
The Vaucanson TAF-Kit 1.0

User’s Manual

The Vaucanson Group

July 28th, 2006

Contents

Contents 1

1 Installation 3

1.1 Getting Vaucanson . 3
1.2 Building Vaucanson . 3

2 The Vaucanson toolkit 4

2.1 Boolean automata . 5
2.1.1 First Contacts . 5
2.1.2 A first example . 6
2.1.3 Interactive Definition of Automata . 9
2.1.4 Rational expressions and Boolean automata 10
2.1.5 Available functions . 12

2.2 Transducers . 14
2.2.1 Example . 14
2.2.2 Available functions . 15

2.3 Z-Automata . 16
2.3.1 Counting ‘b’s . 16
2.3.2 Available functions . 17

3 Automaton Library 19

3.1 Boolean Automata . 19
3.1.1 a1 . 19
3.1.2 b1 . 20
3.1.3 div3base2 . 20
3.1.4 double-3-1 . 20
3.1.5 ladybird-6 . 21

3.2 Z-Automata . 21
3.2.1 b1 . 21
3.2.2 c1 . 22

3.3 Transducers . 22
3.3.1 t1 . 22
3.3.2 u1 . 22

1

Introduction

The Vaucanson software platform is dedicated to the computation with finite state automata.
Here, ‘finite state automata’ is to be understood in the broadest sense: weighted automata on a
free monoid — that is, automata that not only accept, or recognize, words but compute for every
word a multiplicity which is taken a priori in an arbitrary semiring — and even weighted automata
on non free monoids. The latter become far too general objects. As for now, are implemented in
Vaucanson only the (weighted) automata on (direct) products of free monoids, machines that
are often called transducers — that is automata that realize (weighted) relations between words1.

When designing Vaucanson, we had three main goals in mind: we wanted

1. a general purpose software,

2. a software that allows a programming style natural to computer scientists who work with
automata and transducers,

3. an open and free software.

This is the reason why we implemented so to say on top of the Vaucanson platform a library
that allows to apply a number of functions on automata, and even to define and edit automata,
without having to bother with subtleties of C++ programming. The drawback of this is obviously
that the user is given a fixed set of functions that apply to already typed automata. This library of
functions does not allow to write new algorithms on automata but permits to combine or compose
without much difficulties nor efforts a rather large set of commands. We call it TAF-Kit, standing
for Typed Automata Function Kit, as these commands take as input, and output, automata whose
type is fixed. TAF-Kit is presented in Chapter 2.

1When the relation is “weighted” the multiplicity has to be taken in a commutative semiring.

2

Chapter 1

Installation

1.1 Getting Vaucanson

The latest stable version of the Vaucanson platform can be downloaded from http://vaucanson.lrde.epita.fr/.
The current development version can be retrieved from its Subversion1 repository as follows:

svn checkout https://svn.lrde.epita.fr/svn/vaucanson/trunk vaucanson

1.2 Building Vaucanson

The following commands build and install the platform:

cd vaucanson-1.0

Then:

./configure

...

make

...

sudo make install

...

More detailed information is provided in the files ‘INSTALL’, which is generic to all packages
using the GNU Build System, and ‘README’ which details Vaucanson’s specific build process.

1Subversion can be found at http://subversion.tigris.org/.

3

http://vaucanson.lrde.epita.fr/
http://subversion.tigris.org/

Chapter 2

The Vaucanson toolkit

This chapter presents a simple interface to Vaucanson: a set of programs tailored to be used
from a traditional shell. Since they exchange typed XML files, there is one program per automaton
type. Each program supports a set of operations which depends on the type of the automaton.

Many users of automata consider only automata whose transitions are labeled by letters taken
in an alphabet, which we call, roughly speaking, classical automata or Boolean automata. The
first program of the TAF-Kit, vcsn-b, allows to compute with classical automata and is described
in Section 2.1.

Section 2.2 describes the program vcsn-tdc which allows to compute with transducers, that
is, automata whose transitions are labeled by pair of words, which are elements of a product of

free monoids, hence the name.
In Section 2.3 we consider the programs of the TAF-Kit that compute with automata over a

free monoid and with multiplicity, or weight taken in the set of integers equipped with the usual
operations of addition and multiplication, that is, the semiring Z.

