
TAF-Kit’s Documentation
compiled on September 22, 2009, for version 1.3.2

1 Administrativia 3
1.1 Getting Vaucanson . 3
1.2 Licensing . 3
1.3 Building Vaucanson . 3
1.4 Getting in Touch . 3

2 TAF-Kit 4
2.1 TAF-Kit Instances . 4
2.2 A First Contact . 5
2.3 TAF-Kit’s Modus Operandi . 6
2.4 Writing (Weighted) Rational Expressions . 7

2.4.1 Rational operators . 7
2.4.2 Empty word and null series . 7
2.4.3 Weights . 8
2.4.4 Trivial Identities . 8

2.5 Interactive Definition of Automata . 8
2.6 Command I/O options . 10

2.6.1 Specifying alphabets . 10
2.6.2 Input and Output Formats . 11
2.6.3 Specifying writing data . 12

2.7 An example of Z-automaton . 13
2.7.1 Counting ‘b’s . 13

3 Automaton Repository 15
3.1 B automata . 15

3.1.1 ‘a1.xml’ (A1) . 15
3.1.2 ‘b1.xml’ (B1) . 15
3.1.3 ‘div3base2.xml’ . 16
3.1.4 ‘double-3-1.xml’ . 16
3.1.5 ‘ladybird-6.xml’ . 16

3.2 Z automata . 17
3.2.1 ‘b1.xml’ (B1) . 17
3.2.2 ‘c1.xml’ (C1) . 17
3.2.3 ‘d1.xml’ (D1) . 17

3.3 B FMP . 17
3.3.1 ‘quot3base2.xml’ . 17
3.3.2 ‘t1.xml’ . 18
3.3.3 ‘u1.xml’ . 18

1

Introduction

Vaucanson is a free software platform dedicated to the manipulation of finite state automata.
Here, ‘finite state automata’ is to be understood in the broadest sense: Vaucanson supports
weighted automata over a free monoid, and even weighted automata on some non free monoids
(currently only products of free monoids—a.k.a. transducers—are supported).

The platform consists in a couple of components:

The Vaucanson library is a C++ library that implements objects for automata, rational ex-
pressions, as well as algorithms on these objects. This library is generic, in the sense that
it makes it possible to write an algorithm once and apply it to different types of automata.
However this genericity is achieved in a way that should not cause any slowdown at runtime:
because the type of the automaton manipulated is known at compile time, compiling an
algorithm will generate code that is almost as efficient as an algorithm written specifically
for this type of automaton.

TAF-Kit is a command-line interface to the library that allows user to execute Vaucanson’s
algorithms without any knowledge of C++. Because the Vaucanson library needs to know
the type of automata at compile time, the TAF-Kit interface has been instantiated for a
predefined set of common automaton types.

TAF-Kit does not allow to write new algorithms nor to manipulate new types of automata,
but it makes it possible to combine without efforts a large set of algorithms on common
automata types.

A repository of automata that shows examples of automata of various types, and also contains
tools to create families of automata.

Ideally this manual should document all of these components. Presently it mostly documents
TAF-Kit, because that is the more accessible part of Vaucanson.

2

Chapter 1

Administrativia

1.1 Getting Vaucanson

The latest version of the Vaucanson platform can be downloaded from http://vaucanson.lrde.
epita.fr/.

1.2 Licensing

Vaucanson is a free software released under the GNU General Public Licence version 2. If you
are unfamiliar with this license, please read the file ‘COPYING’ (at the root of the source tree) for
details.

1.3 Building Vaucanson

Detailed information is provided in the files ‘INSTALL’, which is generic to all packages using the
GNU Build System, and ‘doc/README.pdf’ which details Vaucanson’s specific build process.
The following installation commands will install Vaucanson in ‘/usr/local/’.

$ cd vaucanson-1.3.2

$./configure

$ make

$ sudo make install

Although we discourage it, you may also use Vaucanson without installing it: you would
have to use -I /full-path-to/vaucanson-1.3.2/include when compiling C++ programs, and
move to directory ‘vaucanson-1.3.2/taf-kit/tests/’ to execute TAF-Kit. (This directory
contains wrapper around the real TAF-Kit programs from ‘taf-kit/src/’ that enable them to
run locally.)

1.4 Getting in Touch

Please send any question or comment to vaucanson@lrde.epita.fr, and report bugs to either our
issue tracker at http://vaucanson.lrde.org/ or by mail to vaucanson-bugs@lrde.epita.fr.

