
Vaucanson User’s manual

The Vaucanson group

July 28, 2006



Contents

1 Installation 2
1.1 Getting Vaucanson . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Building Vaucanson . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Vaucanson as a toolkit 3
2.1 Boolean automata . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 A first example . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Rational expressions and Boolean automata . . . . . . . . 6
2.1.3 Available functions . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Available functions . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Weighted automata . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Available functions . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Building your own automaton . . . . . . . . . . . . . . . . . . . . 15

3 Vaucanson as a library 16

1



Chapter 1

Installation

1.1 Getting Vaucanson

The latest stable version of the Vaucanson platform can be downloaded from
http://vaucanson.lrde.epita.fr/. The current development version can be
retrieved from its Subversion1 repository as follows:

user> svn checkout https://svn.lrde.epita.fr/svn/vaucanson/trunk vaucanson

1.2 Building Vaucanson

The following commands build and install the platform (the process takes an
hour on a modern computer):

user> cd vaucanson-0.x

Then:

user> ./configure

user> make

root> make install

1Subversion can be found at http://subversion.tigris.org/.

2

http://vaucanson.lrde.epita.fr/
http://subversion.tigris.org/


Chapter 2

Vaucanson as a toolkit

Vaucanson provides several programs that manipulate various types of au-
tomata. In this chapter we will learn how to use them. Actually there are 6
programs:

vcsn-b automata over the Boolean semiring B;

vcsn-z automata over (Z, +);

vcsn-z-min-plus automata over (Z, min);

vcsn-z-max-plus automata over (Z, max);

vcsn-rt-tdc realtime transducers;

vcsn-tdc automata over free monoid products.

The first step to work with Vaucanson toolkit is to choose on which type
of automata you intend to work. Then use the proper program among those
listed before.

All automata used in this chapter can be found in the doc/manual/exam-
ples/ directory.

3



2.1 Boolean automata

This part demonstrates the use of the program b.

2.1.1 A first example

Let’s consider the following Boolean automaton Figure 2.1. We will use Vau-

a b

b

a

b

a

Figure 2.1: The automaton A1

canson to compute the determinized automaton of A1 and then minimize the
resulting automaton.

Determinization of A1

To determinize a Boolean automaton, call the determinize function:

# vcsn-b determinize a1.xml > a1 det.xml

Now the file ‘a1 det.xml’ contains the XML description of the determinized of
the automaton A.

Visualizing

To get some information about the newly created automaton, call the info

function:

# vcsn-b info a1 det.xml

States: 4

Transitions: 8

Initial states: 1

Final states: 2

Or use dotty to visualize our newly created automaton:

# vcsn-b display a1 det.xml

4



A { 4 states, 8 transitions, #I = 1, #T = 2 }

0

1

b

1

a

a

2

b

1

b

3

a b

1

a

Minimizing

The minimal automaton can be computed the same way:

# vcsn_b minimize a1_det.xml > a1_min.xml

The commands can be composed with pipes from the shell, using ‘-’ to denote
the standard input.

# vcsn_b determinize a1.xml | vcsn_b minimize - > a1_min.xml

Evaluation

To evaluate whether a word is accepted:

# vcsn-b eval a1.xml ’abab’

1

# vcsn-b eval a1.xml ’bbba’

0

where 1 (resp. 0) means that the word is accepted (resp. not accepted) by the
automaton.

5



2.1.2 Rational expressions and Boolean automata

Vaucanson provides functions to manipulate rational expressions associated
to Boolean automata. For instance, computing the language recognized by a
Boolean automaton can be done using aut to exp:

# vcsn-b aut-to-exp a1.xml

(a+b)*.a.b.(a+b)*

# vcsn-b aut-to-exp a1_det.xml

b*.a.a*.b.(a.a*.b+b)*.(a.a*+1)

Vaucanson provides several algorithms that build an automaton that rec-
ognizes a given language:

# vcsn-b standard "(a+b)*a.b.(a+b)*" | vcsn-b minimize -

computes the minimal automaton of ‘(a+b)*ab(a+b)*’.

