
The Vaucanson TAF-Kit 1.2.94 Manual

The Vaucanson Group

2008-11-17

Contents

Contents 1

1 Installation 5
1.1 Getting Vaucanson . 5
1.2 Building Vaucanson . 5

2 The Vaucanson toolkit 6
2.1 Boolean automata . 7

2.1.1 First Contacts . 7
2.1.2 A first example . 8
2.1.3 Interactive Definition of Automata . 11
2.1.4 Rational expressions and Boolean automata 12
2.1.5 Token representations . 13
2.1.6 Available functions . 16

2.2 Transducers . 18
2.2.1 Example . 18
2.2.2 Available functions . 19

2.3 Z-Automata . 20
2.3.1 Counting ‘b’s . 20
2.3.2 Available functions . 21

3 Vaucanswig 23
3.1 Introduction to Vaucanswig . 23

3.1.1 Introduction . 23
3.1.2 Usage . 23
3.1.3 What is provided? . 23
3.1.4 Adding new algorithms . 27
3.1.5 Python support . 28

3.2 Building language interfaces with Vaucanswig . 28
3.2.1 Background . 28
3.2.2 General idea . 28
3.2.3 SWIG modules (MODULES) . 29
3.2.4 C++ sources specific to the target scripting language (T.S.L.) 29
3.2.5 Compilation of the binaries for the target scripting language 30
3.2.6 Automake support for Python as a TSL . 30
3.2.7 Automake support for the TSL-independent code 31

3.3 Generating and extending Vaucanswig sources . 31
3.3.1 The list of Vaucanswig modules . 31
3.3.2 The list of algorithm families (ALGS in step 2 above) 32
3.3.3 The cross-product of contexts and generic code (step 5 above) 32
3.3.4 The transparency property . 33
3.3.5 What is not automatic . 33

1

3.3.6 Things not easy to change yet . 34

4 Vaucanson as a library 35

5 Developer Guide 36
5.1 Tools . 36

5.1.1 Maintainer Tools . 36
5.1.2 Developer Tools . 36

5.2 Contributing Code . 37
5.2.1 Directory usage . 37
5.2.2 Writing Makefiles . 38
5.2.3 Coding Style . 38
5.2.4 Use of macros . 39
5.2.5 File Names . 40
5.2.6 Type Names . 40
5.2.7 Variable Names . 41
5.2.8 Commenting Code . 41
5.2.9 Writing Algorithms . 42
5.2.10 Writing Tests . 42
5.2.11 Mailing Lists . 42

5.3 Vaucanson I/O . 43
5.3.1 Introduction . 43
5.3.2 Dot format . 43
5.3.3 XML format . 44
5.3.4 FSM format . 44
5.3.5 Simple format . 44
5.3.6 Using input and output . 45
5.3.7 Examples . 46
5.3.8 Internal scenario . 47
5.3.9 Convenience utilities . 48

A Automaton Library 49
A.1 Boolean Automata . 49

A.1.1 a1 . 49
A.1.2 b1 . 50
A.1.3 div3base2 . 50
A.1.4 double-3-1 . 50
A.1.5 ladybird-6 . 51

A.2 Z-Automata . 51
A.2.1 b1 . 51
A.2.2 c1 . 52

A.3 Boolean FMP Transducers . 52
A.3.1 t1 . 52
A.3.2 u1 . 52

B Bits of Automaton Theory 53
B.1 On standard and normalized automata . 53

B.1.1 Standard automata . 53
B.1.2 Normalized automaton . 54
B.1.3 Operations on automata . 55
B.1.4 Conclusion . 56

C A proposal for an XML format for automata 57

2

D Algorithms specifications 59
D.1 Vocabulary . 59
D.2 Algorithms applicability in Vaucanson . 59

D.2.1 Algorithms on graph . 59
D.2.2 Algorithms on labeled graphs . 60
D.2.3 Algorithms on labeled graphs (epsilon-transitions are distinguish) 60
D.2.4 Algorithms on graphs labeled on K << A∗ >> 60
D.2.5 Algorithms on graphs labeled on series of letter with multiplicities (

∑
(a, Ka∗a)) 61

D.2.6 Algorithms on Boolean automata . 61
D.2.7 Algorithms on automata with multiplicities in K << A∗ >> 61
D.2.8 Algorithms on realtime transducers . 61
D.2.9 Algorithms on realtime RW-transducers . 62
D.2.10 Algorithms on FMP-transducers . 62
D.2.11 Algorithms on Boolean FMP-transducers 62
D.2.12 Algorithms on regular expressions over K << A∗ >> 62

Index 63

Bibliography 64

3

Introduction

The Vaucanson software platform is dedicated to the computation with finite state automata.
Here, ‘finite state automata’ is to be understood in the broadest sense: weighted automata on a
free monoid — that is, automata that not only accept, or recognize, words but compute for every
word a multiplicity which is taken a priori in an arbitrary semiring — and even weighted automata
on non free monoids. The latter become far too general objects. As for now, are implemented in
Vaucanson only the (weighted) automata on (direct) products of free monoids, machines that
are often called transducers — that is automata that realize (weighted) relations between words1.

When designing Vaucanson, we had three main goals in mind: we wanted

1. a general purpose software,

2. a software that allows a programming style natural to computer scientists who work with
automata and transducers,

3. an open and free software.

This is the reason why we implemented so to say on top of the Vaucanson platform a library
that allows to apply a number of functions on automata, and even to define and edit automata,
without having to bother with subtleties of C++ programming. The drawback of this is obviously
that the user is given a fixed set of functions that apply to already typed automata. This library of
functions does not allow to write new algorithms on automata but permits to combine or compose
without much difficulties nor efforts a rather large set of commands. We call it TAF-Kit, standing
for Typed Automata Function Kit, as these commands take as input, and output, automata whose
type is fixed. TAF-Kit is presented in Chapter 2.

1When the relation is “weighted” the multiplicity has to be taken in a commutative semiring.

4

Chapter 1

Installation

1.1 Getting Vaucanson

The latest stable version of the Vaucanson platform can be downloaded from http://vaucanson.lrde.epita.fr/.
The current development version can be retrieved from its Subversion1 repository as follows:

svn checkout https://svn.lrde.epita.fr/svn/vaucanson/trunk vaucanson

1.2 Building Vaucanson

The following commands build and install the platform:

cd vaucanson-1.2.94

Then:

./configure

...

make

...

sudo make install

...

More detailed information is provided in the files ‘INSTALL’, which is generic to all packages
using the GNU Build System, and ‘README’ which details Vaucanson’s specific build process.

1Subversion can be found at http://subversion.tigris.org/.

5

http://vaucanson.lrde.epita.fr/
http://subversion.tigris.org/

Chapter 2

The Vaucanson toolkit

This chapter presents a simple interface to Vaucanson: a set of programs tailored to be used
from a traditional shell. Since they exchange typed XML files, there is one program per automaton
type. Each program supports a set of operations which depends on the type of the automaton.

Many users of automata consider only automata whose transitions are labeled by letters taken
in an alphabet, which we call, roughly speaking, classical automata or Boolean automata. The
first program of the TAF-Kit, vcsn-char-b, allows to compute with classical automata and is
described in Section 2.1. A variant of this program called vcsn-int-b handles Boolean automata
whose letters are integers.

Section 2.2 describes the program vcsn-char-fmp-b which allows to compute with transducers,
that is, automata whose transitions are labeled by pair of words, which are elements of a product
of free monoids, hence the name. A variant of this program called vcsn-int-fmp-b handles
transducers whose letters are integers.

In Section 2.3 we consider the programs of the TAF-Kit that compute with automata over a
free monoid and with multiplicity, or weight taken in the set of integers equipped with the usual
operations of addition and multiplication, that is, the semiring Z. A variant of this program called
vcsn-int-z is specialized to handle Z-automata whose letters are integers.

It is planned that a forthcoming version will include also:

vcsn-char-zmin for automata over a free monoid with multiplicity in the semiring (Z, min, +)

vcsn-char-zmax for automata over a free monoid with multiplicity in the semiring (Z, max, +)

vcsn-char-rw for transducers viewed as automata over a free monoid with multiplicity in the
semiring of rational sets (or series) over (another) free monoid.

6

2.1 Boolean automata

This section focuses on the program vcsn-char-b, the TAF-Kit component dedicated to Boolean
automata.

2.1.1 First Contacts

vcsn-char-b and its peer components of TAF-Kit all share the same simple interface:

vcsn-char-b function automaton arguments...

The function is the name of the operation to perform on the automaton, specified as an XML file.
Some functions, such as evaluation, require additional arguments, such as the word to evaluate.
Some others, such as exp-to-aut do not have an automaton argument.

TAF-Kit is made to work with Unix pipes, that is to say, chains of commands which feed each
other. Therefore, all the functions produce a result on the standard output, and if an automaton

is ‘-’, then the standard input is used.

A typical line of commands from the TAF-Kit reads as follows:

vcsn-char-b determinize a1.xml > a1det.xml

and should be understood, or analyzed, as follows.

1. vcsn-char-b is the call to a shell command that will launch a Vaucanson function.
vcsn-char-b has 2 arguments, the first one being the function which will be launched, the
second being the automaton that is the input argument of the function.

2. determinize is, as just said, a Vaucanson function. And as it can easily be guessed,
determinize takes an automaton as argument, performs the subset construction on it and
outputs the result on the standard output.

3. ‘a1.xml’ is the description of an automaton — of the automaton of Section A.1.1 indeed —
in an XML format that is understood1 by Vaucanson. This file must exist before the line
is executed. The ‘data/automata’ directory provides a number of XML files for examples of
automata, a number of programs that produce the XML files for automata whose definition
depend upon some variables and the TAF-Kit itself allows to define automata and thus to
produce the corresponding XML files (cf. below).

4. ‘>a1det.xml’ puts the result of determinize into the file ‘a1det.xml’, that is, the XML file
which describes the determinized automaton of A1.

As a more elaborate example, consider the following command

vcsn-char-b identity a1.xml | vcsn-char-b determinize - | vcsn-char-b minimize - | vcsn-char-b

States: 3

Transitions: 6

Initial states: 1

Final states: 1

It fetches the automaton a1 from the automaton library, determinizes it, minimizes the result,
and finally displays information about the resulting automaton.

Please, note the typographic conventions: user input is represented # like this , standard
output follows like this, followed by standard error output error: like this, and finally, if
different from 0, the exit status is represented => like this. For instance:

1This format is not exactly part of the Vaucanson platform. It has been developed for providing a means of

communication between various programs dealing with automata. And then it has been used as a communication

tool between the invocations of Vaucanson function by the TAF-Kit. A lay user of the TAF-Kit should not need

to know how this format is defined but a rough description of it is provided in Appendix C of the Appendix.

7

vcsn-char-b identity a1.xml | vcsn-char-b info -

States: 3

Transitions: 6

Initial states: 1

Final states: 1

Other than that, the interface of the TAF-Kit components is usual, including options such as
‘--version’ and ‘--help’:

vcsn-char-b --help

Usage: vcsn-char-b [OPTION...] <command> <args...>

VCSN TAF-Kit -- a toolkit for working with automata

-a, --alphabet=ALPHABET Set the alphabet for rational expressions or

automata

-B, --bench=NB_ITERATIONS Bench

-D, --export-time-dot[=VERBOSE_DEGREE]

Export time statistics in DOT format

-i, --input-type=INPUT_TYPE Automaton input type (FSM or XML)

-l, --list-commands List the commands handled by the program

-o, --output-type=OUTPUT_TYPE Automaton output type (FSM, XML or DOT)

-O, --bench-plot-output=OUTPUT_FILENAME

Bench output filename

-p, --parser=OPTIONS Set the parsing options for rational expressions

-T, --report-time[=VERBOSE_DEGREE]

Report time statistics

-v, --verbose Be more verbose (print boolean results)

-X, --export-time-xml Export time statistics in XML format

The following alphabets are predefined:

‘letters’: Use [a-z] as the alphabet, 1 as epsilon

‘alpha’: Use [a-zA-Z] as the alphabet, 1 as epsilon

‘digits’: Use [0-9] as the alphabet, 1 as epsilon

‘ascii’: Use ascii characters as the alphabet, 1 as epsilon

-?, --help give this help list

--usage give a short usage message

-V, --version print program version

Mandatory or optional arguments to long options are also mandatory or optional

for any corresponding short options.

Report bugs to <vaucanson-bugs@lrde.epita.fr>.

The whole list of supported commands is available via ‘--list-commands’.

