spot  1.99.8
graph.hh
1 // -*- coding: utf-8 -*-
2 // Copyright (C) 2014, 2015 Laboratoire de Recherche et Développement
3 // de l'Epita.
4 //
5 // This file is part of Spot, a model checking library.
6 //
7 // Spot is free software; you can redistribute it and/or modify it
8 // under the terms of the GNU General Public License as published by
9 // the Free Software Foundation; either version 3 of the License, or
10 // (at your option) any later version.
11 //
12 // Spot is distributed in the hope that it will be useful, but WITHOUT
13 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 // License for more details.
16 //
17 // You should have received a copy of the GNU General Public License
18 // along with this program. If not, see <http://www.gnu.org/licenses/>.
19 
20 #pragma once
21 
22 #include <spot/misc/common.hh>
23 #include <vector>
24 #include <type_traits>
25 #include <tuple>
26 #include <cassert>
27 #include <iterator>
28 #include <algorithm>
29 #include <iostream>
30 #include <type_traits>
31 
32 namespace spot
33 {
34  template <typename State_Data, typename Edge_Data, bool Alternating = false>
35  class SPOT_API digraph;
36 
37  namespace internal
38  {
39 #ifndef SWIG
40  template <typename Of, typename ...Args>
42  {
43  static const bool value = false;
44  };
45 
46  template <typename Of, typename Arg1, typename ...Args>
47  struct first_is_base_of<Of, Arg1, Args...>
48  {
49  static const bool value =
50  std::is_base_of<Of, typename std::decay<Arg1>::type>::value;
51  };
52 #endif
53 
54  // The boxed_label class stores Data as an attribute called
55  // "label" if boxed is true. It is an empty class if Data is
56  // void, and it simply inherits from Data if boxed is false.
57  //
58  // The data() method offers an homogeneous access to the Data
59  // instance.
60  template <typename Data, bool boxed = !std::is_class<Data>::value>
61  struct SPOT_API boxed_label
62  {
63  typedef Data data_t;
64  Data label;
65 
66 #ifndef SWIG
67  template <typename... Args,
68  typename = typename std::enable_if<
69  !first_is_base_of<boxed_label, Args...>::value>::type>
70  boxed_label(Args&&... args)
71  noexcept(std::is_nothrow_constructible<Data, Args...>::value)
72  : label{std::forward<Args>(args)...}
73  {
74  }
75 #endif
76 
77  // if Data is a POD type, G++ 4.8.2 wants default values for all
78  // label fields unless we define this default constructor here.
79  explicit boxed_label()
80  noexcept(std::is_nothrow_constructible<Data>::value)
81  {
82  }
83 
84  Data& data()
85  {
86  return label;
87  }
88 
89  const Data& data() const
90  {
91  return label;
92  }
93 
94  bool operator<(const boxed_label& other) const
95  {
96  return label < other.label;
97  }
98  };
99 
100  template <>
101  struct SPOT_API boxed_label<void, true>: public std::tuple<>
102  {
103  typedef std::tuple<> data_t;
104  std::tuple<>& data()
105  {
106  return *this;
107  }
108 
109  const std::tuple<>& data() const
110  {
111  return *this;
112  }
113 
114  };
115 
116  template <typename Data>
117  struct SPOT_API boxed_label<Data, false>: public Data
118  {
119  typedef Data data_t;
120 
121 #ifndef SWIG
122  template <typename... Args,
123  typename = typename std::enable_if<
124  !first_is_base_of<boxed_label, Args...>::value>::type>
125  boxed_label(Args&&... args)
126  noexcept(std::is_nothrow_constructible<Data, Args...>::value)
127  : Data{std::forward<Args>(args)...}
128  {
129  }
130 #endif
131 
132  // if Data is a POD type, G++ 4.8.2 wants default values for all
133  // label fields unless we define this default constructor here.
134  explicit boxed_label()
135  noexcept(std::is_nothrow_constructible<Data>::value)
136  {
137  }
138 
139  Data& data()
140  {
141  return *this;
142  }
143 
144  const Data& data() const
145  {
146  return *this;
147  }
148  };
149 
151  // State storage for digraphs
153 
154  // We have two implementations, one with attached State_Data, and
155  // one without.