You can subscribe to these mailing lists at https://www.lrde.epita.fr/cgi-bin/mailman/
listinfo/vaucanson and https://www.lrde.epita.fr/cgi-bin/mailman/listinfo/vaucanson-bugs
if you like, but this is not a requirement for sending e-mails.

3

http://vaucanson.lrde.epita.fr/
http://vaucanson.lrde.epita.fr/
vaucanson@lrde.epita.fr
http://vaucanson.lrde.org/
vaucanson-bugs@lrde.epita.fr
https://www.lrde.epita.fr/cgi-bin/mailman/listinfo/vaucanson
https://www.lrde.epita.fr/cgi-bin/mailman/listinfo/vaucanson
https://www.lrde.epita.fr/cgi-bin/mailman/listinfo/vaucanson-bugs

Chapter 2

TAF-Kit

TAF-Kit is a command-line interface to Vaucanson. It is a set of programs that should be
called from the shell and that can be used to chain operations on automata.

2.1 TAF-Kit Instances

In the generic programming paradigm used in the Vaucanson library, the types of the automata
manipulated have to be known at compile time. TAF-Kit has therefore been compiled for several
predefined types of automata. It is actually the same program that is instantiated for different
kinds of alphabets and weights. Here are the names of these instances, and the kind of automata
they represent:

program name automaton type alphabet type weight semiring
vcsn-char-b automata characters 〈B,∨,∧〉
vcsn-int-b automata integers 〈B,∨,∧〉
vcsn-char-z automata characters 〈Z, +,×〉
vcsn-char-zmax automata characters 〈Z, max, +〉
vcsn-char-zmin automata characters 〈Z, min, +〉
vcsn-char-r automata characters 〈R, +,×〉
vcsn-char-char-b automata pairs of characters 〈B,∨,∧〉
vcsn-char-int-b automata pairs of character and integer 〈B,∨,∧〉
vcsn-int-int-b automata pairs of integers 〈B,∨,∧〉
vcsn-char-fmp-b transducers characters 〈B,∨,∧〉
vcsn-char-fmp-z transducers characters 〈Z, +,×〉
vcsn-int-fmp-b transducers integers 〈B,∨,∧〉
vcsn-int-fmp-z transducers integers 〈Z, +,×〉

Many users of automata consider only automata whose transitions are labeled by letters
taken in an alphabet, which we call, roughly speaking, classical automata or Boolean automata.
vcsn-char-b is the TAF-Kit instance they should use. A variant of this program, called
vcsn-int-b, handles Boolean automata whose letters are integers. Other variants such as vcsn-char-char-b,
vcsn-char-int-b, or vcsn-int-int-b, support alphabets of pairs. All of these are called Boolean
automata because each word is associated to a Boolean weight : either the word is accepted and
its weight is true, or it is not and its weight is false.

Vaucanson actually supports automata with multiplicities, where words can be associated to
weights taken in any semiring. For instance vcsn-char-z associates each word to an integer. The
previous table show other semirings that can be used as well.

Vaucanson also supports weighted transducers. These transducers are actually automata
over a product two free monoids. In Vaucanson we call these FMP, for free monoid products.
The above table lists a few TAF-Kit instance for FMP.

4

a b

b

a

b

a

Figure 2.1: The automaton A1, defined over the alphabet A = {a, b} recognizes any word of A?

that contains ab.

2.2 A First Contact

We are about to play with automaton A1 pictured on Figure 2.1. TAF-Kit comes with a set of
predefined automata, and A1 happens to be one of those: it is called ‘a1.xml’. This is a Boolean
automaton whose alphabet consists in two characters {a, b} so will shall use the vcsn-char-b
instance of TAF-Kit.

If you have fully installed Vaucanson (see section 1.3) you should be able to just type any
of the following commands and observe their results. If you only compiled Vaucanson with-
out installing it, you should cd into the ‘vaucanson-1.3.2/taf-kit/tests/’ directory and type
‘./vcsn-char-b’ instead of ‘vcsn-char-b’ for each of the following commands.

The following command will just make sure that TAF-Kit knows about this automaton. It
will display the number of states, transitions, initial states, and final states of A1.

$ vcsn-char-b info a1.xml

States: 3
Transitions: 6
Initial states: 1
Final states: 1

If you have the GraphViz package installed (see ‘doc/README.pdf’ for links) you can also
display that automaton with:

$ vcsn-char-b display a1.xml

The displayed automaton won’t have a layout as pretty as Figure 2.1, but it represents the same
automaton nonetheless.
A1 is a non-deterministic automaton. We could determinize it with the determinize command

of TAF-Kit. As most commands of TAF-Kit, determinize produces its output (an XML file
representing the automaton) on the standard output, so we will want to divert it to a file using a
shell redirection.