2.1.3 Available functions

This section gives a brief definition of all functions that Vaucanson provides
for manipulating Boolean automata. All these algorithms are invoked using
‘vcsn-b algorithm-name [arguments]’. If the argument is replaced by ‘-’
then the program will read an argument from the standard input. All algorithms
dump their result to the standard output, except the “tests” functions that also
return an exit status (0 if the test is successful, anything else otherwise).

In the following:� a1 and a2 are two Boolean automata described in Vaucanson XML
format;� w is a word, for example ‘"aabb"’ if you are working on an alphabet that
contains the letters ‘a’ and ‘b’;� exp is a rational expression denoting a language;� n is a nonnegative integer.

Input/output work with automata
define-automaton Define an automaton from scratch.
edit-automaton a1 Edit an existing automaton.
info a1 Print the number of states, transitions, initial and

final states of a1.
display a1 Display the automaton using DOTTY.
dump a1 Dump the automaton to DOT format.

Tests and evaluation on automata
are-isomorphic a1 a2 Test whether a1 and a2 are isomorphic.
evaluation a1 w Test whether the word w is accepted by a1.
is-deterministic a1 Test whether a1 is deterministic.
is-empty a1 Test whether a1 accepts no word.

6



Generic algorithms for automata
accessible a1 Extract the sub-automaton of accessible states of a1.
co-accessible a1 Extract the sub-automaton of co-accessible states of

a1.
trim a1 Trim the automaton a1.
transpose a1 Compute the automaton accepting the mirror lan-

guage of the one accepted by a1.
closure [-bf] a1 ε-removal algorithm.

‘-b’ : backward closure
‘-f’ : forward closure

concatenate a1 a2 Concatenate a1 to a2.
sum aut1 aut2 Compute the sum of a1 and a2.
normalize aut1 Compute an automaton with unique initial and final

states, with ε-transitions.
standardize aut1 Compute an automaton with unique initial state

without adding ε-transitions.
Generic algorithms for automata on letters

realtime [-bf] a1 ε-removal algorithm and make every transition la-
beled by a letter.
‘-b’ : backward closure
‘-f’ : forward closure

product a1 a2 Compute the (Cartesian) product of a1 and a2.
power a1 n Compute the (Cartesian) product of a1 by itself n

times.
quotient a1 Compute the minimal automaton in bi-simulation

with a1.
Algorithms specific to Boolean automata

determinize a1 Compute the determinized automaton of a1.
complement a1 Compute an automaton that accepts the complement

language of the one accepted by a1.
minimize [-hm] a1 Minimize the deterministic automaton a1.

‘-h’ : use the Hopcroft algorithm
‘-m’ : use the Moore algorithm

Conversion between automata and expressions
aut-to-exp a1 Print a rational expression denoting the language ac-

cepted by a1.
expand exp Partially expand rational expressions. For in-

stance, expanding ‘a(b+ab(a+b))’ will produce
‘aab.(a+b)*+ab’

derived-term exp Compute the derived term automaton of exp.
standard exp Compute the standard (Glushkov) automaton of exp.
thompson-of exp Compute the Thompson automaton of exp.

7



2.2 Transducers

In Vaucanson we distinguish two types of transducers, and therefore provides
two programs:

tdc considering a transducer as a weighted automaton of a product of free
monoid,

rt tdc considering a transducer as a machine that takes a word as input and
produce another word as.

Both views are equivalent and Vaucanson provides algorithms to pass from a
view to the other one.

2.2.1 Example

The realtime transducer T1 (Figure 2.2) gives the quotient by 3 of a binary
number and the transducer T2 (Figure 2.3) adds 1 to a binary number.

0 |0 1 |1

1 |0

1 |1

0 |0

0 |1

Figure 2.2: Realtime transducer T1 computing the quotient by 3 of a binary
number

(, 1)

(1, 0) (1, 1)

(0, 0)

(0, 1)

Figure 2.3: Transducer T2 adding 1 to a binary number

Evaluation

# vcsn-rt-tdc evaluation quot_3_rt.xml ’110’

0.1.0

8



Domain

The transducer T only accepts binary number which are divisible by 3 as input.