It is planned that a forthcoming version will include also:

vcsn-zmin for automata over a free monoid with multiplicity in the semiring (Z, min, +)

vcsn-zmax for automata over a free monoid with multiplicity in the semiring (Z, max, +)

vcsn-rw-tdc for transducers viewed as automata over a free monoid with multiplicity in the
semiring of rational sets (or series) over (another) free monoid.

4

2.1 Boolean automata

This section focuses on the program vcsn-b, the TAF-Kit component dedicated to Boolean
automata.

2.1.1 First Contacts

vcsn-b and its peer components of TAF-Kit all share the same simple interface:

vcsn-b function automaton arguments...

The function is the name of the operation to perform on the automaton, specified as an XML file.
Some functions, such as evaluation, require additional arguments, such as the word to evaluate.
Some others, such as exp-to-aut do not have an automaton argument.

TAF-Kit is made to work with Unix pipes, that is to say, chains of commands which feed each
other. Therefore, all the functions produce a result on the standard output, and if an automaton

is ‘-’, then the standard input is used.

A typical line of commands from the TAF-Kit reads as follows:

vcsn-b determinize a1.xml > a1det.xml

and should be understood, or analyzed, as follows.

1. vcsn-b is the call to a shell command that will launch a Vaucanson function. vcsn-b

has 2 arguments, the first one being the function which will be launched, the second being
the automaton that is the input argument of the function.

2. determinize is, as just said, a Vaucanson function. And as it can easily be guessed,
determinize takes an automaton as argument, performs the subset construction on it and
outputs the result on the standard output.

3. ‘a1.xml’ is the description of an automaton — of the automaton of Section 3.1.1 indeed —
in an XML format that is understood1 by Vaucanson. This file must exist before the line
is executed. The ‘data/automata’ directory provides a number of XML files for examples of
automata, a number of programs that produce the XML files for automata whose definition
depend upon some variables and the TAF-Kit itself allows to define automata and thus to
produce the corresponding XML files (cf. below).

4. ‘>a1det.xml’ puts the result of determinize into the file ‘a1.xml’, that is, the XML file
which describes the determinized automaton of A1.

As a more elaborate example, consider the following command

vcsn-b dump-automaton a1 | vcsn-b determinize - | vcsn-b minimize - | vcsn-b info -

States: 3

Transitions: 6

Initial states: 1

Final states: 1

It fetches the automaton a1 from the automaton library, determinizes it, minimizes the result,
and finally displays information about the resulting automaton.

Please, note the typographic conventions: user input is represented # like this , standard
output follows like this, followed by standard error output error: like this, and finally, if
different from 0, the exit status is represented => like this. For instance:

1This format is not exactly part of the Vaucanson platform. It has been developed for providing a means of

communication between various programs dealing with automata. And then it has been used as a communication

tool between the invocations of Vaucanson function by the TAF-Kit. A lay user of the TAF-Kit should not need

to know how this format is defined.

5

vcsn-b dump-automaton a1 | vcsn-z info -

error: invalid semiring: B, expected: Z

=> 1

Other than that, the interface of the TAF-Kit components is usual, including options such as
‘--version’ and ‘--help’:

vcsn-b --help

Usage: lt-vcsn-b [OPTION...] <command> <args...>

VCSN TAF-Kit -- a toolkit for working with automata

-a, --alphabet=ALPHABET Set the working alphabet for rational expressions

-B, --bench=NB_ITERATIONS Bench

-D, --export-time-dot[=VERBOSE_DEGREE]

Export time statistics in DOT format

-i, --input-type=INPUT_TYPE Automaton input type (FSM or XML)

-l, --list-commands List the commands handled by the program

-o, --output-type=OUTPUT_TYPE Automaton input type (FSM, XML or DOT)

-O, --bench-plot-output=OUTPUT_FILENAME

Bench output filename

-T, --report-time[=VERBOSE_DEGREE]

Report time statistics

-v, --verbose Be more verbose (print boolean results)

-X, --export-time-xml Export time statistics in XML format

The following alphabets are predefined:

‘ascii’: Use all the ascii table as the alphabet, 1 as epsilon

‘a-z’: Use [a-z] as the alphabet, 1 as epsilon

‘a-zA-Z’: Use [a-zA-Z] as the alphabet, 1 as epsilon

‘ab’: Use ‘ab’ as the alphabet, 1 as epsilon

-?, --help Give this help list

--usage Give a short usage message

-V, --version Print program version

Mandatory or optional arguments to long options are also mandatory or optional

for any corresponding short options.