156 
157  template <typename Edge, typename State_Data>
158  struct SPOT_API distate_storage final: public State_Data
159  {
160  Edge succ = 0; // First outgoing edge (used when iterating)
161  Edge succ_tail = 0; // Last outgoing edge (used for
162  // appending new edges)
163 #ifndef SWIG
164  template <typename... Args,
165  typename = typename std::enable_if<
166  !first_is_base_of<distate_storage, Args...>::value>::type>
167  distate_storage(Args&&... args)
168  noexcept(std::is_nothrow_constructible<State_Data, Args...>::value)
169  : State_Data{std::forward<Args>(args)...}
170  {
171  }
172 #endif
173  };
174 
176  // Edge storage
178 
179  // Again two implementation: one with label, and one without.
180 
181  template <typename StateIn,
182  typename StateOut, typename Edge, typename Edge_Data>
183  struct SPOT_API edge_storage final: public Edge_Data
184  {
185  typedef Edge edge;
186 
187  StateOut dst; // destination
188  Edge next_succ; // next outgoing edge with same
189  // source, or 0
190  StateIn src; // source
191 
192  explicit edge_storage()
193  noexcept(std::is_nothrow_constructible<Edge_Data>::value)
194  : Edge_Data{}
195  {
196  }
197 
198 #ifndef SWIG
199  template <typename... Args>
200  edge_storage(StateOut dst, Edge next_succ,
201  StateIn src, Args&&... args)
202  noexcept(std::is_nothrow_constructible<Edge_Data, Args...>::value
203  && std::is_nothrow_constructible<StateOut, StateOut>::value
204  && std::is_nothrow_constructible<Edge, Edge>::value)
205  : Edge_Data{std::forward<Args>(args)...},
206  dst(dst), next_succ(next_succ), src(src)
207  {
208  }
209 #endif
210 
211  bool operator<(const edge_storage& other) const
212  {
213  if (src < other.src)
214  return true;
215  if (src > other.src)
216  return false;
217  // This might be costly if the destination is a vector
218  if (dst < other.dst)
219  return true;
220  if (dst > other.dst)
221  return false;
222  return this->data() < other.data();
223  }
224 
225  bool operator==(const edge_storage& other) const
226  {
227  return src == other.src &&
228  dst == other.dst &&
229  this->data() == other.data();
230  }
231  };
232 
234  // Edge iterator
236 
237  // This holds a graph and a edge number that is the start of
238  // a list, and it iterates over all the edge_storage_t elements
239  // of that list.
240 
241  template <typename Graph>
242  class SPOT_API edge_iterator: public
243  std::iterator<std::forward_iterator_tag,
244  typename
245  std::conditional<std::is_const<Graph>::value,
246  const typename Graph::edge_storage_t,
247  typename Graph::edge_storage_t>::type>
248  {
249  typedef
250  std::iterator<std::forward_iterator_tag,
251  typename
252  std::conditional<std::is_const<Graph>::value,
253  const typename Graph::edge_storage_t,
254  typename Graph::edge_storage_t>::type>
255  super;
256  public:
257  typedef typename Graph::edge edge;
258 
259  edge_iterator() noexcept
260  : g_(nullptr), t_(0)
261  {
262  }
263 
264  edge_iterator(Graph* g, edge t) noexcept
265  : g_(g), t_(t)
266  {
267  }
268 
269  bool operator==(edge_iterator o) const
270  {
271  return t_ == o.t_;
272  }
273 
274  bool operator!=(edge_iterator o) const
275  {
276  return t_ != o.t_;
277  }
278 
279  typename super::reference
280  operator*()
281  {
282  return g_->edge_storage(t_);
283  }
284 
285  const typename super::reference
286  operator*() const
287  {
288  return g_->edge_storage(t_);
289  }
290 
291  typename super::pointer
292  operator->()
293  {
294  return &g_->edge_storage(t_);
295  }
296 
297  const typename super::pointer
298  operator->() const
299  {
300  return &g_->edge_storage(t_);
301  }
302 
303  edge_iterator operator++()
304  {
305  t_ = operator*().next_succ;
306  return *this;
307  }
308 
309  edge_iterator operator++(int)
310  {
311  edge_iterator ti = *this;
312  t_ = operator*().next_succ;
313  return ti;
314  }
315 
316  operator bool() const
317  {
318  return t_;
319  }
320 
321  edge trans() const
322  {
323  return t_;
324  }
325 
326  protected:
327  Graph* g_;
328  edge t_;
329  };
330 
331  template <typename Graph>
332  class SPOT_API killer_edge_iterator: public edge_iterator<Graph>
333  {
334  typedef edge_iterator<Graph> super;
335  public:
336  typedef typename Graph::state_storage_t state_storage_t;
337  typedef typename Graph::edge edge;
338 
339  killer_edge_iterator(Graph* g, edge t, state_storage_t& src) noexcept
340  : super(g, t), src_(src), prev_(0)
341  {
342  }
343 
344  killer_edge_iterator operator++()
345  {
346  prev_ = this->t_;
347  this->t_ = this->operator*().next_succ;
348  return *this;
349  }
350 
351  killer_edge_iterator operator++(int)
352  {
353  killer_edge_iterator ti = *this;
354  ++*this;
355  return ti;
356  }
357 
358  // Erase the current edge and advance the iterator.