2.1.2 A first example

Vaucanson provides a set of common automata. The function list-automata lists them all:

vcsn-char-b list-automata

The following automata are predefined:

- a1.xml

- b1.xml

8

- div3base2.xml

- double-3-1.xml

- ladybird-6.xml

a b

b

a

b

a

The graphical layout of this automaton was described by hand, using the Vaucanson-G
LATEX package. However, the following figures are generated by TAF-Kit, giving a
very nice layout, yet slightly less artistic. The automaton is taken from ?, Fig. I.1.1,
p. 58

Figure 2.1: The automaton A1

Let’s consider the Boolean automaton A1 (Figure 2.1), part of the standard library. It can be
dumped using identity:

vcsn-char-b identity a1.xml

error: Fatal error: Invalid document structure

error: terminate called after throwing an instance of ’xercesc_2_7::SAXParseException’

error: /bin/sh: line 1: 15947 Aborted vcsn-char-b identity a1.xml

=> 134

Usual shell indirections (‘|’, ‘>’, and ‘<’) can be used to combine TAF-Kit commands. For
instance, this is an easy means to bring a local copy of this file:

vcsn-char-b identity $VCSN_DATA_PATH/automata/char-b/a1.xml >a1.xml

TAF-Kit uses XML to exchange automata, to get graphical rendering of the automaton, you
may either invoke -o dot identity and then use a Dot compliant program, or use display that
does both.

vcsn-char-b --output-type=dot identity a1.xml >a1.dot

9

 { 3 states, 6 transitions, #I = 1, #T = 1 }

0

1

b a

1

a

2

b

1

b a

Determinization of A1

To determinize a Boolean automaton, call the determinize function:

vcsn-char-b identity a1.xml | vcsn-char-b determinize - >a1det.xml

To get information about an automaton, call the info function:

vcsn-char-b info a1det.xml

States: 4

Transitions: 8

Initial states: 1

Final states: 2

Or use dotty to visualize it:

vcsn-char-b --output-type=dot identity a1det.xml >a1det.dot

10

 { 4 states, 8 transitions, #I = 1, #T = 2 }

0

1

b

1

a

a

2

b

1

b

3

a b

1

a

Evaluation

To evaluate whether a word is accepted:

vcsn-char-b eval a1.xml ’abab’

1

vcsn-char-b eval a1.xml ’bbba’

0

where 1 (resp. 0) means that the word is accepted (resp. not accepted) by the automaton.

2.1.3 Interactive Definition of Automata

TAF-Kit provides a text interface to define automata interactively, rather than having to deal
with XML files. Two functions are available:

define-automaton to build a fresh automaton from scratch,

edit-automaton to modify an existing automaton,

The interface is based on a menu of choices:

vcsn-char-b --alphabet=ab define-automaton all.xml

Automaton description:

States: (none)

Initial states: (none)

Final states: (none)

Transitions: (none)

Please choose your action:

11

1. Add states.

2. Delete a state.

3. Add a transition.

4. Delete a transition.

5. Set a state to be initial.

6. Set a state not to be initial.

7. Set a state to be final.

8. Set a state not to be final.

9. Display the automaton in Dotty.

10. Exit.

Your choice [1-10]:

If you enter 1, you will then be prompted for the number of states to add, say 1 again. The state
0 was created. To make it initial select 5, and:

Your choice [1-10]: 5

For state: 0

Likewise to make it final, using choice 7. Finally, let’s add a transition:

Your choice [1-10]: 3

Add a transition from state: 0

To state: 0

Labeled by the expression: a+b

The automaton is generalized, that is to say, rational expressions are valid labels.
On top of the interactive menu, the current definition of the automaton is reported in a textual

yet readable form:

Automaton description:

States: 0

Initial states: 0

Final states: 0

Transitions:

1: From 0 to 0 labeled by ({1} a)+({1} b)

Interestingly enough, states are numbered from 0, but transitions numbers start at 1. Also, not
that weights are reported, although only 1 is valid for Boolean automata.

Finally, hit 10 to save the resulting automaton in the file ‘all.xml’.

2.1.4 Rational expressions and Boolean automata

Vaucanson provides functions to manipulate rational expressions associated to Boolean au-
tomata. This provides an alternative means to create automata:

vcsn-char-b --alphabet=ab exp-to-aut ’(a+b)*’ >all.xml

vcsn-char-b --output-type=dot identity all.xml >all.dot

12

 { 3 states, 6 transitions, #I = 1, #T = 3 }

0

1

1

1

a

2

b

1

a

b a

1

b

2.1.5 Token representations

When dealing with rational expressions in TAF-Kit, one may be willing to, for example, change
the representation of the epsilon. More generally, the rational expressions parser understand 10
such tokens. They are:

� OPAR: the opening association parenthesis.

� CPAR: the closing association parenthesis.

� PLUS: the semi-ring additive law.

� TIMES: the monoid concatenation law.

� STAR: the Kleene star.

� ONE: the identity of the monoid.

� ZERO: the zero of the semi-ring.

� OWEIGHT: the opening weight brace.

� CWEIGHT: the closing weight brace.

� SPACE: a whitespace character.

Each token must be a non-empty string, with arbitrary length. Some checks will be done by
TAF-Kit, to ensure tokens do not collide. You can also use the ALPHABET token an arbitrary
number of times, to append letters to the current alphabet. The following commands:

vcsn-char-b --alphabet=ab exp-to-aut ’((a) + b)*’ >parser.xml

vcsn-char-b --output-type=dot identity parser.xml >parser.dot

13

 { 3 states, 6 transitions, #I = 1, #T = 3 }

0

1

1

1

a

2

b

1

a

b a

1

b

, will give the same results as:

vcsn-char-b --alphabet=a --parser="ALPHABET=b ONE=e STAR=star" exp-to-aut ’(a + b)star’ >parser2.xml

vcsn-char-b --output-type=dot identity parser2.xml >parser2.dot

 { 3 states, 6 transitions, #I = 1, #T = 3 }

0

1

1

1

a

2

b

1

a

b a

1

b

With the ALPHABET token, you can specify two types of letters:

� letters: one character is used to represent a letter.

� words: many characters are used to represent a letter.

For example, ALPHABET=letters:abc defines the alphabet with three letters {a, b, c}, while
ALPHABET=words:abc defines the alphabet with only one letter {abc}. Letters are separated by
commas, and each TAF-Kit context defaults to either letters (vcsn-char-b eg) or words (vcsn-int-b
eg). vcsn-int-b --alphabet=0,1,2,3,4,5,6,7,8,9 and vcsn-int-b --alphabet=letters:0123456789’

will give the same alphabets.

14

Everywhere you want to use special characters used by the --parser option, prepending a
backslash character will escape it. So, you can write: ALPHABET=\,,\= which defines the alphabet
with the two letters , and =.

Finally whenever you may put a single character you may write a pair a words. The following
construction is then valid: ALPHABET=(\,,\)), and defines the alphabet with only one letter: the
pair whose first component is , and the second one is).

For more details, the grammar of the --parser option is included in the source code in EBNF
notations.

Minimizing

This automaton, constructed following the Thompson algorithm, is not the simplest one: it can
be minimized:

vcsn-char-b minimize all.xml >allmin.xml

vcsn-char-b --output-type=dot identity allmin.xml >allmin.dot

 { 3 states, 6 transitions, #I = 1, #T = 3 }

0

1

1

1

a

2

b

1

a

b a

1

b

Computing the language recognized by a Boolean automaton can be done using aut-to-exp:

vcsn-char-b aut-to-exp all.xml

(a.a*.b+b).(a.a*.b+b)*.(a.a*+1)+a.a*+1

vcsn-char-b aut-to-exp allmin.xml

(a.a*.b+b).(a.a*.b+b)*.(a.a*+1)+a.a*+1

Vaucanson provides several algorithms that build an automaton that recognizes a given
language. The following sequence computes the minimal automaton of ‘(a+b)*ab(a+b)*’.

vcsn-char-b --alphabet=ab standard "(a+b)*a.b.(a+b)*" | vcsn-char-b quotient - >l1.xml

vcsn-char-b --output-type=dot identity l1.xml >l1.dot

15

 { 3 states, 6 transitions, #I = 1, #T = 1 }

0

1

b

1

b a

2

1

a

b a

2.1.6 Available functions

The whole list of supported commands is available via ‘--list-commands’:

vcsn-char-b --list-commands

List of available commands:

* Input/output work:

- display aut: Display ‘aut’.

- edit-automaton file: Edit an automaton.

- identity aut: Return ‘aut’.

- info aut: Print useful infos about ‘aut’.

- list-automata: List predefined automata.

* Tests and evaluation on automata:

- are-equivalent aut1 aut2: Do ‘Aut1’ and ‘Aut2’ recognize the same language?

- eval aut word: Evaluate ‘word’ on ‘aut’.

- is-ambiguous aut: Return whether ‘aut’ is ambiguous.

- is-complete aut: Return whether ‘aut’ is complete.

- is-deterministic aut: Return whether ‘aut’ is deterministic.

- is-empty aut: Return whether ‘aut’ is empty.

- has-succ-comp aut: Return whether ‘aut’ has successful computations (trimmed ‘aut‘ is not empty).

- is-realtime aut: Return whether ‘aut’ is realtime.

- is-standard aut: Return whether ‘aut’ is standard.

* Generic algorithms for automata:

- accessible aut: Give the maximal accessible subautomaton of ‘aut’.

- eps-removal aut: Give ‘aut’ closed over epsilon transitions.

- eps-removal-sp aut: Give ‘aut’ closed over epsilon transitions.

- co-accessible aut: Give the maximal coaccessible subautomaton of ‘aut’.

- complete aut: Give the complete version of ‘aut’.

- concatenate aut1 aut2: Concatenate ‘aut1’ and ‘aut2’.

- power aut n: Give the power of ‘aut’ by ‘n’.

- product aut1 aut2: Give the product of ‘aut1’ by ‘aut2’.

- quotient aut: Give the quotient of ‘aut’.

- realtime aut: Give the realtime version of ‘aut’.

- standardize aut: Give the standard automaton of ‘aut’.

- union-of-standard aut1 aut2: Give the union of standard automata.

16

- concat-of-standard aut1 aut2: Give the concatenation of standard automata.

- star-of-standard aut: Give the star of automaton ‘aut’.

- union aut1 aut2: Give the union of ‘aut1’ and ‘aut2’.

- transpose aut: Transpose the automaton ‘aut’.

- trim aut: Trim the automaton ‘aut’.

* Boolean automaton specific algorithms:

- complement aut: Complement ‘aut’.

- determinize aut: Give the determinized automaton of ‘aut’.

- minimize aut: Give the minimized of ‘aut’ (Hopcroft algorithm).

- minimize-moore aut: Give the minimized of ‘aut’ (Moore algorithm).

* Conversion between automata and expressions:

- aut-to-exp aut: Give the automaton associated to ‘aut’.

- derived-term exp: Use derivative to compute the automaton of ‘exp’.

- exp-to-aut exp: Alias of ‘standard’.

- expand exp: Expand ‘exp’.

- identity-exp exp: Output ‘exp’ after trivial simplifications.

- standard exp: Give the standard automaton of ‘exp’.

- thompson exp: Give the Thompson automaton of ‘exp’.

17

0 |0 1 |1

1 |0

1 |1

0 |0

0 |1

The transducer computing the quotient by 3 of a binary number.

Figure 2.2: Rational-weight transducer T1

2.2 Transducers

While the Vaucanson library supports two views of transducers, currently TAF-Kit only pro-
vides one view:

vcsn-char-fmp-b considering a transducer as a weighted automaton of a product of free monoid,

In a forthcoming release, TAF-Kit will provide:

vcsn-char-rw considering a transducer as a machine that takes a word as input and produce
another word as (two-tape automata).

Both views are equivalent and Vaucanson provides algorithms to pass from a view to the
other one.

2.2.1 Example

To experiment with transducers, we will use T1, described in Figure 2.2, and part of the automaton
library (Section A.3.1).

Domain

The transducer T only accepts binary numbers divisible by 3.

vcsn-char-fmp-b identity t1.xml | vcsn-char-fmp-b --alphabet1=ab domain - >div-by-3.xml

Now the file ‘divisible-by-3.xml’ contains the description of a Boolean automaton that
accepts only the numbers divisible by 3:

vcsn-char-b --output-type=dot identity div-by-3.xml >div-by-3.dot

18

 { 3 states, 4 transitions, #I = 1, #T = 2 }

0

1

1

1 1a

1

2

1b

2.2.2 Available functions

The following functions are available for both vcsn-char-rw and vcsn-char-fmp-b programs. To
invoke them, run ‘program algorithm-name [arguments]’.

vcsn-char-fmp-b --list-commands

List of available commands:

* Input/output work:

- display aut: Display ‘aut’.