Report bugs to <vaucanson-bugs@lrde.epita.fr>.

The whole list of supported commands is available via ‘--list-commands’.

2.1.2 A first example

Vaucanson provides a set of common automata. The function list-automata lists them all:

vcsn-b list-automata

The following automata are predefined:

- a1

- b1

- div3base2

- double-3-1

- ladybird-6

Let’s consider the Boolean automaton A1 (Figure 2.1), part of the standard library. It can be
dumped using dump-automaton:

6

a b

b

a

b

a

The graphical layout of this automaton was described by hand, using the Vaucanson-G
LATEX package. However, the following figures are generated by TAF-Kit, giving a
very nice layout, yet slightly less artistic.

Figure 2.1: The automaton A1

vcsn-b dump-automaton a1

<automaton xmlns="http://vaucanson.lrde.epita.fr" name="a1">

<labelType>

<monoid generatorType="letters" type="free">

<generator value="a"/>

<generator value="b"/>

</monoid>

<semiring operations="classical" set="B"/>

</labelType>

<content>

<states>

<state name="s0"/>

<state name="s1"/>

<state name="s2"/>

</states>

<transitions>

<transition dst="s0" label="a" src="s0"/>

<transition dst="s0" label="b" src="s0"/>

<transition dst="s1" label="a" src="s0"/>

<transition dst="s2" label="b" src="s1"/>

<transition dst="s2" label="a" src="s2"/>

<transition dst="s2" label="b" src="s2"/>

<initial state="s0"/>

<final state="s2"/>

</transitions>

</content>

</automaton>

Usual shell indirections (‘|’, ‘>’, and ‘<’) can be used to combine TAF-Kit commands. For
instance, this is an easy means to bring a local copy of this file:

vcsn-b dump-automaton a1 >a1.xml

7

TAF-Kit uses XML to exchange automata, to get graphical rendering of the automaton, you
may either invoke dot-dump and then use a Dot compliant program, or use display that does
both.

vcsn-b dot-dump a1.xml >a1.dot

A { 3 states, 6 transitions, #I = 1, #T = 1 }

0

1

a b

1

a

2

b

1

a b

Determinization of A1

To determinize a Boolean automaton, call the determinize function:

vcsn-b dump-automaton a1 | vcsn-b determinize - >a1det.xml

To get information about an automaton, call the info function:

vcsn-b info a1det.xml

States: 4

Transitions: 8

Initial states: 1

Final states: 2

Or use dotty to visualize it:

vcsn-b dot-dump a1det.xml >a1det.dot

8

A { 4 states, 8 transitions, #I = 1, #T = 2 }

0

1

b

1

a

a

2

b

1

b

3

a b

1

a

Evaluation

To evaluate whether a word is accepted:

vcsn-b eval a1.xml ’abab’

1

vcsn-b eval a1.xml ’bbba’

0

where 1 (resp. 0) means that the word is accepted (resp. not accepted) by the automaton.

2.1.3 Interactive Definition of Automata

TAF-Kit provides a text interface to define automata interactively, rather than having to deal
with XML files. Two functions are available:

define-automaton to build a fresh automaton from scratch,

edit-automaton to modify an existing automaton,

The interface is based on a menu of choices:

vcsn-b --alphabet=ab define-automaton all.xml

Automaton description:

States: (none)

Initial states: (none)

Final states: (none)

Transitions: (none)

Please choose your action:

1. Add states.

9

2. Delete a state.

3. Add a transition.

4. Delete a transition.

5. Set a state to be initial.

6. Set a state not to be initial.

7. Set a state to be final.

8. Set a state not to be final.

9. Display the automaton in Dotty.

10. Exit.

Your choice [1-10]:

If you enter 1, you will then be prompted for the number of states to add, say 1 again. The state
0 was created. To make it initial select 5, and:

Your choice [1-10]: 5

For state: 0

Likewise to make it final, using choice 7. Finally, let’s add a transition:

Your choice [1-10]: 3

Add a transition from state: 0

To state: 0

Labeled by the expression: a+b

The automaton is generalized, that is to say, rational expressions are valid labels.
On top of the interactive menu, the current definition of the automaton is reported in a textual

yet readable form:

Automaton description:

States: 0

Initial states: 0

Final states: 0

Transitions:

1: From 0 to 0 labeled by (1 a)+(1 b)

Interestingly enough, states are numbered from 0, but transitions numbers start at 1. Also, not
that weights are reported, although only 1 is valid for Boolean automata.

Finally, hit 10 to save the resulting automaton in the file ‘all.xml’.

2.1.4 Rational expressions and Boolean automata

Vaucanson provides functions to manipulate rational expressions associated to Boolean au-
tomata. This provides an alternative means to create automata:

vcsn-b --alphabet=ab exp-to-aut ’(a+b)*’ >all.xml

vcsn-b dot-dump all.xml >all.dot

10

A { 3 states, 6 transitions, #I = 1, #T = 3 }

0

1

1

1

a

2

b

1

a

b a

1

b

Minimizing

This automaton, constructed following the Thompson algorithm, is not the simplest one: it can
be minimized:

vcsn-b minimize all.xml >allmin.xml

vcsn-b dot-dump allmin.xml >allmin.dot

A { 3 states, 6 transitions, #I = 1, #T = 3 }

0

1

1

1

a

2

b

1

a

b a

1

b

Computing the language recognized by a Boolean automaton can be done using aut-to-exp:

vcsn-b aut-to-exp all.xml

(b+a.a*.b).(a.a*.b+b)*.(a.a*+1)+a.a*+1

vcsn-b aut-to-exp allmin.xml

(b+a.a*.b).(a.a*.b+b)*.(a.a*+1)+a.a*+1

11

Vaucanson provides several algorithms that build an automaton that recognizes a given
language. The following sequence computes the minimal automaton of ‘(a+b)*ab(a+b)*’.

vcsn-b --alphabet=ab standard "(a+b)*a.b.(a+b)*" | vcsn-b minimize - >l1.xml

vcsn-b dot-dump l1.xml >l1.dot

A { 3 states, 6 transitions, #I = 1, #T = 1 }

0

1

a b

2

a

1

1

a b

b

2.1.5 Available functions

The whole list of supported commands is available via ‘--list-commands’:

vcsn-b --list-commands

List of available commands:

* Input/output work:

- define-automaton file: Define an automaton from scratch.

- display aut: Display ‘aut’.

- dot-dump aut: Dump dot output of ‘aut’.

- dump-automaton file: Dump a predefined automaton.

- edit-automaton file: Edit an existing automaton.

- identity aut: Return ‘aut’.

- info aut: Print useful infos about ‘aut’.

- list-automata: List predefined automata.

* Tests and evaluation on automata:

- are-isomorphic aut1 aut2: Return whether ‘aut1’ and ‘aut2’ are isomorphic.

- eval aut word: Evaluate ‘word’ on ‘aut’.

- is-ambiguous aut: Return whether ‘aut’ is ambiguous.

- is-complete aut: Return whether ‘aut’ is complete.

- is-deterministic aut: Return whether ‘aut’ is deterministic.

- is-empty aut: Return whether trimed ‘aut’ is empty.

- is-realtime aut: Return whether ‘aut’ is realtime.

- is-standard aut: Return whether ‘aut’ is standard.

* Generic algorithms for automata:

- accessible aut: Give the maximal accessible subautomaton of ‘aut’.

- eps-removal aut: Give ‘aut’ closed over epsilon transitions.

- eps-removal-sp aut: Give ‘aut’ closed over epsilon transitions.

- co-accessible aut: Give the maximal coaccessible subautomaton of ‘aut’.