359  void erase()
360  {
361  edge next = this->operator*().next_succ;
362 
363  // Update source state and previous edges
364  if (prev_)
365  {
366  this->g_->edge_storage(prev_).next_succ = next;
367  }
368  else
369  {
370  if (src_.succ == this->t_)
371  src_.succ = next;
372  }
373  if (src_.succ_tail == this->t_)
374  {
375  src_.succ_tail = prev_;
376  assert(next == 0);
377  }
378 
379  // Erased edges have themselves as next_succ.
380  this->operator*().next_succ = this->t_;
381 
382  // Advance iterator to next edge.
383  this->t_ = next;
384 
385  ++this->g_->killed_edge_;
386  }
387 
388  protected:
389  state_storage_t& src_;
390  edge prev_;
391  };
392 
393 
395  // State OUT
397 
398  // Fake container listing the outgoing edges of a state.
399 
400  template <typename Graph>
401  class SPOT_API state_out
402  {
403  public:
404  typedef typename Graph::edge edge;
405  state_out(Graph* g, edge t) noexcept
406  : g_(g), t_(t)
407  {
408  }
409 
410  edge_iterator<Graph> begin()
411  {
412  return {g_, t_};
413  }
414 
416  {
417  return {};
418  }
419 
420  void recycle(edge t)
421  {
422  t_ = t;
423  }
424 
425  protected:
426  Graph* g_;
427  edge t_;
428  };
429 
431  // all_trans
433 
434  template <typename Graph>
435  class SPOT_API all_edge_iterator: public
436  std::iterator<std::forward_iterator_tag,
437  typename
438  std::conditional<std::is_const<Graph>::value,
439  const typename Graph::edge_storage_t,
440  typename Graph::edge_storage_t>::type>
441  {
442  typedef
443  std::iterator<std::forward_iterator_tag,
444  typename
445  std::conditional<std::is_const<Graph>::value,
446  const typename Graph::edge_storage_t,
447  typename Graph::edge_storage_t>::type>
448  super;
449 
450  typedef typename std::conditional<std::is_const<Graph>::value,
451  const typename Graph::edge_vector_t,
452  typename Graph::edge_vector_t>::type
453  tv_t;
454 
455  unsigned t_;
456  tv_t& tv_;
457 
458  void skip_()
459  {
460  unsigned s = tv_.size();
461  do
462  ++t_;
463  while (t_ < s && tv_[t_].next_succ == t_);
464  }
465 
466  public:
467  all_edge_iterator(unsigned pos, tv_t& tv) noexcept
468  : t_(pos), tv_(tv)
469  {
470  skip_();
471  }
472 
473  all_edge_iterator(tv_t& tv) noexcept
474  : t_(tv.size()), tv_(tv)
475  {
476  }
477 
478  all_edge_iterator& operator++()
479  {
480  skip_();
481  return *this;
482  }
483 
484  all_edge_iterator operator++(int)
485  {
486  all_edge_iterator old = *this;
487  ++*this;
488  return old;
489  }
490 
491  bool operator==(all_edge_iterator o) const
492  {
493  return t_ == o.t_;
494  }
495 
496  bool operator!=(all_edge_iterator o) const
497  {
498  return t_ != o.t_;
499  }
500 
501  typename super::reference
502  operator*()
503  {
504  return tv_[t_];
505  }
506 
507  const typename super::reference
508  operator*() const
509  {
510  return tv_[t_];
511  }
512 
513  const typename super::pointer
514  operator->()
515  {
516  return &tv_[t_];
517  }
518 
519  typename super::pointer
520  operator->() const
521  {
522  return &tv_[t_];
523  }
524  };
525 
526 
527  template <typename Graph>
528  class SPOT_API all_trans
529  {
530  typedef typename std::conditional<std::is_const<Graph>::value,
531  const typename Graph::edge_vector_t,
532  typename Graph::edge_vector_t>::type
533  tv_t;
535  tv_t& tv_;
536  public:
537 
538  all_trans(tv_t& tv) noexcept
539  : tv_(tv)
540  {
541  }
542 
543  iter_t begin()
544  {
545  return {0, tv_};
546  }
547 
548  iter_t end()
549  {
550  return {tv_};
551  }
552  };
553 
554  }
555 
556 
557  // The actual graph implementation
558 
559  template <typename State_Data, typename Edge_Data, bool Alternating>
560  class digraph
561  {
562  friend class internal::edge_iterator<digraph>;
563  friend class internal::edge_iterator<const digraph>;
565 
566  public:
567  typedef internal::edge_iterator<digraph> iterator;
568  typedef internal::edge_iterator<const digraph> const_iterator;
569 
570  static constexpr bool alternating()
571  {
572  return Alternating;
573  }
574 
575  // Extra data to store on each state or edge.