- edit-automaton file: Edit an automaton.

- identity aut: Return ‘aut’.

- info aut: Print useful infos about ‘aut’.

- list-automata: List predefined automata.

* Tests and evaluation on transducers:

- is-empty aut: Return whether ‘aut’ is empty.

- has-succ-comp aut: Return whether ‘aut’ has successful computations (trimmed ‘aut‘ is not empty).

- is-sub-normalized aut: Test if ‘aut’ is sub-normalized.

- is-ltl aut: Test if ‘aut’ is letter-to-letter.

* Generic algorithm for transducers:

- eps-removal aut: epsilon-removal algorithm.

- eps-removal-sp aut: epsilon-removal algorithm.

- domain aut: Give the automaton that accepts all inputs accepted by ‘aut’.

- eval aut exp: Give the evaluation of ‘exp’ against ‘aut’.

- eval-aut aut1 aut2: Evaluate the language described by the

Boolean automaton ‘aut2’ on the transducer ‘aut1’.

- ltl-to-pair aut: Give an automaton defined over a pair letter alphabet same as ‘aut’.

- image aut: Give an automaton that accepts all output produced by ‘aut’.

- transpose aut: Give the transposed of the transducer ‘aut’.

- trim aut: Trim transducer ‘aut’.

* Algorithms for transducers:

- sub-normalize aut: Give the sub-normalized transducer of ‘aut’.

- composition-cover aut: Outsplitting.

- composition-co-cover aut: Insplitting.

- compose aut1 aut2: Compose ‘aut1’ and ‘aut2’, two (sub-)normalized

transducers.

- u-compose aut1 aut2: Compose ‘aut1’ and ‘aut2’, two transducers,

preserve the number of paths.

- to-rw aut: Give the equivalent rational weight transducer of ‘aut’.

- invert aut: Give the inverse of ‘aut’.

- intersection aut: Transform a Boolean automaton into an fmp transducer by

creating, for each word, a pair containing twice this word.

19

b

b

a

b

a

Considered without weight, B1 accepts words with a ‘b’. With weights, it counts the
number of ‘b’s. Taken from Sakarovitch (2003, Fig. III.2.2, p. 434).

Figure 2.3: The automaton B1

2.3 Z-Automata

This part shows the use of the program vcsn-char-z, but all comments should also stand for the
programs vcsn-char-z-min-plus and vcsn-char-z-max-plus.

Again, we will toy with some of the automata provided by vcsn-char-z, see Section A.2.

2.3.1 Counting ‘b’s

Let’s consider B1 (Figure 2.3), an N-automaton, i.e. an automaton whose label’s weights are in
N. This time the evaluation of the word w by the automaton B1 will produce a number, rather
than simply accept or reject w. For instance let’s evaluate ‘abab’ and ‘bbab’:

vcsn-char-z identity b1.xml | vcsn-char-z eval - ’abbb’

3

vcsn-char-z identity b1.xml | vcsn-char-z eval - ’abab’

2

Indeed, B1 counts the number of ‘b’s.

Power

Now let’s consider the Bn

1 , where

Bn

1 =

n∏

i=1

B1, n > 0

This is implemented by the power function:

vcsn-char-z identity b1.xml | vcsn-char-z power - 4 >b4.xml

vcsn-char-z power b1.xml 4 > b4.xml

The file ‘b4.xml’ now contains the automaton B4
1. Let’s check that the evaluation of the words

‘abab’ and ‘bbab’ by B4
1 gives the fourth power of their evaluation by B1:

vcsn-char-z eval b4.xml ’abbb’

81

vcsn-char-z eval b4.xml ’abab’

16

20

Quotient

Successive products of an automaton create a lot of new states and transitions.

vcsn-char-z identity b1.xml | vcsn-char-z info -

States: 2

Transitions: 5

Initial states: 1

Final states: 1

vcsn-char-z info b4.xml

States: 16

Transitions: 97

Initial states: 1

Final states: 1

One way of reducing the size of our automaton is to use the quotient algorithm.

vcsn-char-z quotient b4.xml | vcsn-char-z info -

States: 5

Transitions: 15

Initial states: 1

Final states: 1

2.3.2 Available functions

In this section you will find a brief definition of all functions for manipulating weighted au-
tomata. The following functions are available for both. They are called using vcsn-char-z,
vcsn-char-z-max-plus, and vcsn-char-z-min-plus run as ‘program algorithm-name [arguments]’.

vcsn-char-z --list-commands

List of available commands:

* Input/output work:

- display aut: Display ‘aut’.

- edit-automaton file: Edit an automaton.

- identity aut: Return ‘aut’.

- info aut: Print useful infos about ‘aut’.

- list-automata: List predefined automata.

* Tests and evaluation on automata:

- eval aut word: Evaluate ‘word’ on ‘aut’.

- is-ambiguous aut: Return whether ‘aut’ is ambiguous.

- is-complete aut: Return whether ‘aut’ is complete.

- is-empty aut: Return whether ‘aut’ is empty.

- has-succ-comp aut: Return whether ‘aut’ has successful computations (trimmed ‘aut‘ is not empty).

- is-realtime aut: Return whether ‘aut’ is realtime.

- is-standard aut: Return whether ‘aut’ is standard.

* Generic algorithms for automata:

- accessible aut: Give the maximal accessible subautomaton of ‘aut’.

- eps-removal aut: Give ‘aut’ closed over epsilon transitions.

- eps-removal-sp aut: Give ‘aut’ closed over epsilon transitions.

- co-accessible aut: Give the maximal coaccessible subautomaton of ‘aut’.

- complete aut: Give the complete version of ‘aut’.

- concatenate aut1 aut2: Concatenate ‘aut1’ and ‘aut2’.

- power aut n: Give the power of ‘aut’ by ‘n’.

- product aut1 aut2: Give the product of ‘aut1’ by ‘aut2’.

21

- quotient aut: Give the quotient of ‘aut’.

- realtime aut: Give the realtime version of ‘aut’.

- standardize aut: Give the standard automaton of ‘aut’.

- union-of-standard aut1 aut2: Give the union of standard automata.

- concat-of-standard aut1 aut2: Give the concatenation of standard automata.

- star-of-standard aut: Give the star of automaton ‘aut’.

- union aut1 aut2: Give the union of ‘aut1’ and ‘aut2’.

- transpose aut: Transpose the automaton ‘aut’.

- trim aut: Trim the automaton ‘aut’.

* Conversion between automata and expressions:

- aut-to-exp aut: Give the automaton associated to ‘aut’.

- derived-term exp: Use derivative to compute the automaton of ‘exp’.

- exp-to-aut exp: Alias of ‘standard’.

- expand exp: Expand ‘exp’.

- identity-exp exp: Output ‘exp’ after trivial simplifications.

- standard exp: Give the standard automaton of ‘exp’.

- thompson exp: Give the Thompson automaton of ‘exp’.

22

Chapter 3

Vaucanswig

3.1 Introduction to Vaucanswig

Vaucanswig is a set of SWIG definitions which allow to use Vaucanson in a high-level dynamic
language such as Python, Perl, PHP or Ruby.

3.1.1 Introduction

Vaucanson is a C++ library that uses static genericity.
SWIG is an interface generator for C and C++ libraries which enables their use from a variety

of languages, including CHICKEN, C#, Scheme, Java, O’Caml, Perl, Pike, PHP, Python, Ruby,
Lua, Lisp, and TCL.

Unfortunately, running SWIG directly on the Vaucanson library does not work: most of
Vaucanson features are expressed using C++ meta-code, which means that basically there is no
real code in Vaucanson for SWIG to work on.

Vaucanswig comes between SWIG and Vaucanson: it describes to SWIG some explicit Vau-

canson types and algorithms implementations so that SWIG can generate the inter-language
interface.

3.1.2 Usage

For any SWIG-supported language, using Vaucanswig requires the following steps:

1. Generate the language interface from SWIG input sources (.i files) provided by Vaucanswig,

2. Compile the interface into extensions to the language library (e.g. dynamically-loadable
shared package modules for Python).

3. Load the extensions into the target language environment.

Vaucanswig does not help with the latter two steps, except for the Python language target (see
below). Refer to the SWIG documentation for information about generating language extensions
from SWIG input files for other languages.

3.1.3 What is provided?

Glossary

In the following sections, the term “category” refers to the set of features related to a particular
algebraic configuration in Vaucanson.

The following categories are predefined in Vaucanswig:

23

Category Semiring values Monoid values Series Series values Expression values
usual bool string B〈〈A∗〉〉 polynom exp

numerical int string Z〈〈A∗〉〉 polynom exp

tropical min int string Z(min,+)〈〈A∗〉〉 polynom exp

tropical max int string Z(max,+)〈〈A∗〉〉 polynom exp

These are the standard contexts defined in Vaucanson. They are defined in Vaucanswig in
the file expand.sh.

What is in a category?

For a given category D, Vaucanswig defines the following modules:

vaucanswig D context Algebra and algebraic context.

vaucanswig D automaton Automata types (standard and generalized).

vaucanswig D alg ... Algorithm wrappers.

vaucanswig D algorithms General wrapper for all algorithms.

Each of these modules becomes an extension package/module/namespace in the target lan-
guage.

Algebra

For a given category D, the module vaucanswig D context contains the following classes:

D alphabet t Alphabet element with constructor from a string of generator letters:

(constructor) string → D alphabet t

D monoid t Monoid structural element with the following members:

� standard Vaucanson constructors and operators,

� method to construct a word element from a simple string:

make string → D monoid elt t

� method to generate the identity value:

identity → D monoid elt t

D monoid elt t Word (monoid element) with standard Vaucanson constructors and operators.

D semiring t Semiring structural element with the following members:

� standard Vaucanson constructors and operators,

� method to construct a weight element from a number:

make int → D semiring elt t

� methods to generate the identity and zero values:

identity → D semiring elt t

zero → D semiring elt t

D semiring elt t Weight (semiring element) with standard Vaucanson constructors and oper-
ators.

D series set t Series structural element with the following members:

24

� standard Vaucanson constructors and operators,

� methods to construct a series element from a number or string:

make int → D series set elt t

make string → D series set elt t

� methods to generate the identity and zero values as polynoms or expressions:

identity → D series set elt t

zero → D series set elt t

exp identity → D exp t

exp zero → D exp t

D series set elt t, D exp t Polynom and expressions (series elements with polynom and ex-
pression implementations) with standard Vaucanson constructors and operators.

D automata set t Structural element for automata. Include standard Vaucanson constructors.

D context Convenience class with utility methods. It provides the following members:

� constructors

(constructor) D automata set t → D context

(copy constructor) D context → D context

� accessors for structural elements:

automata set → D automata set t

series → D series set t

monoid → D monoid t

semiring → D semiring t

alphabet → D alphabet t

� shortcut constructors for elements:

semiring elt int → D semiring elt t

word string → D monoid elt t

series int → D series set elt t

series word → D series set elt t

series D exp t → D series set elt t

exp D series set elt t → D exp t

exp string → D expt t

In addition to these classes, the module vaucanswig D context contains the following func-
tion:

make context D alphabet t → D context

Algebra usage

All classes are equipped with a describe method for textual representation of values. Example
use (Python):

>>> from vaucanswig usua l context import *
>>> c = make context (u sua l a l phabe t t (”abc”))

>>> c . exp (”a+b+c”) . d e s c r i b e ()
5 ’ usual exp t@0x81a2e60 = ((a+b)+c) ’

>>> (c . exp (”a”)* c . exp (”a+b+c”)) . s t a r () . d e s c r i b e ()

25

’ usua l exp t@0x81a20f8 = (a . ((a+b)+c))* ’

10 >>> from vaucansw ig t rop i ca l m in contex t import *
>>> c = make context (t r op i c a l m in a l phab e t t (”abc”))

>>> c . s e r i e s () . i d e n t i t y () . d e s c r i b e ()
’ t r op i ca l m in s e r i e t@0x81ad8b8 = 0 ’

15 >>> c . s e r i e s () . ze ro () . d e s c r i b e ()
’ t r op i c a l m in s e r i e t@0x81a6de8 = +oo ’

Automata

For a given category D, the module vaucanswig D automaton contains the following classes:

D auto t The standard automaton type for this category.

gen D auto t The generalized (with expression labels) automaton type for this category.