# vcsn-rt-tdc domain quot_3_rt.xml > divisible_by_3.xml

Now the file ‘divisible by 3.xml’ contains the description of a Boolean au-
tomaton that accepts only the numbers divisible by 3.

to-tdc

Each transucers can be transformed to the other type of transducer thanks to
the to-tdc and to-rt-tdc functions.

# vcsn-rt-tdc to-tdc quot_3_rt.xml > quot_3.xml

# vcsn-tdc to-rt-tdc add1.xml > add1_rt.xml

Composing

# vcsn-tdc compose quot_3.xml add1.xml

2.2.2 Available functions

The following functions are available for both vcsn-rt tdc and vcsn-tdc pro-
grams. To invoke them, run ‘program algorithm-name [arguments]’.

In the following:� t1 and t2 are two transducers (either “realtime” or not) described in
Vaucanson XML format;� w is a word, for example ‘"aabb"’ if you are working on an alphabet that
contains the letters ‘a’ and ‘b’;� a is a Boolean automaton;� t1 rt is a realtime transducer;� t1 fmp is a transducer (seen as an automaton over a free monoid product).

9



Input/output work with transducers
define-automaton Define a transducer from scratch.
edit-automaton t1 Edit an existing transducer.
info t1 Print the number of states, transitions,

initial and final states of t1.
display t1 Display the transducer using DOTTY.

Tests and evaluation on tranducers
are-isomorphic t1 t2 Test if the two transducers are isomor-

phic.
evaluation t1 w Compute the evaluation of w by t1.
is-empty t1 Test if t1 realizes the empty relation.

Generic algorithm for tranducers
closure t1 ε-removal algorithm.
compose t1 t2 Compute a tranducer realizing f2 ◦ f1,

where f1 (resp. f2) is the function as-
sociated to t1 (resp. t2 ).

domain t1 Compute an automaton accepting all in-
put accepted by the transducer t1.

evaluation t1 Compute the evaluation of w by t1.
evaluation aut t1 Compute a Boolean automaton describ-

ing the words produced by the language
described by a evaluated by t1.

image t1 Compute an automaton describing all
output produced by the transducer t1.

transpose t1 Compute the transposed of the transducer
t1.

trim t1 Compute the trimmed transducer of t1.
Algorithms for transducers

sub-normalize t1 fmp Compute the sub-nomalized transducer of
t1 fmp.

is-sub-normalize t1 fmp Test if t1 fmp is sub-normalized.
composition-cover t1 fmp .
composition-co-cover t1 fmp .
b-compose t1 fmp t2 fmp Compose t1 fmp and t2 fmp, two un-

weighted normalized or sub-normalized
transducers.

to-rt-tdc t1 fmp Compute the equivalent realtime trans-
ducer of t1 fmp.

intersection a Transform a in a fmp transducer by creat-
ing, for each word, a pair containing twice
this word.

10



Algorithms for “realtime” transducers
realtime t1 rt Compute the realtime transducer of t1 rt.
is-realtime t1 rt Test if t1 rt is realtime.
to-tdc t1 rt Compute the equivalent fmp transducer of t1 rt.

11



2.3 Weighted automata

This part shows the use of the program vcsn-z, but all comments should also
stand for the programs vcsn-z min plus and vcsn-z max plus.

2.3.1 Example

Let’s consider the following N-automaton, i.e. an automaton which label’s
weights are in N:

b

b

a

b

a

Figure 2.4: The automaton B1

This time the evaluation of the word w by the automaton B1 will produce a
number, rather than simply accept or reject w. For instance let’s evaluate ‘abab’
and ‘bbab’:

Evaluation

# vcsn-z eval b1.xml ’abbb’

3

# vcsn-z eval b1.xml ’abab’

2

The automaton B1 “counts” the number of ‘b’ contained in w.