12

- complete aut: Give the complete version of ‘aut’.

- concatenate aut1 aut2: Concatenate ‘aut1’ and ‘aut2’.

- power aut n: Give the power of ‘aut’ by ‘n’.

- product aut1 aut2: Give the product of ‘aut1’ by ‘aut2’.

- quotient aut: Give the quotient of ‘aut’.

- realtime aut: Give the realtime version of ‘aut’.

- standardize aut: Give the standard automaton of ‘aut’.

- union-of-standard aut1 aut2: Give the union of standard automata.

- concat-of-standard aut1 aut2: Give the concatenation of standard automata.

- star-of-standard aut: Give the star of automaton ‘aut’.

- sum aut1 aut2: Give the sum of ‘aut1’ and ‘aut2’.

- transpose aut: Transpose the automaton ‘aut’.

- trim aut: Trim the automaton ‘aut’.

* Boolean automaton specific algorithms:

- complement aut: Complement ‘aut’.

- determinize aut: Give the determinized automaton of ‘aut’.

- minimize aut: Give the minimized of ‘aut’ (Hopcroft algorithm).

- minimize-moore aut: Give the minimized of ‘aut’ (Moore algorithm).

* Conversion between automata and expressions:

- aut-to-exp aut: Give the automaton associated to ‘aut’.

- derived-term exp: Use derivative to compute the automaton of ‘exp’.

- exp-to-aut exp: Alias of ‘standard’.

- expand exp: Expand ‘exp’.

- standard exp: Give the standard automaton of ‘exp’.

- thompson exp: Give the Thompson automaton of ‘exp’.

13

0 |0 1 |1

1 |0

1 |1

0 |0

0 |1

The transducer computing the quotient by 3 of a binary number.

Figure 2.2: Rational-weight transducer T1

2.2 Transducers

While the Vaucanson library supports two views of transducers, currently TAF-Kit only pro-
vides one view:

vcsn-tdc considering a transducer as a weighted automaton of a product of free monoid,

In a forthcoming release, TAF-Kit will provide:

vcsn-rw-tdc considering a transducer as a machine that takes a word as input and produce
another word as (two-tape automata).

Both views are equivalent and Vaucanson provides algorithms to pass from a view to the
other one.

2.2.1 Example

To experiment with transducers, we will use T1, described in Figure 2.2, and part of the automaton
library (Section 3.3.1).

Domain

The transducer T only accepts binary numbers divisible by 3.

vcsn-tdc dump-automaton t1 | vcsn-tdc --alphabet1=ab domain - >div-by-3.xml

Now the file ‘divisible-by-3.xml’ contains the description of a Boolean automaton that
accepts only the numbers divisible by 3:

vcsn-b dot-dump div-by-3.xml >div-by-3.dot

14

A { 3 states, 4 transitions, #I = 1, #T = 2 }

0

1

1

1 1a

1

2

1b

2.2.2 Available functions

The following functions are available for both vcsn-rw-tdc and vcsn-tdc programs. To invoke
them, run ‘program algorithm-name [arguments]’.

vcsn-tdc --list-commands

List of available commands:

* Input/output work:

- define-automaton file: Define an automaton from scratch.

- display aut: Display ‘aut’.

- dot-dump aut: Dump dot output of ‘aut’.

- dump-automaton file: Dump a predefined automaton.

- edit-automaton file: Edit an existing automaton.

- identity aut: Return ‘aut’.

- info aut: Print useful infos about ‘aut’.

- list-automata: List predefined automata.

* Tests and evaluation on transducers:

- is-empty aut: Test if ‘aut’ realizes the empty relation.

- is-sub-normalized aut: Test if ‘aut’ is sub-normalized.

* Generic algorithm for transducers:

- eps-removal aut: epsilon-removal algorithm.

- eps-removal-sp aut: epsilon-removal algorithm.

- domain aut: Give the automaton that accepts all inputs accepted by ‘aut’.

- eval aut exp: Give the evaluation of ‘exp’ against ‘aut’.

- eval-aut aut: Evaluate the language described by the Boolean automaton

‘aut2’ on the transducer ‘aut1’.