These class provides the following constructors:

(constructor) D context → D auto t

(constructor) D context → gen D auto t

(copy constructor) D auto t → D auto t

(copy constructor) gen D auto t → gen D auto t

(constructor) D auto t → gen D auto t

For convenience purposes, a gen D auto t instance can be constructed from a D auto t (gen-
eralization). The opposite is not possible, of course.

In addition to the standard Vaucanson methods, these classes have been augmented with the
following operators:

describe() Give a short description for the object.

save(filename) Save data to a file.

load(filename) Load data from a file. The automaton must be already defined (empty) and its
structural element must be compatible with the file data.

dot run(tmpf, cmd) Dump the automaton to file named tmpf, then run command cmd on file
tmpf. The file is in dot format compatible with Graphviz.1

Example use:

>>> from vaucanswig usual automaton import *
>>> a = usua l au t o t (c)
>>> a . add s ta t e ()
0

5 >>> a . add s ta t e ()
1
>>> a . add s ta t e ()
2
>>> a . d e l s t a t e (1)

10 >>> for i in a . s t a t e s () :
. . . print i

1http://www.research.att.com/sw/tools/graphviz/

26

http://www.research.att.com/sw/tools/graphviz/

. . .
0
2

15 >>> a . dot run (”tmp” , ” dot view ”)

>>> a . save (” foo ”)
>>> a2 = usua l au t o t (c)
>>> a2 . load (” foo ”) ;

20 >>> a2 . s t a t e s () . s i z e ()
2

Algorithms

As a general rule of thumb, if some algorithm foo is defined in the source file vaucanson/algorithms/bar.hh
then:

� the module vaucanswig D alg bar contains a function foo,

� the module vaucanswig D algorithms contains D.foo.

3.1.4 Adding new algorithms

The Vaucanswig generator automatically build Vaucanswig modules from definitions found in the
Vaucanson source files.

You can add a new algorithm to vaucanswig simply by adding declarations of the form:

// INTERFACE:

to the Vaucanson headers.

Example

Let’s consider the Vaucanson header foo.hh in include/vaucanson/algorithms, which con-
tains the following code:

// INTERFACE: Exp foo1 (cons t Exp& other) { re turn vcsn : : foo1 (o ther) ; }
template<typename S , typename T>

Element<S , T> foo1 (const Element<S , T>& exp) ;

5 // INTERFACE: Exp foo1 (cons t Exp& other1 , cons t Exp& other2) { re turn vcsn : : foo2 (other1 , o th
template<typename S , typename T>

Element<S , T> foo1 (const Element<S , T>& exp) ;

Then, after running expand.sh (the Vaucanswig generator) for category D, the module vaucanswig D alg foo

becomes available:

foo1 : D exp t $\ to$ D exp t
foo2 : (D exp t , D exp t) $\ to$ D exp t

In addition, the special algorithm class D, defined in vaucanswig D algorithms, also contains
’foo1’ and ’foo2’.

Limitations

When writing // INTERFACE: comments, the following notes must be taken into consideration:

� The comment must stand on a single line. Indeed, expand.sh does not currently support
multi-line interface declarations.

27

� The following special macro names are available:

Exp The expression type for the category.

Serie The polynom/serie type for the category.

Automaton, GenAutomaton The automaton types for the category.

HList A list of state or transition handlers (integers). This type is std::list<int> in C++

and a standard sequence of numbers in the target language.

Word The word type for the category.

� When accessing automata, a special behavior stands. Instead of writing:

// INTERFACE: vo id foo (Automaton& a) { re turn vcsn : : foo (a) ; }
// INTERFACE: vo id foo (GenAutomaton& a) { re turn vcsn : : foo (a) ; }

one should write instead:

// INTERFACE: vo id foo (Automaton& a) { re turn vcsn : : foo (*a) ; }
// INTERFACE: vo id foo (GenAutomaton& a) { re turn vcsn : : foo (*a) ; }

Indeed, Automaton and GenAutomaton do not expand to Vaucanson automata types, but
to a wrapper type. The real automaton can be reached by means of operator*().

3.1.5 Python support

For convenience purposes, Python interfaces for Vaucanswig are included in the distribution. They
are automatically compiled and installed with Vaucanson if enabled. To enable these modules,
run the configure script like this:

c on f i gu r e −−enable−vaucanswig

3.2 Building language interfaces with Vaucanswig

This section describes how to use Vaucanswig to produce interfaces with other languages.

3.2.1 Background

Vaucanswig is a set of SWIG wrapper definitions for the Vaucanson library.
SWIG takes Vaucanswig as input, and generates code to link between any supported scripting

language and C++. In that sense, Vaucanswig is already ”meta”, because it ultimately supports
several scripting languages. But still, even Vaucanswig itself is automatically generated, and this
”meta-build” process is described in Section 3.3.

The document you are reading explains how to use Vaucanswig once it has been generated.

3.2.2 General idea

Once Vaucanswig has been generated, it is composed of input files to SWIG.
To use Vaucanson in a target scripting language, two steps are necessary:

1. Produce C++ sources for the interface (running SWIG).
This step only requires Vaucanswig sources and a decent version of SWIG.

2. Compile these sources.
This step requires the Vaucanson library and the extension libraries for the selected target
language.

28

http://www.swig.org

3.2.3 SWIG modules (MODULES)

Vaucanswig defines a number of SWIG modules.
The list of SWIG modules, hereinafter named MODULES, contains:
Name of module Description
core the core of vaucanswig.
K context for each K, the definition of the algebraic context K (K can

be usual, numerical, tropical and so on)
K automaton definition of the Automaton and Expression types in con-

text K
K alg A for each algorithm A, the definition of the specific instance

of A in context K. (A can be ”complete”, ”standard”,
”product” and so on)

K algorithms a convienient wrapper for context K with ”shortcuts” to all
the algorithms instanciated for K.

Note that the name of SWIG modules are closely related to the namespace where the corre-
sponding features can be found in the target scripting language.

Then, for each module M, two items are available:
Item Description
‘src/vaucanswig M.i’ the dedicated SWIG source file
‘src/M.deps’ (optional, may not exist) a file containing a list of modules

that M is dependent upon. If the file is empty, two cases
apply:

� M is ”core” - no dependency

� M is not ”core” - it depends on ”core”.

The first item is the most important. The second is only useful to create automated build
processes which require dependency rules.

3.2.4 C++ sources specific to the target scripting language (T.S.L.)

Each TSL needs a different set of wrapper for the Vaucanswig modules.
For any given TSL, source files for the MODULES can be created by SWIG by running the

following pseudo-algorithm:

$ for M in ${MODULES} ; do

${SWIG} −noruntime −c++ −${TSL} \
−I$ {VAUCANSWIGDIR}/ s r c \
−I$ {VAUCANSWIGDIR}/meta \

5 −I$ {VAUCANSON INCLUDES} \
${VAUCANSWIGDIR}/ s r c / vaucanswig $ {M} . i

done

Where:

� ${TSL} is the SWIG option pertaining to the language (python, java ...)

� ${VAUCANSWIGDIR} is the root directory of Vaucanswig.

� ${SWIG} is the path to the SWIG binary.

� ${VAUCANSON INCLUDES} is the base directory of the Vaucanson library.

29

3.2.5 Compilation of the binaries for the target scripting language

The previous step creates a bunch of C++ source files of the form ‘vaucanswig ${M} wrap.cxx’.
They should be compiled with the C++ compiler supported by the TSL.

The C++ compilation should use the following flags:

� ‘-DINTERNAL CHECKS -DSTRICT -DEXCEPTION TRAPS’
Use for more secure code in Vaucanson.

� ‘-I${VAUCANSON INCLUDES}’
Specify the location of the Vaucanson library headers.

� ‘-I${VAUCANSWIGDIR}/src -I${VAUCANSWIGDIR}/meta’
Needed by Vaucanswig.

In addition, any ”compatibility” flags required by Vaucanson for this particular C++ compiler
should be used as well.

3.2.6 Automake support for Python as a TSL

According to the previous section, a ‘Makefile.am’ file is generated in the subdirectory ‘python/’.
It contains four main parts:

A header

##
Set INCLUDES fo r compi la t ion o f C++ code .
##

5 # FIXME: the python path i s hardcoded , t h i s i s NOT good .
INCLUDES = −I / usr / inc lude /python2 . 2 \

−I$ (s r c d i r) / . . / s r c −I$ (s r c d i r) / . . / meta \
−I$ (t o p s r c d i r)/ in c lude −I$ (t o p bu i l dd i r)/ in c lude

10 ##
Set AM . . . f l a g s .
##

According to spec .
15 AM CPPFLAGS = −DINTERNAL CHECKS −DSTRICT −DEXCEPTION TRAPS

We want l o t s o f debugg ing in format ion in the wrapper code .
AM CXXFLAGS = $ (CXXFLAGS DEBUG)
For L ib too l , to genera te dynamica l ly l o a da b l e modules .
AM LDFLAGS = −module −avoid−ve r s i on

The list of binary targets (the shared objects - DLL)

for each MODULE:
pyexec LTLIBRARIES += l i b v s $ (MODULE) . l a

The list of Python source files

for each MODULE:
python PYTHON += vaucanswig $ (MODULE) . py

30

Build specifications for binary targets

for each MODULE:
l i b v s $ (MODULE) la SOURCES = vaucanswig $ (MODULE) wrap . cxx

I f the module i s ” core ” :
5 # # This shou ld be the on ly dependency aga in s t s t a t i c , non−t emp la te

Vaucanswig code . And make i t a dependency to the SWIG runtime .
l ibvs core la LIBADD = . . / meta/ l i b v v . l a − l sw i gpy

Else :
10 # I f src /$ (MODULE) . deps i s empty :

l i b v s $ (MODULE) la LIBADD = l i b v s c o r e . l a
Else :
fo r each DEPENDENCY in src /$ (MODULE) . deps do :
l i b v s $ (MODULE) la LIBADD += l i b v s $ (DEPENDENCY) . l a

Additionnaly, the following (not important) parts are generated for convenience purposes:

� Rules to rerun SWIG in case something changes in Vaucanswig:

vaucanswig * wrap . cxx vaucanswig * . py : . . / s r c / vaucanswig * . i
$ (SWIG) −noruntime −c++ −python −I . . . \

−o vaucanswig * wrap . cxx \
. . / s r c / vaucanswig * . i

� Installation and uninstallation hooks.

3.2.7 Automake support for the TSL-independent code

In order to make things comply to the spirit of the Autotools, a convenience ‘Makefile.am’ is
generated in the ‘src/’ directory.

It contains a definition of EXTRA DIST with all the SWIG module source files, of the form:
‘vaucanswig $(MODULE).i’.

3.3 Generating and extending Vaucanswig sources

The Section 3.2 describes how to use Vaucanswig to create a wrapper for Vaucanson in a scripting
language. (read it first)

This document instead describes how Vaucanswig itself is generated, currently using the infa-
mous ‘expand.sh’ script.

3.3.1 The list of Vaucanswig modules

Once generated, Vaucanswig is a set of SWIG modules. This list of modules is algorithmically
generated. The overall process to build the list of module names is as follows:

1. put core in the MODULES list.

2. create an auxiliary list ALGS of algorithm families.

(detailed below, gives alg sum, alg complete, ...)

3. create an auxiliary list KINDS of algebra contexts

(contains boolean, z, z max plus, ...)

31

4. extend ALGS with ”context”, ”algorithms” and ”automaton”.

5. make the cross product of KINDS and ALGS putting a ” ” between the two parts of each
generated name.

6. add the results of this cross product to the MODULES list.

3.3.2 The list of algorithm families (ALGS in step 2 above)

In Vaucanswig, an ”algorithm family” is the set of algorithms declared in a single Vaucanson

header file. Most families declare only one algorithm, but usually with several forms (using over-
loading). In Vaucanswig, each algorithm family is related to a SWIG source file: src/vaucanswig alg NAME.i

where NAME is the name of the algorithm family.
Each family source file contains the following items:

� a link to its C++ header.

� the definition of a bunch of SWIG macros which are able to instanciate the algorithm *dec-
larations* for the type set given as parameters.

� the definition of a bunch of SWIG macros which are able to instanciate algorithm wrappers
for the set of types given as parameters.

To create the list of algorithm families and associated SWIG sources, the geneeration script
proceeds as follows:

1. Find all files in the Vaucanson includes that declare algorithms using the ”// INTERFACE:”
construct.

2. For each such include file, proceed as follows:

(a) Prepend the base name of the file with ”alg ” to make a ”family name”.