$ vcsn-char-b determinize a1.xml > a1det.xml

$ vcsn-char-b info a1det.xml

States: 4
Transitions: 8
Initial states: 1
Final states: 2

The determinized automaton has 4 states and 8 transitions.
Please note that ‘a1det.xml’ is a file that we just created into the current directory while

‘a1.xml’ is a file that is predefined in Vaucanson’s predefined automata repository. We can call
command info on either files using the same syntax because TAF-Kit will look for automata in
both places. The command ‘vcsn-char-b list-automata’ will list all predefined automata for
this instance of TAF-Kit. See also chapter 3 for a presentation of these files.

5

In the pure Unix tradition, we can of course chain commands with pipes. For instance the
above two commands could be rewritten

$ vcsn-char-b determinize a1.xml | vcsn-char-b info -

States: 4
Transitions: 8
Initial states: 1
Final states: 2

where ‘-’ stands for ‘read from standard input ’.
TAF-Kit actually supports a more efficient way of chaining commands: the internal pipe. It’s

called internal pipe because the pipe logic is taken care of by TAF-Kit himself, but actually it is
not using a Unix pipe at all: the commands are simply serialized in the same process, using the
automata object created by the previous one. It is more efficient because the automaton does not
have to be converted into XML for output, and then parsed back as input of the next command
in the chain. Here is how the above command would look using an internal pipe; notice how the
‘|’ symbol is protected from its evaluation by the shell.

$ vcsn-char-b determinize a1.xml \| info -

States: 4
Transitions: 8
Initial states: 1
Final states: 2

In the above command, ‘-’ does not designate the standard input, it denotes the result of the
previous command.

2.3 TAF-Kit’s Modus Operandi

All TAF-Kit instances work identically. They just differ on the type of automata they handle,
and may offer different algorithms because not all algorithms work on any automata type.

Any time TAF-Kit is run, it breaks its command line into command names and arguments.

vcsn-char-b︸ ︷︷ ︸
TAF-Kit instance

determinize︸ ︷︷ ︸
name

a1.xml︸ ︷︷ ︸
arg.︸ ︷︷ ︸

command 1

\| info︸ ︷︷ ︸
name

-︸︷︷︸
arg.︸ ︷︷ ︸

command 2

The internal pipe, ‘\|’, is used to separate commands. A command start with a name, is
can be followed by several arguments (although only one is used in the above example). These
arguments can be very different depending on the command. The far we have used filenames as
well as ‘-’ (to designate either the standard input or the result of the previous command). Some
commands will also accept plain text representing for instance a word or a rational expression.

All commands will also accept some options. There are options to define what the alphabet
is, options to define the types to use for input and output, even options to fine-tune how some
symbols will be printed. We shall get back to these options in ??.

For each command, TAF-Kit will

1. parse the options

2. parse all expected arguments (using indications that may have been given as options)

3. execute the algorithm

4. print the result (in a format that can be controlled using options)

When commands are chained internally using ‘\|’ and ‘-’, the parsing steps and printing steps
are of course omitted.

6

2.4 Writing (Weighted) Rational Expressions

2.4.1 Rational operators

Any word can be used as a rational expression. Additionally the following operators can be used
to combine rational expressions.

e* Kleene star
e1e2 implicit concatenation
e1.e2 explicit concatenation
e1+e2 disjunction
(e) grouping

For instance, on the alphabet A = {a, b}, the language denoted by the rational expression
‘(a+b)*ab(a+b)*’ contains all words that contain ‘ab’.

The Vaucanson library always needs to know on which alphabet a rational expression is
defined in order to parse it. This alphabet can be indicated using option ‘--alphabet=ab’ or the
shorter form ‘-aab’ (see subsection 2.6.1 for more details).

For instance, here is how to create an automaton that recognizes the same language as
‘(a+b)*ab(a+b)*’, and make sure this automaton is equivalent to the automaton A1 of Figure 2.1.

$ vcsn-char-b exp-to-aut -aab "(a+b)*ab(a+b)*" > aut.xml

$ vcsn-char-b are-equivalent -v aut.xml a1.xml

Automata are equivalent

The ‘-v’ is used to request a plain English output from are-equivalent. Without it, TAF-Kit
would just set its status code. (See 2.6.2 for more details.)