- image aut: Give an automaton that accepts all output produced by ‘aut’.

- trim aut: Trim transducer ‘aut’.

* Algorithms for transducers:

- sub-normalize aut: Give the sub-normalized transducer of ‘aut’.

- composition-cover aut: Outsplitting.

- composition-co-cover aut: Insplitting.

- compose aut1 aut2: Compose ‘aut1’ and ‘aut2’, two (sub-)normalized

transducers.

- u-compose aut1 aut2: Compose ‘aut1’ and ‘aut2’, two Boolean transducers,

preserve the number of path.

- to-rt aut: Give the equivalent realtime transducer of ‘aut’.

- invert aut: Give the inverse of ‘aut’.

- intersection aut: Transform a Boolean automaton in a fmp transducer by

creating, for each word, a pair containing twice this word.

15

b

b

a

b

a

Considered without weight, B1 accepts words with a ‘b’. With weights, it counts the
number of ‘b’s.

Figure 2.3: The automaton B1

2.3 Z-Automata

This part shows the use of the program vcsn-z, but all comments should also stand for the
programs vcsn-z-min-plus and vcsn-z-max-plus.

Again, we will toy with some of the automata provided by vcsn-z, see Section 3.2.

2.3.1 Counting ‘b’s

Let’s consider B1 (Figure 2.3), an N-automaton, i.e. an automaton whose label’s weights are in
N. This time the evaluation of the word w by the automaton B1 will produce a number, rather
than simply accept or reject w. For instance let’s evaluate ‘abab’ and ‘bbab’:

vcsn-z dump-automaton b1 | vcsn-z eval - ’abbb’

3

vcsn-z dump-automaton b1 | vcsn-z eval - ’abab’

2

Indeed, B1 counts the number of ‘b’s.

Power

Now let’s consider the Bn

1 , where

Bn

1 =

n∏

i=1

B1, n > 0

This is implemented by the power function:

vcsn-z dump-automaton b1 | vcsn-z power - 4 >b4.xml

vcsn-z power b1.xml 4 > b4.xml

The file ‘b4.xml’ now contains the automaton B4
1. Let’s check that the evaluation of the words

‘abab’ and ‘bbab’ by B4
1 gives the fourth power of their evaluation by B1:

vcsn-z eval b4.xml ’abbb’

81

vcsn-z eval b4.xml ’abab’

16

16

Quotient

Successive products of an automaton create a lot of new states and transitions.

vcsn-z dump-automaton b1 | vcsn-z info -

States: 2

Transitions: 5

Initial states: 1

Final states: 1

vcsn-z info b4.xml

States: 16

Transitions: 97

Initial states: 1

Final states: 1

One way of reducing the size of our automaton is to use the quotient algorithm.

vcsn-z quotient b4.xml | vcsn-z info -

States: 5

Transitions: 15

Initial states: 1

Final states: 1

2.3.2 Available functions

In this section you will find a brief definition of all functions for manipulating weighted automata.
The following functions are available for both. They are called using vcsn-z, vcsn-z-max-plus,
and vcsn-z-min-plus run as ‘program algorithm-name [arguments]’.

vcsn-z --list-commands

List of available commands:

* Input/output work:

- define-automaton file: Define an automaton from scratch.

- display aut: Display ‘aut’.

- dot-dump aut: Dump dot output of ‘aut’.

- dump-automaton file: Dump a predefined automaton.

- edit-automaton file: Edit an existing automaton.

- identity aut: Return ‘aut’.

- info aut: Print useful infos about ‘aut’.

- list-automata: List predefined automata.

* Tests and evaluation on automata:

- eval aut word: Evaluate ‘word’ on ‘aut’.

- is-ambiguous aut: Return whether ‘aut’ is ambiguous.

- is-complete aut: Return whether ‘aut’ is complete.

- is-empty aut: Return whether trimed ‘aut’ is empty.

- is-realtime aut: Return whether ‘aut’ is realtime.

- is-standard aut: Return whether ‘aut’ is standard.

* Generic algorithms for automata:

- accessible aut: Give the maximal accessible subautomaton of ‘aut’.

- eps-removal aut: Give ‘aut’ closed over epsilon transitions.