(b) Create src/vaucanswig (family name).i containing the relevant SWIG code

(c) Put the generated family name (with prefix) in the ALGS list.

3.3.3 The cross-product of contexts and generic code (step 5 above)

This is where you find all the magic. :)
This is the step where real code (i.e. non-template) is produced.
The goal of this step is to build the list of SWIG modules names *and* the source file for each

SWIG module. The basic idea is simple. It relies on the following two facts:

1. each algorithm family defined above defines macros that take types as parameters and pro-
duce non-template declarations and definitions.

2. each algebra context defines a set of types, that fit as parameters in the macros for algorithm
families.

Now the rest is quite simple. Since we have two lists KINDS (contexts) and ALGS (algorithm
families), proceed as follows:

for each K o f KINDS, do :
for each A o f ALGS, do :

Step 5 .1
5 i n s t a n c i a t e macros . . .

. . . from s r c / vaucanswig a lg $ {A} . i

. . . using ${K}

32

. . . i n t o s r c / vaucanswig $ {K} $ {A} . i

10 # Step 5 .2
add ”${K} $ {A}” to the MODULES l i s t .

the f o l l ow i n g step i s not fundamental , but r equ i r ed for l a t e r
compi la t ion :

15

Step 5 .3 (s t i l l in the K loop)
add ”${K} context ” to s r c /${K} automaton . deps

for each a lgor i thm fami ly F , do :
20

Step 5 .4
add ”${K} automaton” to s r c /${K} $ {F} . deps

Step 5 .5
25 add ”${K} $ {F}” to s r c /${K} a l go r i thms . deps

The result of steps 5.3, 5.4 and 5.5 above can later be used to create dynamic link dependencies
between object code for modules (see build-process.txt). It creates the following dependency
graph:

core $\ to$ K1 context $\ to$ K1 automaton $\ to$ K1 F1 $\ to$ K1 algor ithms
$\ to$ K1 F2 $\ to$
$\ to$ K1 F3 $\ to$

5 $\ to$ K2 context $\ to$ K2 automaton $\ to$ K2 F1 $\ to$ K2 algor ithms
$\ to$ K2 F2 $\ to$
$\ to$ K2 F3 $\ to$

(and so on)

3.3.4 The transparency property

At every level, a property can be recognized. If an algorithm foo() is declared (C++) in ‘bar.h’,
then:

� bar is the ”algorithm family” of foo()

� for each selected context K, exactly one SWIG module exists and is called called ‘K bar’.

� the goal is that at the end of the compilation, in the target scripting language you can write:

K bar . foo ()
(or e q u i v a l e n t)

3.3.5 What is not automatic

Some work is required from the part of the developer:

� keeping ‘// INTERFACE:’ tags in Vaucanson headers.

� deciding a list of contexts to instanciate in Vaucanswig.

� running the generator for Vaucanswig generic code whenever the Vaucanson library is
updated.

� distributing the generated generic sources and building rules afterwards.

33

3.3.6 Things not easy to change yet

In this section, K stands for any algebra context.
The set of K -dependent types available in wrapper code in the ‘// INTERFACE:’ tags is not

yet easily configurable, because it involves a huge piece of hand-written dedicated code.
For the moment, the following types are available for each context K:
Name of type Description
Automaton the automaton type labeled by series
GenAutomaton the corresponding type labeled by expressions
Series the type of series in K
Exp the type of expressions in K
HList a type for lists of unsigned integer (to be used as automaton

handlers where required)
Word the type of the monoid elements

Adding more of these is not difficult, but very tedious. It involves adding a new argument in
various argument list in various SWIG macros in the code. These will be documented later.

But still, it remains very difficult to bind in Vaucanswig any algorithm that operates on more
than one algebra context at the same time. ”Very difficult” here means that some major work is
required to change Vaucanswig to support this case.

34

Chapter 4

Vaucanson as a library

To be written.

35

Chapter 5

Developer Guide

The chapter is a work in progress. It is not meant for users of the Vaucanson library, but for
developers and those who wish to contribute code to Vaucanson.

5.1 Tools

5.1.1 Maintainer Tools

We use a number of tools during development which we call maintainer tools, because they are
not required by the end user.

Autoconf Generates configure which probes the user system to configure the compilation.

Doxygen Reference documentation generator. Available as doxygen in most package systems.

rst2latex, rst2html These tools are used to convert reStructuredText into more common for-
mats. Available in the DarwinPorts as py-docutils.

5.1.2 Developer Tools

Some tools help to improve the code. Use them liberally!

Valgrind

Valgrind help catching incorrect memory usage: double deletes, memory leaks, uninitialized mem-
ory readings, and so forth. Usually, to optimize speed, implementations of the C++ library don’t
free all the memory they allocated unless asked. Read the GCC’s C++ Library FAQ, especially
the item “memory leaks” in containers.

Use the following shell script to track memory leaks:

#! / bin / sh

exec 3>&1

5 # Ask the GNU l i b s t d c++ to f r e e a l l o c a t e d s t r u c t u r e s .
export GLIBCXX FORCE NEW=1

exec va l g r ind −−num−c a l l e r s =20 \
−−leak−check=yes \

10 −−leak−r e s o l u t i o n=high \
−−show−r eachab l e=yes \
”$@” 2>&1 1>&3 3>&− |

sed ’ s/ˆ==[0−9]*==/==/’ >&2 1>&2 3>&−

36

http://gcc.gnu.org/onlinedocs/libstdc++/faq/
http://gcc.gnu.org/onlinedocs/libstdc++/faq/#4_4_leak

Debugging STL

STLPort is known to be a nice implementation of STL with lots of added assertions that allow
to catch common errors (mixing iterators of different containers, unstable sorting order and so
forth).

I, Akim Demaille, have not succeeded to use it though. This is mainly because Debian does not
provide STLPort compiled with debugging support. Nevertheless the GNU standard C++ library
comes with some useful debugging features. Just add ‘-D GLIBCXX DEBUG’ to your CPPFLAGS when
compiling Vaucanson.

You are likely to encounter issues with singular iterators. It refers to default-constructed
iterators, which is not the same thing as being the end() of a given container. They are write-
only according to the STL, and copying them is not allowed.

As a result, the following code is incorrect:

std : : vector<std : : l i s t <int > : : i t e r a t o r > i s (1 0) ;

because this vector constructor builds a single default object (here a default std::list<int>::iterator,
then copies it ten times, which (ten times) forbidden. It there is no clear means to rewrite the code
to avoid this violation, you might want to use end() iterators, which can be used in comparisons,
can be copied, but cannot be dereferenced.

std : : vector<std : : l i s t <int > : : i t e r a t o r > i s (10 ,
std : : l i s t <int >() . end ()) ;

5.2 Contributing Code

5.2.1 Directory usage

The Vaucanson package is organized as follows:
Directory Usage
doc Documentation.
doc/css CSS style for Doxygen.
doc/makefiles Sample Makefile to reduce compilation

time in Vaucanson.
doc/manual Manual.
doc/share LRDE share repository.
doc/xml XML proposal.
include/vaucanson Library start point: defines classical entry

points such as “boolean automaton.hh”.
include/vaucanson/algebra/concept Algebra concepts, “Structure” part of an

Element.
include/vaucanson/algebra/implementation Implementations of algebraic Structures.

Some specialized structures too.
include/vaucanson/algorithms Algorithms.
include/vaucanson/algorithms/internal Internal functions of algorithms.
include/vaucanson/automata/concept Structure of an automaton.
include/vaucanson/automata/implementation Its implementation.
include/vaucanson/config Package configuration and system files.
include/vaucanson/contexts Context headers.
include/vaucanson/design_pattern Element design pattern implementation.
include/vaucanson/misc Internal headers of the whole library.
include/vaucanson/tools Tools such as dumper, bencher.
include/vaucanson/xml XML implementation.

37

Directory Usage
argp Argp library for TAF-Kit.
build-aux Where Autotools things go.
data Misc data, like Vaucanson’s XSD, Emacs files.
data/b Generated Boolean automata.
data/z Generated Automata over Z.
debian Debian packaging.
src/benchs Benches.
src/demos Demos.
src/tests Test suite.
taf-kit Typed Automata Function Kit, binaries to use Vaucanson.
taf-kit/tests Test suite using the TAF-Kit.
vaucanswig Vaucanswig, a SWIG interface for Vaucanson.
vcs Version Control System configuration (VCS Home Page).

5.2.2 Writing Makefiles

Produce the output atomically Generating an output bits by bits, say with a series of ‘>>
$@’, or even with some common programs, can result in invalid files if the process failed at
some point, or was interrupted. Note that in that case the (invalid) output file is newer
than its dependencies, therefore it will remain. Instead, create an temporary output, say
‘$@.tmp’, and as last step, rename it a ‘$@’. Sometimes, using move-if-change makes more
sense.

Look for the economy Do what you can to save useless recompilations. Using move-if-change,
especially for generated files, does save cycles. But then, beware that time stamps are not
updated, which can be troublesome if the Makefile includes dependency tracking, as they
will not be satisfied.

Always include dependencies included for the bootstrapping process. In their regular devel-
opment process, the contributors should not have to bootstrap again, that should be only
for the initial check-out, and some other situation where the layout of the project has deeply
changed. Therefore, always hook the generated to the changes in the generators.

Hunt Makefile duplication Prefer an included Makefile to copy-and-paste of bits. That’s also
true for generated Makefiles: put the constant parts in a Makefile to be included in the
generated Makefiles, rather than copying these bits several times.

This makes it easier to maintain, and also improves locality: you can edit the included
Makefile and try it in just one directory, instead of having to relaunch the generation of all
the Makefiles.

5.2.3 Coding Style

Until this is written, please refer to Tiger’s Coding Style.
Emacs users should use the indentation style of ‘data/vaucanson.el’.

Document in the ‘*.hh’ Do not document in the implementation files, but in the declaration
files. Unless, of course, the function is private and not “exported”.

Use the same signature in the declaration and in the implementation It’s a bad idea
not to follow the same name on both sides, and it confuses the reader. Even worse is not giving
names to the argument in the declarations, giving the impression that the argument is ignored,
while using it for real in the implementation.

Keep also the same template parameter names.
Inconsistency confuses users, peer developers, and... Doxygen too.

38

http://rubyforge.org/projects/vcs
http://www.lrde.epita.fr/~akim/compil/assignments.split/Coding-Style.html#Coding-Style

Includes

Be extremely conservative with header inclusions Do not include something that is not
needed by the file itself. Do not include in a ‘*.hh’ something that is required by the ‘*.hxx’
file itself.

Sort the inclusions Always include standard headers first, then foreign headers we might
depend upon, and then Vaucanson headers. Inside these groups, sort the includes.

Qualify header names Please, never use backward relative paths anywhere. There are very
difficult to follow (because several such strings can designate the same spot), they make renaming
and moving virtually impossible etc.

Relative paths to sub-directories are welcome, although in many situations they are not the
best bet.

In Makefiles, please using absolute paths starting from ‘$(top srcdir)’. Unfortunately,
because Automake cannot grok includes with Make macros (except... ‘$(top srcdir)’), we can’t
shorten these.

For header inclusion, stacking zillions of ‘-I’ is not the best solution because

� you have to work to find what file is really included

� you are likely to find unexpected name collisions if two separate directories happens to have
(legitimately) two different files share the same name

� etc.

So rather, stick to hierarchies of include files, and use qualified ‘#include’s. For instance, use
‘-I $(top srcdir)/include -I $(top srcdir)/src/tests/include’ and ‘#include <vaucanson/...>’
falls into the first one (‘$(top srcdir)/include’ has all its content in ‘vaucanson’), and ‘#include
<tests/...>’ falls into the latter since ‘$(top srcdir)/src/tests/include’ has all its content
in ‘vaucanson’).

5.2.4 Use of macros

C preprocessor (cpp) is evil, but code duplication is even worse. Macros can be useful, as in the
following example:

define PARSER SET PROPERTY(prop) \
i f (parser−>canSetFeature (XMLUni : : prop , true)) \

parser−>s e tFeature (XMLUni : : prop , true) ;

5 PARSER SET PROPERTY(fgDOMValidation) ;
PARSER SET PROPERTY(fgDOMNamespaces) ;
PARSER SET PROPERTY(fgDOMDatatypeNormalization) ;
PARSER SET PROPERTY(fgXercesSchema) ;
PARSER SET PROPERTY(fgXercesUseCachedGrammarInParse) ;

10 PARSER SET PROPERTY(fgXercesCacheGrammarFromParse) ;

undef PARSER SET PROPERTY

but please, respect the following conventions.