Caveat: because Vaucanson builds rational expressions on top of words, the Kleene star
operator and the weights (introduced in subsection 2.4.3) apply to words and not letters as it is
usually the case in other application. For instance ‘ab*’ is the same rational expression as ‘(ab)*’
for Vaucanson, but it is different from ‘a.b*’ or ‘a.(b*)’.

2.4.2 Empty word and null series

The default representation of the empty word (identity of the monoid) is ‘1’ when using characters
or pair alphabets. For instance let us try the command expand, that distributes concatenations
over disjunctions:

$ vcsn-char-b expand -aab ’(a+1)(1+b)’

a+ab+b+1

Of course if we use ‘1’ as one character in the alphabet, the same symbol cannot be used for
representing the empty word. Vaucanson actually choose the first available representation of the
empty word from the following list of candidate symbols: ‘1’, ‘e’, ‘ e’, or ‘eps’.

$ vcsn-char-b expand -a01 ’(0+e)(e+1)’

0+01+1+e
$ vcsn-char-b expand -a1e ’(1+ e)(e+e)’

1+1e+e+_e

For integer alphabets, the empty word is of course always ‘e’.
Similarly the symbol used to represent the null series defaults to the first representation from

the following list that is compatible with the alphabet: ‘0’, ‘z’, ‘ z’, or ‘zero’.
Section 2.6.3 shows how you can actually specify you own representation for these symbols

7

2.4.3 Weights

Weights are written in braces as in ‘{3}’.
For instance the automaton C1 from subsection 3.2.2 corresponds to the (weighted) rational

expression ‘(a+b)*.b.({2}a+{2}b)*’.

$ vcsn-char-z aut-to-exp c1.xml

(a+b)*.b.({2} a+{2} b)*

In Vaucanson, and even if this does not appear yet in the TAF-Kit instances, the weight
semirings are not necessarily commutative: the simple case where this will occur is when an
”FMP transducer” will be transformed into an automaton with weights in the semiring of rational
languages over the output alphabet.

For this reason, the multiplication by a weight on the left and on the right are two distinct
operations in the building of weighted rational expressions. For instance, ‘{3}({2}a+b)’ and
‘({2}a+b){3}’ are two distinct expressions even if they denote the same polynomial: ‘{6}a +
{3}b’, in the same way as ‘{y}({x}a+b)’ and ‘({x}a+b){y}’ are distinct expressions, which denote
distinct polynomials: ‘{yx}a + {y}b’ and ‘{xy}a + {y}b’ respectively.

2.4.4 Trivial Identities

Anytime a weighted rational expression is constructed inside Vaucanson, the following rewritings,
called trivial identities, are automatically applied.

Here E stands for any weighted rational expression, w is any word, and k and h are weights.
In these notations it should also be obvious that 0 and 1 designate the identity of the monoid
(empty word) and null series, while {0} and {1} designate the zero and identity of the semiring
(weights). Any subexpression of a form listed to the left of a ‘⇒’ is rewritten as indicated on the
right.

E + 0 = 0 + E ⇒ E E.1 = 1.E ⇒ E {k}({h}E)⇒ {kh}E
E.0 = 0.E ⇒ 0 {1}E = E{1} ⇒ E (E{k}){h} ⇒ E{kh}

0? ⇒ 1 1{k} ⇒ {k}1 ({k}E){h} ⇒ {k}(E{h})
{k}0 = 0{k} ⇒ 0 ({k}1).E ⇒ {k}E w{k} ⇒ {k}w
{0}E = E{0} ⇒ 0 E.({k}1)⇒ E{k}

These rewriting mean that it is impossible for Vaucanson to emit a rational expression such
as ‘({3}(0(ab)))*{4}’. This expression is by construction equal to ‘{4}1’. We can verify this
using identity-exp:

$ vcsn-char-z identity-exp --alphabet=ab "({3}(0(ab)))*{4}"
{4} 1

the command identity-exp does not apply any algorithm on the rational expression. Its only
purpose is to read and write the rational expression using any I/O option supplied on the command-
line. The trivial identities are rewritten while reading the expression.

2.5 Interactive Definition of Automata

The TAF-Kit command edit-automaton provides a textual interface to define automata inter-
actively. The commands takes the filename of the automata to define or modify in argument. If
the files does not yet exist, you should specify the alphabet of your automaton on the command
line (using ‘--alphabet=’ or ‘-a’ as will any other command), and the file will be created when

8

you exit the editor. If the file does exist, the alphabet will be read from the file along with the
automaton itself, and the file will be overwritten upon exit.