576  typedef State_Data state_data_t;
577  typedef Edge_Data edge_data_t;
578 
579  // State and edges are identified by their indices in some
580  // vector.
581  typedef unsigned state;
582  typedef unsigned edge;
583 
584  // The type of an output state (when seen from a edge)
585  // depends on the kind of graph we build
586  typedef typename std::conditional<Alternating,
587  std::vector<state>,
588  state>::type out_state;
589 
590  typedef internal::distate_storage<edge,
591  internal::boxed_label<State_Data>>
592  state_storage_t;
593  typedef internal::edge_storage<state, out_state, edge,
594  internal::boxed_label<Edge_Data>>
595  edge_storage_t;
596  typedef std::vector<state_storage_t> state_vector;
597  typedef std::vector<edge_storage_t> edge_vector_t;
598  protected:
599  state_vector states_;
600  edge_vector_t edges_;
601  // Number of erased edges.
602  unsigned killed_edge_;
603  public:
610  digraph(unsigned max_states = 10, unsigned max_trans = 0)
611  : killed_edge_(0)
612  {
613  states_.reserve(max_states);
614  if (max_trans == 0)
615  max_trans = max_states * 2;
616  edges_.reserve(max_trans + 1);
617  // Edge number 0 is not used, because we use this index
618  // to mark the absence of a edge.
619  edges_.resize(1);
620  // This causes edge 0 to be considered as dead.
621  edges_[0].next_succ = 0;
622  }
623 
624  unsigned num_states() const
625  {
626  return states_.size();
627  }
628 
629  unsigned num_edges() const
630  {
631  return edges_.size() - killed_edge_ - 1;
632  }
633 
634  bool valid_trans(edge t) const
635  {
636  // Erased edges have their next_succ pointing to
637  // themselves.
638  return (t < edges_.size() &&
639  edges_[t].next_succ != t);
640  }
641 
642  template <typename... Args>
643  state new_state(Args&&... args)
644  {
645  state s = states_.size();
646  states_.emplace_back(std::forward<Args>(args)...);
647  return s;
648  }
649 
650  template <typename... Args>
651  state new_states(unsigned n, Args&&... args)
652  {
653  state s = states_.size();
654  states_.reserve(s + n);
655  while (n--)
656  states_.emplace_back(std::forward<Args>(args)...);
657  return s;
658  }
659 
660  state_storage_t&
661  state_storage(state s)
662  {
663  assert(s < states_.size());
664  return states_[s];
665  }
666 
667  const state_storage_t&
668  state_storage(state s) const
669  {
670  assert(s < states_.size());
671  return states_[s];
672  }
673 
674  // Do not use State_Data& as return type, because State_Data might
675  // be void.
676  typename state_storage_t::data_t&
677  state_data(state s)
678  {
679  assert(s < states_.size());
680  return states_[s].data();
681  }
682 
683  // May not be called on states with no data.