� Use upper case names, unless they are part of the interface such as for all transitions

and so forth.

� Make them live short lives, as above: undefine them as soon as they are no longer needed.

� Respect the nesting structure: if ‘foo.hh’ defines a macro, undefine it there too, not in the
included ‘foo.hxx’.

39

� Indent cpp directives. The initial dash should always be in the first column, but indent
the spaces (one per indentation) between it and the directive. The above code snippet was
included in an outer #if.

� Each header file (‘.hh’, ‘.hxx’, . . .) should start with a classic cpp guard of the form

#ifndef FILE HH
define FILE HH

. . .
#endif // !FILE HH

GCC has some optimizations on file parsing when this scheme is seen.

� We often rely on grep and tags to search things. Please don’t clutter names with cpp

evilness.

For instance, this is bad style:

#define VCSN choose semiring (Canarg , Nonarg , Typeret . . .) \
template <class Se l f > \
template <class T> \
Typeret \

5 SemiringBase<Se l f > : : Canarg ## choose ## Nonarg ## s t a r ab l e (\
SELECTOR(T)) const \
{ \

return op ## Canarg ## choose ## Nonarg ## s t a r ab l e (this−>s e l f () , \
SELECT(T)) ; \

10 } ;
VCSN choose semiring (can , non , bool)
VCSN choose semiring (, , Element<Se l f , T>)
VCSN choose semiring (, non , Element<Se l f , T>)

5.2.5 File Names

In Vaucanson the separator is ‘ ’, not ‘-’. We use the following file extensions:

cc Implementation (compilation unit)

hh Declarations and documentation

hxx Inline Implementation

File names should match the class they declare, with the conversion of name conventions (i.e.,
from MyClass to ‘my class.*’).

5.2.6 Type Names

Although some coding standards recommend against this practice, types in Vaucanson should
end with ‘ t’. One exception is traits, where ret is commonly used.

self t, when defined, always refers to the current class.
super t, when defined, always refers to the super class. When there are several, super t is

not used. The macros INHERIT TYPEDEF and INHERIT TYPEDEF rely on this convention.

40

5.2.7 Variable Names

Using long variable names clutters the code, so please, don’t name your variables and arguments
like automaton1 or alphabet. Structure members and functions should be descriptive though.

In order to keep the variable names reasonable in size, and understandable, there are variable
name conventions: some families of identifiers are reserved for some types of entities. The con-
ventions are listed below; developers must follow it, and users are encouraged to do it too. In the
following list, ‘∗’ stands for “nothing, or a number”.

al∗, alpha∗, A∗ alphabets

a∗, aut∗ automata (automaton t, etc.)

t∗, tr∗ transitions

p∗, q∗, r∗, s∗ states (hstate t)

Some variables should be consistently used to refer to some “fixed” values.

monoid identity The neutral for the monoid, the empty word.

mono i d e l t t mono id ident i ty = a . s e r i e s () . monoid () . empty ;

null series The null series, the 0, the identity for the sum.

s e r i e s s e t e l t t n u l l s e r i e s = a . s e r i e s () . z e r o ;

semiring elt zero The zero for the weights.

s e m i r i n g e l t t s em i r i n g e l t z e r o = a . s e r i e s () . s emir ing () . wzero ;

5.2.8 Commenting Code

Use Doxygen. Besides the usual interface description, the Doxygen documentation must include:

� references to the definitions of the algorithm, e.g., a reference to the “Éléments de la théorie
des automates”, or even an URL to a mailing-list archive.

� detailed description of the assumptions, or, if you wish, pre- and post-conditions.

� the name of the developer

� use the @pre and @post tags liberally.

Don’t try to outsmart your tool, even though it does not use the words “param” and “arg”
as we do, stick to its semantics (let alone to generate correct documentation without warnings).
This is correct:

/**
* Dele te memory a s s o c i a t e d wi th a stream upon i t s d e s t r u c t i on .
*
* @arg \c T Type o f the po in ted element .

5 *
* @param ev IO event .
* @param io Rela ted stream .
* @param idx Index in the i n t e r n a l e x t e n s i b l e array o f a po in t e r to d e l e t e .
*

10 * @see iomanip
* @author Thomas C l a v e i r o l e <thomas . c l a v e i r o l e@ l r d e . e p i t a . f r>

*/

41

template <class T>

void

15 pword de lete (std : : i o s b a s e : : event ev , std : : i o s b a s e &io , int idx) ;

while this is not:

/** . . .
* @param T Type o f the po in ted element .
*
* @arg ev IO event .

5 * @arg io Re la ted stream .
* @arg idx Index in the i n t e r n a l e x t e n s i b l e array o f a po in t e r to d e l e t e .
* . . . */

5.2.9 Writing Algorithms

There is a number of requirement to be met before including an algorithms into the library:

Document the algorithm See Section 5.2.8.

Comment the code Especially if the code is a bit tricky, or smart, or avoids nasty pitfalls, it
must be commented.

Bind the algorithm to TAF-Kit

Include tests See Section 5.2.10 for more details. Tests based on TAF-Kit are appreciated.
Note that tests require test cases: to exercise an algorithm, not any automaton will do, try
to find relevant samples. Again, ETA is a nice source of inspiration.

Complete the documentation The pre- and post-conditions should also be described here.

When submitting a patch, make it complete (i.e., including the aforementioned items), and
provide a ChangeLog. See Le Guide du LRDE , section “La maintenance de projets” and especially
“Écrire un ChangeLog” for more details.

Because Vaucanson uses Trac, ChangeLog entries should explicit refer to tickets (e.g., “Fixing
issue #38: implement is ambiguous”), and possible previous revisions (e.g., “Fix a bug introduced
in [1224]”).

5.2.10 Writing Tests

5.2.11 Mailing Lists

Vauc comes with a set of mailing lists:

vaucanson@lrde.epita.fr General discussions, feature requests etc.

vaucanson-bugs@lrde.epita.fr To report errors in code, documentation, web pages, etc.

vaucanson-patches@lrde.epita.fr To submitted patches on code, documentation, and so forth.

vaucanson-private@lrde.epita.fr To contact privately the Vaucanson team.

Please, bear in mind that there are these lists have many readers, therefore this is a WORM
medium: Write Once, Read Many. As a consequence:

� Be complete.
One should not strive to understand what you are referring to, so always include proper
references: URLs, Ticket numbers and summary, etc.

42

http://www.lrde.epita.fr/dload/guidelines/guidelines.html

� Be concise.
Write short, spell checked, understandable sentences. Reread yourself, remove useless words,
be proud of what you wrote. Show respect to the reader. Spare us useless messages.

� Be structured.
Quick and dirty replies with accumulated layers of replies at the bottom of the message is
not acceptable. The right ordering is not the one that is the quickest to write, but the easiest
to read.

� Be attentive.
Lists are not write-only: consider the feedback that is given with respect.

As an example of what’s not to be done, avoid answering to yourself to point out you made a
spell mistake: we can see that, and that’s a waste of time to read another message for that. Also,
there is no hurry, it would probably be better to wait a bit to have a complete, well thought out,
message, rather than a thread of 4 messages completing, contradicting, each other. Finally, if you
still need to fix your message, supersede it, or even cancel it.

5.3 Vaucanson I/O

January 2005
Here is some information about input and output of automata in Vaucanson.

5.3.1 Introduction

As usual, the structure of the data representing an automaton in a flat file is called the file format.
There are several input and output formats for Vaucanson automata. Obviously:

� input formats are those that can be read from, i.e. from which an automaton can be loaded.

� output formats are those that can be written to, i.e. to which an automaton can be dumped.

Given these definitions, here is the meat:

� Vaucanson supports Graphviz (dot) as an output format. Most kinds of automata can be
dumped as dot-files. Through the library this format is simply called dot.

� Vaucanson supports XML as an input and output format. Most kinds of automata can be
read and written to and from XML streams, which Vaucanson does by using the Xerces-C++
library. Through the library this format is simply called xml.

� Vaucanson supports the FSM toolkit I/O format as an input and output format. This allows
for basic FSM interaction. Only certain kinds of weighted automata can be meaningfully
input and output with this format. Through the library this format is simply called fsm.

� Vaucanson supports a simple informative textual format as an input and output format.
Most kinds of automata can be read and written to and from this format. Through the
library this format is simply called simple.

5.3.2 Dot format

This format provides an easy way to produce a graphical representation of an automaton.
Output using this format can be given as input to the Graphviz dot command, which can

in turn produce graphical representations in Encapsulated PostScript, PNG, JPEG, and many
others.

It uses Graphviz’ “directed graph” subformat.

43

http://www.lrde.epita.fr/vaucanson

If you want to see what it looks like go to the data/b subdirectory, build the examples and
run them with the “dot” argument.

For Graphviz users:
Each graph generated by Vaucanson can be named with a string that also prefixes each state

name. If done so, several automata can be grouped in a single graph by simply concatenating the
Vaucanson outputs.

5.3.3 XML format

This format is intended to be an all-purpose strongly typed input and output format for automata.
Using it requires:

� that the Xerces-C++ library is installed and ready to use by the C++ compiler that is used
to compile Vaucanson.

� configuring Vaucanson to use XML.

� computer resources and time.

What you gain:

� support for the Greater and Better I/O format. See documentation in the doc/xml subdi-
rectory for further information.

If you want to see what it looks like go to the data/b subdirectory, build the examples and
run them with the xml argument.

5.3.4 FSM format

This format is intended to provide a basic level of compatibility with the FSM tool kit. (FIXME:
references needed)

Like FSM, support for this format in Vaucanson is limited to deterministic automata. It
probably does not work with transducers, either.

It is not meant to be used that much apart from performance comparison with FSM. Some
code exists to simulate FSM, in src/demos/utilities/fsm.

If you want to see what it looks like go to the data/b, build the examples and run them with
the fsm argument.

5.3.5 Simple format

Initially intended to be a quick and dirty debugging input and output format, this format actually
proves to be a useful, compact and efficient textual representation of automata.

Advantages over XML:

� does not require additional 3rd party software,

� simple and efficient (designed to be read and written to streams with very low memory
footprint and minimum complexity),

� more compact,

� not strongly typed (can be dumped from one automaton type and loaded to another).

Drawbacks relative to XML:

� not strongly typed (one cannot know what automaton type to build by only looking at the
raw data).

� currently does not (probably) support transducers.

If you want to see what it looks like go to the data/b, build the examples and run them with
the simple argument.

44

5.3.6 Using input and output

The library provides an infrastructure for generic I/O, which (hopefully) will help supporting more
formats in the future.

The basis for this infrastructure is the way a developer C++ using the library will use it:

#include <vaucanson/ t o o l s / i o . hh>

/* to save an automaton */
output stream << automaton saver (automaton , converter , format)

5

/* to load an automaton */
input stream >> automaton loader (automaton , converter , format , merge s ta t e s)

Where:

automaton is the automaton undergoing input or output. Note that the object must already be
constructed, even to be read into.

converter is a helper class that is able to convert automaton transitions to character strings and
possibly vice-versa.

format is a helper class that is able to convert the automaton to (and possibly from) a character
string, using the converter as an argument.

merge states is an optional argument that should be omitted in most cases. For advanced users,
it allows loading a single automaton from several different streams that share the same state
set.

About converters

The converter argument is mandatory. There are several converter types already available in
Vaucanson. See below.

An I/O converter is a function object with one or both of the following:

� an operation that takes an automaton, a transition label and converts the transition label
to a character string (std::string). This is called the output conversion.

� an operation that takes an automaton, a character string and converts the character string
to a transition label. This is called the input conversion.

Vaucanson already provides these converters:

vcsn::io::string out, bundled with io.hh. Provides the output conversion only. Uses the
C++ operator << to create a textual representation of transition labels. Should work with
all label types.

vcsn::io::usual converter exp, defined in tools/usual io.hh. Provides both input and out-
put conversions. Uses the C++ operator << to create a textual representation of transition
labels, but requires also that algebra::parse can read back that representation into a variable
of the same type. It is mostly used for generalized automata where transitions are labeled
by rational expressions, hence the name.

vcsn::io::usual converter poly<ExpType>, defined in tools/usual io.hh. Provides both in-
put and output conversions. Converts transition labels to and from ExpType before (after)
doing I/O. The implementation is meant to be used when labels are polynoms, and using
the generalized (expression) type as ExpType.