Power

Now let’s consider the Bn

1
, where

Bn

1
=

n∏

i=1

B1, n > 0

# vcsn-z power b1.xml 4 > b1_4.xml

Now the file ‘b1 4.xml’ contains the automaton B4

1
. Lets see what the

evaluation of the words ‘abab’ and ‘bbab’ gives with this automaton:

# vcsn-z eval b1_4.xml ’bbab’

81

# vcsn-z eval b1_4.xml ’abab’

16

This time one can notice that the automaton B4

1
returns the evaluation of

B1 at power 4.

12



Quotient

One drawback of doing successive products of an automaton is that it creates a
lot of new states and transitions.

# vcsn-z power b1.xml 4 | vcsn-z info -

States: 16

Transitions: 97

Initial states: 1

Final states: 1

One way of reducing the size of our automaton is to use the “quotient” algorithm.

# vcsn-z power b1.xml 4 | vcsn-z quotient - | vcsn-z info -

States: 5

Transitions: 15

Initial states: 1

Final states: 1

2.3.2 Available functions

In this section you will find a brief definition of all functions for manipulating
weighted automata. The following functions are available for both. They are
called using vcsn-z, vcsn-z max plus, and vcsn-z min plus run as ‘program
algorithm-name [arguments]’.

In the following:� a1 and a2 are two weighted automata described in Vaucanson XML
format;� w is a word, for example ‘aabb’ if you are working on an alphabet that
contains the letters ‘a’ and ‘b’;� exp is a rational expression denoting a language;� n is a nonnegative integer.

13



Input/output work with weighted automata
define-automaton Define an automaton from scratch.
edit-automaton a1 Edit an existing automaton.
info a1 Print the number of states, transitions, initial and

final states of a1.
display a1 Display the automaton using DOTTY.

Tests and evaluation on weighted automata
are-isomorphic a1 a2 Test if the two automata are isomorphic.
evaluation a1 w Compute the evaluation of w by a1.
is-empty a1 .

Generic algorithms for automata
accessible a1 Extract the sub-automaton of accessible states of

a1.
co-accessible a1 Extract the sub-automaton of co-accessible states

of a1.
trim a1 Trim the automaton a1.
transpose a1 Compute the automaton accepting the mirror lan-

guage of the one accepted by a1.
closure [-bf] a1 ε-removal algorithm.

‘-b’ : backward closure
‘-f’ : forward closure

concatenate a1 a2 Concatenate a1 to a2.
sum a1 a2 Compute the sum of a1 and a2.
normalize a1 Compute an automaton with unique initial and

final states, with ε-transitions.
standardize a1 Compute an automaton with unique initial state

without adding ε-transitions.
Generic algorithms for automata on letters

realtime [-bf] a1 ε-removal algorithm and make every transition la-
beled by a letter.
‘-b’ : backward closure
‘-f’ : forward closure

product a1 a2 Compute the (Cartesian) product of a1 and a1.
power a1 n Compute the (Cartesian) product of a1 by itself

n times.
quotient a1 Compute the Z-quotient of a1.

Conversion between automata and expressions
aut-to-exp a1 .
expand exp Partially expand rational expressions.
derived-term exp Compute the derived term automaton of exp.
standard exp Compute the standard (Glushkov) automaton of

exp.
thompson-of exp Compute the Thompson automaton of exp.

14



2.4 Building your own automaton

15



Chapter 3

Vaucanson as a library

To be written.

16


	1 Installation
	1.1 Getting Vaucanson
	1.2 Building Vaucanson

	2 Vaucanson as a toolkit
	2.1 Boolean automata
	2.1.1 A first example
	2.1.2 Rational expressions and Boolean automata
	2.1.3 Available functions

	2.2 Transducers
	2.2.1 Example
	2.2.2 Available functions

	2.3 Weighted automata
	2.3.1 Example
	2.3.2 Available functions

	2.4 Building your own automaton

	3 Vaucanson as a library