- eps-removal-sp aut: Give ‘aut’ closed over epsilon transitions.

- co-accessible aut: Give the maximal coaccessible subautomaton of ‘aut’.

- complete aut: Give the complete version of ‘aut’.

- concatenate aut1 aut2: Concatenate ‘aut1’ and ‘aut2’.

17

- power aut n: Give the power of ‘aut’ by ‘n’.

- product aut1 aut2: Give the product of ‘aut1’ by ‘aut2’.

- quotient aut: Give the quotient of ‘aut’.

- realtime aut: Give the realtime version of ‘aut’.

- standardize aut: Give the standard automaton of ‘aut’.

- union-of-standard aut1 aut2: Give the union of standard automata.

- concat-of-standard aut1 aut2: Give the concatenation of standard automata.

- star-of-standard aut: Give the star of automaton ‘aut’.

- sum aut1 aut2: Give the sum of ‘aut1’ and ‘aut2’.

- transpose aut: Transpose the automaton ‘aut’.

- trim aut: Trim the automaton ‘aut’.

* Conversion between automata and expressions:

- aut-to-exp aut: Give the automaton associated to ‘aut’.

- derived-term exp: Use derivative to compute the automaton of ‘exp’.

- exp-to-aut exp: Alias of ‘standard’.

- expand exp: Expand ‘exp’.

- standard exp: Give the standard automaton of ‘exp’.

- thompson exp: Give the Thompson automaton of ‘exp’.

18

Chapter 3

Automaton Library

Vaucanson comes with a set of interesting automata that can be used to toy with TAF-Kit

(Chapter 2) for instance. In the chapter, we present each one of these automata.

3.1 Boolean Automata

3.1.1 a1

A { 3 states, 6 transitions, #I = 1, #T = 1 }

0

1

a b

1

a

2

b

1

a b

19

3.1.2 b1

A { 2 states, 5 transitions, #I = 1, #T = 1 }

0

1

a b

1

b

1

a b

3.1.3 div3base2

A { 3 states, 6 transitions, #I = 1, #T = 1 }

0

1

0

1

1

11

2

0 0

1

3.1.4 double-3-1

A { 3 states, 6 transitions, #I = 1, #T = 1 }

0

1

1

a

2

b

b

1 a

a

b

20

3.1.5 ladybird-6

A { 6 states, 21 transitions, #I = 1, #T = 1 }

0

1

1

1

a c

b c

2

a

c

b c

3

a

c

b c

4

a

c

b c

5

a

c a

b c

3.2 Z-Automata

3.2.1 b1

A { 2 states, 5 transitions, #I = 1, #T = 1 }

0

1

a b

1

b

1

a b

21

3.2.2 c1

A { 2 states, 3 transitions, #I = 1, #T = 1 }

0

1

a+b

1

b

1

(2 a)+(2 b)

3.3 Transducers

3.3.1 t1

A { 3 states, 4 transitions, #I = 1, #T = 2 }

0

1

1

(1,y) 1(a,1)

1

2

(1,x)(b,1)

3.3.2 u1

A { 3 states, 4 transitions, #I = 2, #T = 1 }

0

1

1

(x,1) 1(1,v)

1

2

(y,1)(1,u)

22

	Contents
	1 Installation
	1.1 Getting Vaucanson
	1.2 Building Vaucanson

	2 The Vaucanson toolkit
	2.1 Boolean automata
	2.1.1 First Contacts
	2.1.2 A first example
	2.1.3 Interactive Definition of Automata
	2.1.4 Rational expressions and Boolean automata
	2.1.5 Available functions

	2.2 Transducers
	2.2.1 Example
	2.2.2 Available functions

	2.3 Z-Automata
	2.3.1 Counting `b's
	2.3.2 Available functions

	3 Automaton Library
	3.1 Boolean Automata
	3.1.1 a1
	3.1.2 b1
	3.1.3 div3base2
	3.1.4 double-3-1
	3.1.5 ladybird-6

	3.2 Z-Automata
	3.2.1 b1
	3.2.2 c1

	3.3 Transducers
	3.3.1 t1
	3.3.2 u1