45

Notes about XML and converters When the XML I/O format was implemented, the initial
converter system was not used. Instead a specific converter system was re-designed specifically for
this format.

(FIXME: explain why!)
(FIXME: why hasn’t the generic converter for XML been ported back to fsm and simple

formats?)
Because of this, when using XML I/O the “converter” argument is completely ignored by the

format processor. Usually you can see vcsn::io::string output mentioned.
(FIXME: this is terrible! it must be patched to use an empty vcsn::io::xml converter placeholder

or something like it).

About formats

The format argument is mandatory. It specifies an instance of the object in charge of the actual
input or output.

A format object is a function object that provides one or both the following operations:

� an operation that takes an output stream, the caller automaton saver object, and the
converter object. This is called the output operation.

� an operation that takes an input stream and the caller automaton loader object. This
is called the input operation. Note that this operation does not uses the converter ob-
ject, because it should call back the automaton loader object to actually perform string to
transition label conversions.

Format objects may require arguments to be constructed, such as the title of the automaton
in the output.

Format objects for a format should be defined in a tools/xxx format.hh file.
Vaucanson provides the following format objects:

vscn::io::dot(const std::string& digraph title), in tools/dot format.hh. Provides an
output operation for the Graphviz dot subformat. The title provided when buildint the dot

object in Vaucanson becomes the title of the graph in the output data and a prefix for state
names. Therefore the title must contain only alphanumeric characters or the underscore (),
and no spaces.

vcsn::io::simple(), in tools/simple format.hh. Provides both input and output operations
for a simple text format.

vcsn::xml::XML(const std::string& xml title), in xml/XML.hh. Provides both input and out-
put operations for the Vaucanson XML I/O format.

(FIXME: why not tools/xml format.hh with proper includes of headers in xml/?)
(FIXME: really the FSM format should have a format object too.)

5.3.7 Examples

Create a simple dot output for an automaton a1:

s t d : : o f s t ream fout (”output . dot”) ;
f out << automaton saver (a1 , vcsn : : i o : : s t r i n g ou tpu t () , vcsn : : i o : : dot (”a1”)) ;
f out . c l o s e ()

Output automaton a1 to XML, read it back into another automaton a2 (possibly of another
type):

46

s t d : : o f s t ream fout (” f i l e . xml”) ;
f out << automaton saver (a1 , NULL, vcsn : : xml : :XML()) ;
f out . c l o s e ()

5 s t d : : i f s t r e am f i n (” f i l e . xml”) ;
f i n >> automaton loader (a2 , NULL, vcsn : : xml : :XML()) ;
f i n . c l o s e ()

Do the same, but this time using the simple format. The automata are generalized, i.e. labeled
by expressions:

s t d : : o f s t ream fout (” f i l e . txt ”) ;
f out << automaton saver (a1 , vcsn : : i o : : u sua l c onve r t e r exp () , vcsn : : i o : : s imple ()) ;
f out . c l o s e ()

5 s t d : : i f s t r e am f i n (” f i l e . txt ”) ;
f i n >> automaton loader (a2 , vcsn : : i o : : u sua l c onve r t e r exp () , vcsn : : i o : : s imple ()) ;
f i n . c l o s e ()

5.3.8 Internal scenario

What happens in Vaucanson when you write:

f i n >> automaton loader (a1 , c1 , f 1)

?

1. function automaton loader creates an object AL1 of type automaton loader that memo-
rizes its arguments.

2. automaton loader() returns AL1.

3. operator>>(fin, AL1) is called.

4. operator>> says to format object f1: “hi, please use fin to load something with AL1”.

5. f1 scans input stream fin. Things may happen then:

� f1 finds a state numbered N. Then it says to AL1: “hey, make a new state into the
output automaton, keep its handler s1 for yourself and remember it is associated to N”.
(callback AL1.add state)

� f1 finds a transition from state numbered N to state P, labeled with character string S.
Then it says to AL1: “hey, create a transition with N, P, and S.” (callback AL1.add transition).
Then:

– AL1 remembers handler for state N (s1)

– AL1 remembers handler for state P (s2)

– AL1 says to converter c1: “hey, make me a transition label from S”

– AL1 creates transition from s1 to s2 using converted label into output automaton.

6. When f1 is finished, it returns control to operator>> and then calling code.

Of course since everything is statically compiled using templates there is no performance
drawback due to the intensive use of callbacks.

47

5.3.9 Convenience utilities

For most formats the (relatively) tedious following piece of code:

output stream << automaton saver (a , CONVERTER() , FORMAT(. . .))

is also available as:

FORMAT dump(output stream , a , . . .)

If available, this convenience utility is defined in tools/XXX dump.hh.
Conversely, the following piece of code:

input stream >> automaton loader (a , CONVERTER() , FORMAT(. . .))

is usually also available as:

FORMAT load(input stream , a , . . .)

If available, this convenience utility is defined in tools/XXX load.hh.
As of today (2006-03-17) the FSM format is only available using the fsm load() and fsm dump()

interface.

48

Appendix A

Automaton Library

Vaucanson comes with a set of interesting automata that can be used to toy with TAF-Kit

(Chapter 2) for instance. In the chapter, we present each one of these automata.

A.1 Boolean Automata

A.1.1 a1

 { 3 states, 6 transitions, #I = 1, #T = 1 }

0

1

b a

1

a

2

b

1

b a

49

A.1.2 b1

 { 2 states, 5 transitions, #I = 1, #T = 1 }

0

1

b a

1

b

1

b a

A.1.3 div3base2

 { 3 states, 6 transitions, #I = 1, #T = 1 }

0

1

0

1

1

11

2

0 0

1

A.1.4 double-3-1

 { 3 states, 6 transitions, #I = 1, #T = 1 }

0

1

1

a

2

b

b

1 a

a

b

50

A.1.5 ladybird-6

 { 6 states, 21 transitions, #I = 1, #T = 1 }

0

1

1

1

a c

b c

2

a

c

b c

3

a

c

cb

4

a

c

b c

5

a

c a

bc

A.2 Z-Automata

A.2.1 b1

 { 2 states, 5 transitions, #I = 1, #T = 1 }

0

1

b a

1

b

1

b a

51

A.2.2 c1

 { 2 states, 3 transitions, #I = 1, #T = 1 }

0

1

a+b

1

b

1

({2} a)+({2} b)

A.3 Boolean FMP Transducers

A.3.1 t1

 { 3 states, 4 transitions, #I = 1, #T = 2 }

0

1

1

(1,y) 1(a,1)

1

2

(1,x)(b,1)

A.3.2 u1

 { 3 states, 4 transitions, #I = 2, #T = 1 }

0

1

1

(x,1) 1(1,v)

1

2

(y,1) (1,u)

52

Appendix B

Bits of Automaton Theory

B.1 On standard and normalized automata

B.1.1 Standard automata

Definition

Definition B.1 (Standard Automaton) An automaton (any kind, automata over any monoid
with any multiplicity) is said to be standard if it has a unique initial state which is the destination
of no transition and whose ’initial multiplicity’ is equal to the identity (of the multiplicity semiring
or of the series semiring, according to the current convention).

remark B.2 These terminology and definition are to be found in ETA and are not (yet) univer-
sally known or accepted.

Standardization

Not only every automaton is equivalent to a standard one, but a simple procedure, called ’stan-
dardization’, transforms every automaton A in an equivalent standard one, and goes as follows.

1. Add a new state s, make it initial, with initial multiplicity equal to the identity.

2. For every initial state i of A, with initial multiplicity I(i), add a transition from s to i with
label I(i), and set I(i) to 0 (the zero of the semiring, or of the series – as above).

3. Suppress all epsilon-transition from the created transitions by a backward closure.

4. Take the accessible part of the result.

remark B.3 Steps item 3 and item 4 are necessary to insure the following property:
The standardization of a standard automaton A is isomorphic to A .
More informally, but more generally, they insure that the result of the standardization is of the

same ”kind” as the automaton on which it is applied (in particular, without epsilon-transition if
A is without epsilon-transition).

Standard automaton of an expression

A classical algorithm — often credited to Glushkov — transforms a rational (ie regular) expression
(of literal length n) into a standard automaton (with n+1 states). This automaton is known in
the literature as the ’Glushkov automaton’ or as the ’position automaton’ of the expression.

remark B.4 It is folklore that the epsilon-transition removal — via a ”backward closure” —
applied to the ’Thompson automaton’ of a rational expression produces the standard automaton of
the expression.

53

remark B.5 These definitions, constructions and properties are fairly classical for classical au-
tomata. Their generalization to automata with multiplicity is more recent (mostly written by the
”Rouen school” around the year 2000).

B.1.2 Normalized automaton

Definition

An automaton (any kind, automata over any monoid with any multiplicity) is said to be normalized
if

1. it has a unique initial state

� which is the destination of no transition,

� whose ’initial multiplicity’ is equal to the identity (of the multiplicity semiring or of the
series semiring, according to the current convention),

� and whose ’final multiplicity’ is equal to the zero (with the same convention);

2. and, symmetrically, it has a unique final state

� which is the source of no transition,

� whose ’final multiplicity’ is equal to the identity,

� and whose ’initial multiplicity’ is equal to the zero.

remark B.6 The terminology is rather unfortunate, for there are already so many different ”nor-
malized” things. The notion however, is rather classical, under this name, at least for classical
Boolean automata, because of one classical proof of Kleene theorem. For the same reason, it is a
proposition credited to Schutzenberger that every weighted automaton A is equivalent to a normal-
ized one, provided the empty word is not in the support of the series realized by A, although the
word normalized is not used there. The terminology is even more unfortunate since ”normalized
transducer” has usually an other meaning, and corresponds to transducers whose transitions have
label of the form either (a,1) or (1,b) .

Normalization

It is not true that every automaton is equivalent to a normalized one. This holds only for au-
tomata whose accepted language does not contain the empty word (for classical automata) or
whose realized series gives a zero coefficient to the empty word (for weighted automata). There
exists however a ”normalization procedure” which plays mutatis mutandis the same role as the
standardization and which is best described with the help of the standardization.

Let A be an automaton.
Let B = standardize(transpose(standardize(transpose(A))))
Let i be the (unique) initial state of B and let C be the automaton obtained from B by setting

T(i)=0 — ie setting to 0 the terminal function. Then, C is normalized, we write C = normalize(A)
and it holds:

for classical automata: The language accepted by normalize(A) is equal to the language ac-
cepted by A minus the empty word (if it is accepted by A):

L(normalize(A)) = L(A) 1X∗

(where X is the alphabet.)
for weighted automata: the series realized by normalize(A) is eke to the one realized by A, but

for the coefficient of 1X∗ which is 0:

|normalize(A)| = |A| ⊙ char(X+)

54

(where char(X+) is the characteristic series of X+.
that is, in both cases, normalize(A) accepts or realizes the ’proper’ part of the language ac-

cepted, or of the series realized by, A .

B.1.3 Operations on automata

These families of automata have been considered in order to establish one direction of Kleene’s
theorem, the one that amounts to show that languages accepted (or series realized) by finite
automata are closed under rational operations: sum, product and star.

The sum

The sum is never a problem: the union of two automata is an automaton whose behavior is the
sum of the behaviors of these automata.

remark B.7 If we consider automata with unique initial and/or final state, it would be a bad idea
to realize the sum by merging the initial and/or final states of the two automata in order to recover
automata of the same kind — unless these initial states have no incoming transitions and/or these
final states have no outgoing transitions, that is if we consider standard automata, transpose of
standard automata, or normalized automata.

The concatenation

The product (of accepted language or of realized series) is carried out by the ”concatenation”
of automata — since we keep the word ”product” for the Cartesian product of automata which
realizes the intersection of languages or the Hadamard product of series. For classical automata,
the concatenation of A and B can be described as follows: add an epsilon-transition from every
final state of A to every initial state of B, and suppress the epsilon-transition (if necessary, and
by any closure algorithm). For weighted automata, the ’same’ algorithm is more easily described
by using a standardization step: compute A’ the ’co-standardized’ automaton of A, compute B’
the standardized automaton of B, add an epsilon-transition (with label identity) from the unique
final state of A’ to the unique initial state of B’ and suppress this new transition (if necessary and
by any closure algorithm).

remark B.8 Along the same line as above, if A has a unique final state t and B a unique initial
state j, it would be a bad idea to realize the concatenation of A and B by merging t and j —unless
t has no outgoing transition, that is if A is ’co-standard’ or normalized.

