, int step)

Description

Builds a boolean vector with the BDD variables v1, ..., v, as the elements. Each variable will be the the
variabled numbered offset + N*step where N ranges from 0 to bitnum-1.

Return value

The boolean vector (which is already reference counted)

See also

bvec_true, bvec_false, bvec_con

79

bvec_varfdd - build a boolean vector from a FDD variable block

bvec bvec varfdd(int var)

Description

Builds a boolean vector which will include exactly the variables used to define the FDD variable block var.
The vector will have the LSB at position zero.

Return value

The boolean vector (which is already reference counted)

See also

bvec_var

bvec_varvec - build a boolean vector with the variables passed in an array

bvec bvec varvec(int bitnum, Int *var)

Description

Builds a boolean vector with the BDD variables listed in the array var. The array must be of size bitnum.

Return value

The boolean vector (which is already reference counted)

See also

bvec_var

fdd_clearall - clear all allocated FDD blocks

void fdd _clearall(void)

Description

Removes all defined finite domain blocks defined by fdd_extdomain() and fdd_overlapdomain()

80

fdd_domain - BDD encoding of the domain of a FDD variable

BDD fdd_domain(int var)

Description

Returns what corresponds to a disjunction of all possible values of the variable var. This is more efficient than
doing fdd_ithvar(var,0) OR fdd._ithvar(var,1) ... explicitely for all values in the domain of
var.

Return value

The encoding of the domain

fdd_domainnum - number of defined finite domain blocks

int fdd_domainnum(void)

Description

Returns the number of finite domain blocks define by calls to bdd_extdomain.

Return value

The number of defined finite domain blocks or a negative error code

See also

fdd_domainsize, fdd_extdomain

fdd_domainsize - real size of a finite domain block

int fdd_domainsize(int var)

Description

Returns the size of the domain for the finite domain block var.

Return value

The size or a negative error code

See also

fdd_domainnum

81

fdd_equals - returns a BDD setting two FD. blocks equal

BDD fdd_equals(int f, int g)

Description

Builds a BDD which is true for all the possible assignments to the variable blocks ¥ and g that makes the blocks
equal. This is more or less just a shorthand for calling fdd_equ ().

Return value

The correct BDD or the constant false on errors.

fdd_extdomain - adds another set of finite domain blocks

int fdd_extdomain(int *dom, int num)

Description

Extends the set of finite domain blocks with the num domains in dom. Each entry in dom defines the size of
a new finite domain which later on can be used for finite state machine traversal and other operations on finte
domains. Each domain allocates log,(|dom/[i]|) BDD variables to be used later. The ordering is interleaved for
the domains defined in each call to bdd_extdomain. This means that assuming domain Dg needs 2 BDD
variables x; and x5, and another domain D7 needs 4 BDD variables y1, y2, y3 and y4, then the order will be
T1,Y1, T2, Y2, Y3, y4. The index of the first domain in dom is returned. The index of the other domains are offset
from this index with the same offset as in dom.

The BDD variables needed to encode the domain are created for the purpose and do not interfere with the
BDD variables already in use.

Return value

The index of the first domain or a negative error code.

See also

fdd_ithvar, fdd_equals, fdd_overlapdomain

82

fdd_file_hook - Specifies a printing callback handler

bddfilehandler fdd_file_hook(bddfilehandler handler)

Description

A printing callback handler for use with FDDs is used to convert the FDD integer identifier into something
readable by the end user. Typically the handler will print a string name instead of the identifier. A handler
could look like this:

void printhandler(FILE *o, int var)
{

extern char **names;
fprintf(o, "%s", names[var]);

}

The handler can then be passed to BuDDy like this: fdd_file_hook(printhandler).
No default handler is supplied. The argument handler may be NULL if no handler is needed.

Return value
The old handler

See also
fdd_printset, bdd_file_hook

fdd_intaddvarblock - adds a new variable block for reordering

int fdd_intaddvarblock(int first, int last, int fixed)

Description

Works exactly like bdd_addvarblock except that fdd_intaddvarblock takes a range of FDD variables
instead of BDD variables.

Return value

Zero on success, otherwise a negative error code.