684  const typename state_storage_t::data_t&
685  state_data(state s) const
686  {
687  assert(s < states_.size());
688  return states_[s].data();
689  }
690 
691  edge_storage_t&
692  edge_storage(edge s)
693  {
694  assert(s < edges_.size());
695  return edges_[s];
696  }
697 
698  const edge_storage_t&
699  edge_storage(edge s) const
700  {
701  assert(s < edges_.size());
702  return edges_[s];
703  }
704 
705  typename edge_storage_t::data_t&
706  edge_data(edge s)
707  {
708  assert(s < edges_.size());
709  return edges_[s].data();
710  }
711 
712  const typename edge_storage_t::data_t&
713  edge_data(edge s) const
714  {
715  assert(s < edges_.size());
716  return edges_[s].data();
717  }
718 
719  template <typename... Args>
720  edge
721  new_edge(state src, out_state dst, Args&&... args)
722  {
723  assert(src < states_.size());
724 
725  edge t = edges_.size();
726  edges_.emplace_back(dst, 0, src, std::forward<Args>(args)...);
727 
728  edge st = states_[src].succ_tail;
729  assert(st < t || !st);
730  if (!st)
731  states_[src].succ = t;
732  else
733  edges_[st].next_succ = t;
734  states_[src].succ_tail = t;
735  return t;
736  }
737 
738  state index_of_state(const state_storage_t& ss) const
739  {
740  assert(!states_.empty());
741  return &ss - &states_.front();
742  }
743 
744  edge index_of_edge(const edge_storage_t& tt) const
745  {
746  assert(!edges_.empty());
747  return &tt - &edges_.front();
748  }
749 
750  internal::state_out<digraph>
751  out(state src)
752  {
753  return {this, states_[src].succ};
754  }
755 
756  internal::state_out<digraph>
757  out(state_storage_t& src)
758  {
759  return out(index_of_state(src));
760  }
761 
762  internal::state_out<const digraph>
763  out(state src) const
764  {
765  return {this, states_[src].succ};
766  }
767 
768  internal::state_out<const digraph>
769  out(state_storage_t& src) const
770  {
771  return out(index_of_state(src));
772  }
773 
774  internal::killer_edge_iterator<digraph>
775  out_iteraser(state_storage_t& src)
776  {
777  return {this, src.succ, src};
778  }
779 
780  internal::killer_edge_iterator<digraph>
781  out_iteraser(state src)
782  {
783  return out_iteraser(state_storage(src));
784  }
785 
786  const state_vector& states() const
787  {
788  return states_;
789  }
790 
791  state_vector& states()
792  {
793  return states_;
794  }
795 
796  internal::all_trans<const digraph> edges() const
797  {
798  return edges_;
799  }
800 
801  internal::all_trans<digraph> edges()
802  {
803  return edges_;
804  }
805 
806  // When using this method, beware that the first entry (edge
807  // #0) is not a real edge, and that any edge with
808  // next_succ pointing to itself is an erased edge.
809  //
810  // You should probably use edges() instead.
811  const edge_vector_t& edge_vector() const
812  {
813  return edges_;
814  }
815 
816  edge_vector_t& edge_vector()
817  {
818  return edges_;
819  }
820 
821  bool is_dead_edge(unsigned t) const
822  {
823  return edges_[t].next_succ == t;
824  }
825 
826  bool is_dead_edge(const edge_storage_t& t) const
827  {
828  return t.next_succ == index_of_edge(t);
829  }
830 
831 
832  // To help debugging
833  void dump_storage(std::ostream& o) const
834  {
835  unsigned tend = edges_.size();
836  for (unsigned t = 1; t < tend; ++t)
837  {
838  o << 't' << t << ": (s"
839  << edges_[t].src << ", s"
840  << edges_[t].dst << ") t"
841  << edges_[t].next_succ << '\n';
842  }
843  unsigned send = states_.size();
844  for (unsigned s = 0; s < send; ++s)
845  {
846  o << 's' << s << ": t"
847  << states_[s].succ << " t"
848  << states_[s].succ_tail << '\n';
849  }
850  }
851 
852  // Remove all dead edges. The edges_ vector is left
853  // in a state that is incorrect and should eventually be fixed by
854  // a call to chain_edges_() before any iteration on the
855  // successor of a state is performed.
856  void remove_dead_edges_()
857  {
858  if (killed_edge_ == 0)
859  return;
860  auto i = std::remove_if(edges_.begin() + 1, edges_.end(),
861  [this](const edge_storage_t& t) {
862  return this->is_dead_edge(t);
863  });
864  edges_.erase(i, edges_.end());
865  killed_edge_ = 0;
866  }
867 
868  // This will invalidate all iterators, and also destroy edge
869  // chains. Call chain_edges_() immediately afterwards
870  // unless you know what you are doing.
871  template<class Predicate = std::less<edge_storage_t>>
872  void sort_edges_(Predicate p = Predicate())
873  {
874  //std::cerr << "\nbefore\n";
875  //dump_storage(std::cerr);
876  std::stable_sort(edges_.begin() + 1, edges_.end(), p);
877  }
878 
879  // Should be called only when it is known that all edges
880  // with the same destination are consecutive in the vector.