The star

The ”star” of an automaton A, realizing the star of the accepted language or of the realized series,
is even more subtle.

If A is normalized, it is easily carried out by the merging of the initial and final states of A .
Since the series accepted by a normalized automaton is proper, its star is always defined, this is
the advantage of the construction. On the other hand, star(A) is not normalized anymore, and if
this operation is used inside an algorithm that builds an automaton from an expression, it yields
an explosion of the number of states.

If A is standard, with initial state i and initial multiplicity c (usually a scalar), the star of
—A— is defined if, and only if, the c∗ is defined (Sakarovitch, 2003, Prop. III.2.6) — if A has no
epsilon-transition. In this case, star(A) is defined as follows:

1. replace the initial multiplicity by c∗;

2. for every final state t of A, add a new transition from t to i with label T (t) × 1X∗ ;

3. Suppress the epsilon-transition via backward closure.

55

remark B.9 If A is not standard, it would be a bad idea to use the above construction, even
letting aside the multiplicity — although it may have occurred to knowledgeable people.

B.1.4 Conclusion

Normalized and standard automata have been introduced in relation with the proof of Kleene’s
theorem. If one does not want to introduce epsilon-transition, the notion of normalized automata
yields certainly the most straightforward argument. The advantage of standard automata is that
they not only can be used for the same proof, but they also yields an efficient algorithm, both
for the size of the result and for the computational complexity, to transform a rational expression
into an automaton.

It took me some times to get to this conclusion. If I were to rewrite a new edition of Sakarovitch
(2003), I would not mention normalized automata besides exercises and historical notes. All the
theory would be presented with standard automata only.

56

Appendix C

A proposal for an XML format for
automata

This is not a complete description of the Vaucanson proposal for an XML format for automata.
The interested reader will find such a description at the following URL. We just present here few
examples of files, that should give an idea on how these files are built.

<fsmxml xmlns=”http :// vaucanson . l r d e . ep i t a . f r ” ve r s i on=” 1 .0 ”>

<automaton>

<valueType>

5 <semir ing ope ra t i on s=” c l a s s i c a l ” s e t=”B” type=”numerica l ”/>
<monoid genDescr ip=”enum” genKind=” s imple ” genSort=” l e t t e r s ” type=” f r e e ”>

<monGen value=”a”/>
<monGen value=”b”/>

</monoid>

10 </valueType>

<automatonStruct>
<s t a t e s >

<s t a t e id=” s0 ”/>
<s t a t e id=” s1 ”/>

15 <s t a t e id=” s2 ”/>
</s ta t e s >

<t r a n s i t i o n s >

<t r a n s i t i o n source=” s1 ” ta r g e t=” s2 ”>
<l abe l >

20 <monElmt>
<monGen value=”b”/>

</monElmt>
</l abe l >

</t r an s i t i o n >

25 <t r a n s i t i o n source=” s0 ” ta r g e t=” s0 ”>
<l abe l >

<monElmt>
<monGen value=”b”/>

</monElmt>
30 </l abe l >

</t r an s i t i o n >

<t r a n s i t i o n source=” s0 ” ta r g e t=” s1 ”>
<l abe l >

<monElmt>
35 <monGen value=”a”/>

</monElmt>

57

</l abe l >
</t r an s i t i o n >

<t r a n s i t i o n source=” s0 ” ta r g e t=” s0 ”>
40 <l abe l >

<monElmt>
<monGen value=”a”/>

</monElmt>
</l abe l >

45 </t r an s i t i o n >

<t r a n s i t i o n source=” s2 ” ta r g e t=” s2 ”>
<l abe l >

<monElmt>
<monGen value=”b”/>

50 </monElmt>
</l abe l >

</t r an s i t i o n >

<t r a n s i t i o n source=” s2 ” ta r g e t=” s2 ”>
<l abe l >

55 <monElmt>
<monGen value=”a”/>

</monElmt>
</l abe l >

</t r an s i t i o n >

60 < i n i t i a l s t a t e=” s0 ”/>
< f i n a l s t a t e=” s2 ”/>

</ t r a n s i t i o n s >

</automatonStruct>
</automaton>

58

Appendix D

Algorithms specifications

D.1 Vocabulary

In Vaucanson, we use a precise vocabulary to speak about automaton. As is it specific to our
project and some expressions may be not widely used or approved by the automata community,
we choose to define them here.

B Boole’s semiring.

Boolean automaton is a “classical” automaton. Precisely, it is a automaton over a free monoid
which transitions are labeled by letters of an alphabet with multiplicity in B.

automaton with multiplicity in B is an automaton over any kind of monoid (in Vaucanson

we have free monoid and product of free monoids) with its multiplicity in B.

realtime automaton is an automaton over a monoid which transitions are labelled by letters
only (not words).

FMP-transducer is a transducer over a free monoid product.

RW-transducer is a transducer over a series K
′ << K << A∗ >>>>.

D.2 Algorithms applicability in Vaucanson

D.2.1 Algorithms on graph

accessible (accessible.hh)

accessible states (accessible.hh)

coaccessible (accessible.hh)

coaccessible states (accessible.hh)

trim (trim.hh)

useful states (trim.hh)

sub automaton (sub automaton.hh)

is void

59

D.2.2 Algorithms on labeled graphs

are isomorphic (isomorph.hh)

aut to exp (aut to exp.hh)

sum (sum.hh)

thompson of (thompson.hh)

is normalized (normalized.hh)

normalize (normalized.hh)

union of normalized (normalized.hh)

concatenate of normalized (normalized.hh)

star of normalized (normalized.hh)

standard of (standard of.hh)

standardize (standard.hh)

is standard (standard.hh)

union of standard (standard.hh)

concat of standard (standard.hh)

star of standard (standard.hh)

D.2.3 Algorithms on labeled graphs (epsilon-transitions are distinguish)

generalized

closure (closure.hh)

backward closure (closure.hh)

forward closure (closure.hh)

concatenate (concatenate.hh)

cut up (cut up.hh)

D.2.4 Algorithms on graphs labeled on K << A∗ >>

is realtime (realtime decl.hh)

backward realtime (backward realtime.hh)

forward realtime (forward realtime.hh)

realtime (realtime.hh)

60

D.2.5 Algorithms on graphs labeled on series of letter with multiplici-
ties (

∑
(a, Ka∗a))

product (product.hh)

eval (eval.hh)

evaluation (evaluation.hh)

is ambiguous

is deterministic (determinize.hh)

is sequential

quotient (minimization hopcroft.hh)

derived term automaton (derived term automaton.hh)

broken derived term automaton (derived term automaton.hh)

complete (complete.hh)

is complete (complete.hh)

transpose (transpose.hh)

D.2.6 Algorithms on Boolean automata

determinize (determinize.hh)

brzozowski (brzozowski.hh)

berry sethi (berry sethi.hh)

canonical (aci canonical.hh)

complement (complement.hh)

minimization moore (minimization moore.hh)

co minimization moore (minimization moore.hh)

minimization hopcroft (minimization hopcroft.hh)

search (search.hh)

D.2.7 Algorithms on automata with multiplicities in K << A∗ >>

domain

image

extension (extension.hh)

inverse

D.2.8 Algorithms on realtime transducers

evaluation (evaluation.hh)

realtime composition (realtime composition.hh)

realtime to fmp (realtime to fmp.hh)

61

D.2.9 Algorithms on realtime RW-transducers

letter to letter composition (letter to letter composition.hh)

D.2.10 Algorithms on FMP-transducers

domain (projections fmp.hh)

image (projections fmp.hh)

extension (extension.hh)

identity (projections fmp.hh)

evaluation fmp (evaluation fmp.hh)

inverse

insplitting (outsplitting.hh)

outsplitting (outsplitting.hh)

sub normalize (sub normalize.hh)

normalized composition (normalized composition.hh)

fmp to realtime (fmp to realtime.hh)

D.2.11 Algorithms on Boolean FMP-transducers

b composition (normalized composition.hh)

D.2.12 Algorithms on regular expressions over K << A∗ >>

flatten (krat exp flatten.hh)

expand (krat exp expand.hh)

62

Index

#include, 39
cpp, 39
maintainer tools, 36
eval, 11
-o dot identity, 9
aut-to-exp, 15
determinize, 10
display, 9
identity, 9
info, 10
list-automata, 8
power, 20
quotient, 21
vcsn-char-b, 7
vcsn-char-z, 20

A1, 9

B1, 20

directories, 37

iterator
singular, 37

maintainer tools, 36, 63
minimize, 15

N-automaton, 20
normalized, 54

singular, 37
standard, 53
Standard Automaton, 53

T1, 18

63

Bibliography

Sakarovitch, J. (2003). Éléments de théorie des automates.

64

	Contents
	1 Installation
	1.1 Getting Vaucanson
	1.2 Building Vaucanson

	2 The Vaucanson toolkit
	2.1 Boolean automata
	2.1.1 First Contacts
	2.1.2 A first example
	2.1.3 Interactive Definition of Automata
	2.1.4 Rational expressions and Boolean automata
	2.1.5 Token representations
	2.1.6 Available functions

	2.2 Transducers
	2.2.1 Example
	2.2.2 Available functions

	2.3 Z-Automata
	2.3.1 Counting `b's
	2.3.2 Available functions

	3 Vaucanswig
	3.1 Introduction to Vaucanswig
	3.1.1 Introduction
	3.1.2 Usage
	3.1.3 What is provided?
	3.1.4 Adding new algorithms
	3.1.5 Python support

	3.2 Building language interfaces with Vaucanswig
	3.2.1 Background
	3.2.2 General idea
	3.2.3 SWIG modules (MODULES)
	3.2.4 C++ sources specific to the target scripting language (T.S.L.)
	3.2.5 Compilation of the binaries for the target scripting language
	3.2.6 Automake support for Python as a TSL
	3.2.7 Automake support for the TSL-independent code

	3.3 Generating and extending Vaucanswig sources
	3.3.1 The list of Vaucanswig modules
	3.3.2 The list of algorithm families (ALGS in step 2 above)
	3.3.3 The cross-product of contexts and generic code (step 5 above)
	3.3.4 The transparency property
	3.3.5 What is not automatic
	3.3.6 Things not easy to change yet

	4 Vaucanson as a library
	5 Developer Guide
	5.1 Tools
	5.1.1 Maintainer Tools
	5.1.2 Developer Tools

	5.2 Contributing Code
	5.2.1 Directory usage
	5.2.2 Writing Makefiles
	5.2.3 Coding Style
	5.2.4 Use of macros
	5.2.5 File Names
	5.2.6 Type Names
	5.2.7 Variable Names
	5.2.8 Commenting Code
	5.2.9 Writing Algorithms
	5.2.10 Writing Tests
	5.2.11 Mailing Lists

	5.3 Vaucanson I/O
	5.3.1 Introduction
	5.3.2 Dot format
	5.3.3 XML format
	5.3.4 FSM format
	5.3.5 Simple format
	5.3.6 Using input and output
	5.3.7 Examples
	5.3.8 Internal scenario
	5.3.9 Convenience utilities

	A Automaton Library
	A.1 Boolean Automata
	A.1.1 a1
	A.1.2 b1
	A.1.3 div3base2
	A.1.4 double-3-1
	A.1.5 ladybird-6

	A.2 Z-Automata
	A.2.1 b1
	A.2.2 c1

	A.3 Boolean FMP Transducers
	A.3.1 t1
	A.3.2 u1

	B Bits of Automaton Theory
	B.1 On standard and normalized automata
	B.1.1 Standard automata
	B.1.2 Normalized automaton
	B.1.3 Operations on automata
	B.1.4 Conclusion

	C A proposal for an XML format for automata
	D Algorithms specifications
	D.1 Vocabulary
	D.2 Algorithms applicability in Vaucanson
	D.2.1 Algorithms on graph
	D.2.2 Algorithms on labeled graphs
	D.2.3 Algorithms on labeled graphs (epsilon-transitions are distinguish)
	D.2.4 Algorithms on graphs labeled on K<<A*>>
	D.2.5 Algorithms on graphs labeled on series of letter with multiplicities ((a, Ka*a))
	D.2.6 Algorithms on Boolean automata
	D.2.7 Algorithms on automata with multiplicities in K<<A*>>
	D.2.8 Algorithms on realtime transducers
	D.2.9 Algorithms on realtime RW-transducers
	D.2.10 Algorithms on FMP-transducers
	D.2.11 Algorithms on Boolean FMP-transducers
	D.2.12 Algorithms on regular expressions over K<<A*>>

	Index
	Bibliography