See also
bdd_addvarblock, bdd_intaddvarblock, bdd_reorder

83

fdd_ithset - the variable set for the i’th finite domain block

BDD fdd_ithset(int var)

Description

Returns the variable set that contains the variables used to define the finite domain block var.

Return value

The variable set or the constant false BDD on error.

See also
fdd_ithvar

fdd_ithvar —the BDD for the i’th FDD set to a specific value

BDD fdd_ithvar(int var, int val)

Description

Returns the BDD that defines the value val for the finite domain block var. The encoding places the Least
Significant Bit at the top of the BDD tree (which means they will have the lowest variable index). The returned
BDD will be Vh A Vi A ... A Viy where each V; will be in positive or negative form depending on the value of
val.

Return value

The correct BDD or the constant false BDD on error.

See also
fdd_ithset

fdd_makeset - creates a variable set for N finite domain blocks

BDD fdd makeset(int *varset, int varnum)

Description

Returns a BDD defining all the variable sets used to define the variable blocks in the array varset. The
argument varnum defines the size of varset.

Return value

The correct BDD or the constant false on errors.

See also
fdd_ithset, bdd_makeset

84

fdd_overlapdomain - combine two FDD blocks into one

int fdd_overlapdomain(int vl, int v2)

Description

This function takes two FDD blocks and merges them into a new one, such that the new one is encoded using
both sets of BDD variables. If v1 is encoded using the BDD variables a1, . .., a, and has a domain of [0, V4],
and v2 is encoded using b1, . .., b, and has a domain of [0, N], then the result will be encoded using the BDD
variables aq,...,ay,b1,...,b, and have the domain [0, N1 * N5]. The use of this function may result in some
strange output from fdd_printset.

Return value

The index of the finite domain block

See also

fdd_extdomain

fdd_printset — prints a BDD for a finite domain block

void fdd _printset(BDD r)
void fdd_fprintset(FILE *ofile, BDD T)

Description

Prints the BDD F using a set notation as in bdd_printset but with the index of the finite domain
blocks included instead of the BDD variables. It is possible to specify a printing callback function with
fdd_file_hook or fdd_strm_hook which can be used to print the FDD identifier in a readable form.

See also
bdd_printset, fdd_file_hook, fdd_strm_hook

85

fdd_scanallvar - Finds one satisfying value of all FDD variables

int* fdd_scanallvar(BDD r)

Description

Finds one satisfying assignment in r of all the defined FDD variables. Each value is stored in an array which
is returned. The size of this array is exactly the number of FDD variables defined. It is the user’s responsibility
to free this array using free().

Return value

An array with all satisfying values. If r is the trivially false BDD, then NULL is returned.

See also

fdd_scanvar

fdd_scanset - scans a variable set

int fdd_scanset(BDD r, int **varset, int *varnum)

Description

Scans the BDD r to find all occurences of FDD variables and then stores these in varset. varset will be
set to point to an array of size varnum which will contain the indices of the found FDD variables. It is the
users responsibility to free varset after use.

Return value

Zero on success or a negative error code on error.

See also
fdd_makeset

fdd_scanvar - Finds one satisfying value of a FDD variable

int fdd_scanvar(BDD r, int var)

Description

Finds one satisfying assignment of the FDD variable var in the BDD r and returns this value.

Return value

The value of a satisfying assignment of var. If r is the trivially false BDD, then a negative value is returned.

See also

fdd_scanallvar
86

fdd_setpair - defines a pair for two finite domain blocks

int fdd_setpair(bddPair *pair, int pl, int p2)

Description

Defines each variable in the finite domain block p1 to be paired with the corresponding variable in p2. The
result is stored in pair which must be allocated using bdd_makepair.

Return value

Zero on success or a negative error code on error.

See also

fdd_setpairs

fdd_setpairs - defines N pairs for finite domain blocks

int fdd_setpairs(bddPair *pair, int *pl, int *p2, int size)

Description

Defines each variable in all the finite domain blocks listed in the array p1 to be paired with the corresponding
variable in p2. The result is stored in pair which must be allocated using bdd makeset.