881  void chain_edges_()
882  {
883  state last_src = -1U;
884  edge tend = edges_.size();
885  for (edge t = 1; t < tend; ++t)
886  {
887  state src = edges_[t].src;
888  if (src != last_src)
889  {
890  states_[src].succ = t;
891  if (last_src != -1U)
892  {
893  states_[last_src].succ_tail = t - 1;
894  edges_[t - 1].next_succ = 0;
895  }
896  while (++last_src != src)
897  {
898  states_[last_src].succ = 0;
899  states_[last_src].succ_tail = 0;
900  }
901  }
902  else
903  {
904  edges_[t - 1].next_succ = t;
905  }
906  }
907  if (last_src != -1U)
908  {
909  states_[last_src].succ_tail = tend - 1;
910  edges_[tend - 1].next_succ = 0;
911  }
912  unsigned send = states_.size();
913  while (++last_src != send)
914  {
915  states_[last_src].succ = 0;
916  states_[last_src].succ_tail = 0;
917  }
918  //std::cerr << "\nafter\n";
919  //dump_storage(std::cerr);
920  }
921 
922  // Rename all the states in the edge vector. The
923  // edges_ vector is left in a state that is incorrect and
924  // should eventually be fixed by a call to chain_edges_()
925  // before any iteration on the successor of a state is performed.
926  void rename_states_(const std::vector<unsigned>& newst)
927  {
928  assert(newst.size() == states_.size());
929  unsigned tend = edges_.size();
930  for (unsigned t = 1; t < tend; t++)
931  {
932  edges_[t].dst = newst[edges_[t].dst];
933  edges_[t].src = newst[edges_[t].src];
934  }
935  }
936 
937  void defrag_states(std::vector<unsigned>&& newst, unsigned used_states)
938  {
939  assert(newst.size() == states_.size());
940  assert(used_states > 0);
941 
942  //std::cerr << "\nbefore defrag\n";
943  //dump_storage(std::cerr);
944 
945  // Shift all states in states_, as indicated by newst.
946  unsigned send = states_.size();
947  for (state s = 0; s < send; ++s)
948  {
949  state dst = newst[s];
950  if (dst == s)
951  continue;
952  if (dst == -1U)
953  {
954  // This is an erased state. Mark all its edges as
955  // dead (i.e., t.next_succ should point to t for each of
956  // them).
957  auto t = states_[s].succ;
958  while (t)
959  std::swap(t, edges_[t].next_succ);
960  continue;
961  }
962  states_[dst] = std::move(states_[s]);
963  }
964  states_.resize(used_states);
965 
966  // Shift all edges in edges_. The algorithm is
967  // similar to remove_if, but it also keeps the correspondence
968  // between the old and new index as newidx[old] = new.
969  unsigned tend = edges_.size();
970  std::vector<edge> newidx(tend);
971  unsigned dest = 1;
972  for (edge t = 1; t < tend; ++t)
973  {
974  if (is_dead_edge(t))
975  continue;
976  if (t != dest)
977  edges_[dest] = std::move(edges_[t]);
978  newidx[t] = dest;
979  ++dest;
980  }
981  edges_.resize(dest);
982  killed_edge_ = 0;
983 
984  // Adjust next_succ and dst pointers in all edges.
985  for (edge t = 1; t < dest; ++t)
986  {
987  auto& tr = edges_[t];
988  tr.next_succ = newidx[tr.next_succ];
989  tr.dst = newst[tr.dst];
990  tr.src = newst[tr.src];
991  assert(tr.dst != -1U);
992  }
993 
994  // Adjust succ and succ_tails pointers in all states.
995  for (auto& s: states_)
996  {
997  s.succ = newidx[s.succ];
998  s.succ_tail = newidx[s.succ_tail];
999  }
1000 
1001  //std::cerr << "\nafter defrag\n";
1002  //dump_storage(std::cerr);
1003  }
1004  };
1005 }
Definition: graph.hh:32
Definition: graph.hh:61
digraph(unsigned max_states=10, unsigned max_trans=0)
construct an empty graph
Definition: graph.hh:610
Definition: graph.hh:35
Definition: graph.hh:242
Definition: graph.hh:183
Definition: graph.hh:158
Definition: graph.hh:528
Definition: graph.hh:41
Definition: graph.hh:435
Definition: graph.hh:401
Definition: graph.hh:332

Please direct any question, comment, or bug report to the Spot mailing list at spot@lrde.epita.fr.
Generated on Thu Feb 18 2016 13:37:05 for spot by doxygen 1.8.9.1