Return value

Zero on success or a negative error code on error.

See also

bdd_setpair

87

fdd_strm_hook - Specifies a printing callback handler

bddstrmhandler fdd_strm_hook(bddstrmhandler handler)

Description

A printing callback handler for use with FDDs is used to convert the FDD integer identifier into something
readable by the end user. Typically the handler will print a string name instead of the identifier. A handler
could look like this:

void printhandler(ostream &o, int var)

{

extern char **names;
0 << names[var];

}

The handler can then be passed to BuDDy like this: fdd_strm_hook(printhandler).
No default handler is supplied. The argument handler may be NULL if no handler is needed.

Return value

The old handler

See also

fdd_printset, bdd_file_hook

fdd_varnum - binary size of a finite domain block

int fdd_varnum{(int var)

Description

Returns the number of BDD variables used for the finite domain block var.

Return value

The number of variables or a negative error code

See also

fdd_vars

88

fdd_vars —all BDD variables associated with a finite domain block

int *fdd_vars(int var)

Description

Returns an integer array containing the BDD variables used to define the finite domain block var. The size
of the array is the number of variables used to define the finite domain block. The array will have the Least
Significant Bit at pos 0. The array must not be deallocated.

Return value

Integer array contaning the variable numbers or NULL if v is an unknown block.

See also

fdd_varnum

operator<< - C++ output operator for BDDs

ostream &operator<<(ostream &o, const bdd_ioformat &f)
ostream &operator<<(ostream &o, const bdd &r)

Description

BDDs can be printed in various formats using the C++ iostreams library. The formats are the those used in
bdd_printset, bdd_printtable, fdd_printset and bdd_printdot. The format can be specified

bddset BDD level set format
with the following format objects: bddtable — BDD level table format
bdddot Output for use with Dot
bddall The whole node table
fddset FDD level set format

So a BDD x can for example be printed as a table with the command

cout << bddtable << x << endl.

Return value

The specified output stream

See also

bdd_strm_hook, fdd_strm_hook

89

90

Bibliography

[1]

[2]

[3]

[4]

Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient implementation of a BDD package. In
27th ACM/IEEE Design Automation Conference, pages 40-45. IEEE Computer Society Press, June 1990.
1

Randal E. Bryant. Graph-based algorithms for boolean function manipulation. 1EEE Transactions on
Computers, C-35(8):677-691, august 1986. 1

Randal E. Bryant. Symbolic Boolean manipulation with ordered binary decision diagrams. ACM Comput-
ing Surveys, 24(3):293-318, September 1992. 1

Richard L. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In IEEE /ACM
International Conference on CAD, pages 42-47. IEEE Computer Society Press, November 1993. 1

91

Index

addition, 7
arithmetic, 7

bdd_addref , 21
bdd_addvarblock , 22
bdd_allsat , 23
bdd_and , 23
bdd_anodecount , 24
bdd_appall , 24
bdd_appallcomp , 25
bdd_appex , 25
bdd_appexcomp , 26
bdd_apply , 26
bdd_appuni , 27
bdd_appunicomp , 27
bdd_autoreorder , 28

bdd_autoreorder_times , 28

bdd_biimp , 28
bdd_blockfile_hook , 29
bdd_buildcube , 29
bdd_cachestats , 30
bdd_clear_error , 30
bdd_clrvarblocks , 30
bdd_compose , 31
bdd_constrain , 31
bdd_copypair , 31
bdd_delref , 32
bdd_disable_reorder , 32
bdd_done, 32
bdd_enable_reorder , 33
bdd_error_hook , 33
bdd_errstring , 34
bdd_exist , 34
bdd_existcomp , 34
bdd_extvarnum , 35
bdd_false , 35
bdd_file_hook , 36
bdd_fnload , 43
bdd_fnsave , 57
bdd_forall , 36
bdd_forallcomp , 37
bdd_fprintall , 47
bdd_fprintdot , 47
bdd_fprintset , 48
bdd_fprintstat , 49
bdd_fprinttable , 49

92

bdd_freepair , 37
bdd_fullsatone , 37
bdd_gbc_hook , 38
bdd_getallocnum , 38
bdd_getnodenum , 39
bdd_getreorder_method , 39
bdd_getreorder_times , 39
bdd_high , 40
bdd_ibuildcube , 29
bdd_imp , 40

bdd_init , 41
bdd_intaddvarblock , 22
bdd_isrunning , 41
bdd_ite , 42

bdd_ithvar , 42
bdd_level2var , 42
bdd_load , 43

bdd_low , 43
bdd_makeset , 44
bdd_mergepairs , 44
bdd_newpair , 45
bdd_nithvar , 45
bdd_nodecount , 45
bdd_not , 46

bdd_or , 46
bdd_pathcount , 46
bdd_printall , 47
bdd_printdot , 47
bdd_printorder , 48
bdd_printset , 48
bdd_printstat , 49
bdd_printtable , 49
bdd_relprod , 49
bdd_reorder , 50
bdd_reorder_gain , 50
bdd_reorder_hook , 51
bdd_reorder_probe , 52
bdd_reorder_verbose , 52
bdd_replace , 53
bdd_resetpair , 53
bdd_resize_hook , 54
bdd_restrict , 54
bdd_satcount , 55
bdd_satcountln , 55
bdd_satone , 56
bdd_satoneset , 56

bdd_save , 57
bdd_scanset , 57
bdd_setbddpair , 60
bdd_setbddpairs , 60
bdd_setcacheratio , 58
bdd_setcountlnset , 55
bdd_setcountset , 55
bdd_setmaxincrease , 58
bdd_setmaxnodenum , 59
bdd_setminfreenodes , 59
bdd_setpair , 60
bdd_setpairs , 60
bdd_setvarnum , 61
bdd_setvarorder , 61
bdd_simplify , 61
bdd_stats , 62
bdd_strm_hook , 62
bdd_support , 63
bdd_swapvar , 63
bdd_true , 64
bdd_unique , 64
bdd_uniquecomp , 64
bdd_var , 65
bdd_var2level , 65
bdd_varblockall , 65
bdd_varnum , 66
bdd_varprofile , 66
bdd_veccompose , 66
bdd_versionnum , 67
bdd_versionstr , 67
bdd_xor , 67
bddCacheStat , 20
bddfalse, 68
bddGhcStat , 20
bddStat , 21

bddtrue , 68

Boolean Vectors, 7
bvec , 68

bvec_add , 69
bvec_addref , 69
bvec_coerce , 70
bvec_con, 70
bvec_copy , 70
bvec_delref , 71
bvec_div , 71
bvec_divfixed , 71
bvec_equ, 72
bvec_false , 72
bvec_free , 72
bvec_gte , 72
bvec_gth, 73
bvec_isconst , 73
bvec_ite , 73

93

bvec_lte , 74
bvec_lth , 74
bvec_mapl , 74
bvec_map2 , 75
bvec_map3, 75
bvec_mul , 76
bvec_mulfixed , 76
bvec_neq, 76
bvec_shl , 77
bvec_shlfixed , 77
bvec_shr, 77
bvec_shrfixed , 78
bvec_sub , 78
bvec_true , 79
bvec_val , 79
bvec_var , 79
bvec_varfdd , 80
bvec_varvec , 80

C++ interface, 6
compiling, 3

dynamic variable reordering, 5
error handling, 6

fdd_clearall , 80
fdd_domain , 81
fdd_domainnum , 81
fdd_domainsize , 81
fdd_equals , 82
fdd_extdomain , 82
fdd_file_hook , 83
fdd_fprintset , 85
fdd_intaddvarblock , 83
fdd_ithset , 84
fdd_ithvar , 84
fdd_makeset , 84
fdd_overlapdomain , 85
fdd_printset , 85
fdd_scanallvar , 86
fdd_scanset , 86
fdd_scanvar , 86
fdd_setpair , 87
fdd_setpairs , 87
fdd_strm_hook , 88
fdd_varnum , 88
fdd_vars , 89

finite domain blocks, 7

implementation, 13
installing, 3

operator<<, 89

programming examples, 3

relational product, 25
reordering, 5

variable reordering, 5
variable sets, 5

94