The interface is based on a menu of choices:

$ vcsn-char-b edit-automaton --alphabet=ab test.xml

Automaton description:
States: (none)
Initial states: (none)
Final states: (none)

Transitions: (none)

Please choose your action:
1. Add states.
2. Delete a state.

3. Add a transition.
4. Delete a transition.

5. Set a state to be initial.
6. Set a state not to be initial.

7. Set a state to be final.
8. Set a state not to be final.

9. Display the automaton in Dotty.

10. Exit.

Your choice [1-10]:

If you enter 1, you will then be prompted for the number of states to add, say 1 again. The state
0 was created. To make it initial select 5, and:

Your choice [1-10]: 5

For state: 0

Likewise to make it final, using choice 7. Finally, let’s add a transition:

Your choice [1-10]: 3

Add a transition from state: 0

To state: 0

Labeled by the expression: a+b

The automaton is generalized, that is to say, rational expressions are valid labels.
On top of the interactive menu, the current definition of the automaton is reported in a textual

yet readable form:

Automaton description:
States: 0
Initial states: 0
Final states: 0

Transitions:
1: From 0 to 0 labeled by ({1} a)+({1} b)

9

States are numbered from 0, but transitions numbers start at 1. Also, note that weights are
reported, although only 1 is valid for Boolean automata.

Finally, hit 10 to save the resulting automaton in the file ‘test.xml’.

2.6 Command I/O options

As we said in section 2.3, each TAF-Kit command has to read its input and write its output. In
this section we only cover the options that may modify the Input/Output behaviors of commands.

long option short purpose documentation
‘--alphabet’ ‘-a’ specify the alphabet of automata or rational ex-

pressions
§2.6.1

‘--alphabet1’ ‘-a’ specify the first alphabet on transducers §2.6.1
‘--alphabet2’ ‘-A’ specify the second alphabet on transducers §2.6.1
‘--input’ ‘-i’ select input format for automata and rational ex-

pressions
§2.6.2

‘--output’ ‘-o’ select output format for automata and rational
expressions

§2.6.2

‘--parser’ ‘-p’ fine-tune the symbols used for input and output
of rational expressions and automata

§2.6.3

The full list of options can be obtained with vcsn-char-b --help.

2.6.1 Specifying alphabets

When TAF-Kit reads an XML file, there is no need to specify any other information besides
the name of the file. For instance when we read ‘a1.xml’ in section 2.2 and determinized this
automaton, we did not have to tell TAF-Kit that the alphabet was A = {a, b}. The XML file is
self-contained and already contains this information.

Here is a situation where specifying an alphabet is mandatory:

$ vcsn-char-b exp-to-aut aba+a

Error: alphabet should be explicitly defined using --alphabet

exp-to-aut is a command that takes a rational expression and converts it into an automaton.
To be able to parse the rational expression, Vaucanson needs to know what alphabet it its using.
Here there is no ways it can guess whether the alphabet is A = {a, b} and the ‘+’ is a rational
operator or if it is A = {a, b, +} and the ‘+’ is just a letter. Specifying the alphabet can be done
using ‘--alphabet=ab’ for instance.

$ vcsn-char-b exp-to-aut --alphabet=ab aba+a > aut.xml

In practice, the long ‘--alphabet=’ option can be tedious to type and we will often prefer its
short equivalent ‘-a’:

$ vcsn-char-b exp-to-aut -aab aba+a > aut.xml

Character alphabets For characters alphabets (as with the ‘char’ TAF-Kit instances used
in the above examples), the letters of the alphabets can be arbitrary ASCII characters, and need
just to be listed after the ‘--alphabet=’ or ‘-a’ option.

When specifying characters alphabets, the characters ‘ ’ (space), ‘"’, ‘(’, ‘)’, ‘’’, ‘=’, and
‘\’, have to be escaped with a backslash. For instance the following command will create an
automaton that recognize numbers of the form ‘12,456,789’, where a comma must be used as
thousand separator: note how the comma must be escaped in the alphabet

10

$ d="(0+1+2+3+4+5+6+7+8+9)"

$ vcsn-char-b exp-to-aut -a’0123456789\,’ "($d+$d$d+$ddd)(,dd$d)*" > numbers.xml

Some character alphabets are predefined. These are:

‘letters’ The lower case letters {a, b, . . . , z}.
‘alpha’ The upper and lower case letters {a, b, . . . , z, A, B, . . . , Z}.
‘digit’ All digits {0, 1, . . . , 9}.
‘ascii’ All ASCII characters.

This means that ‘-aletters’ is an abbreviation for ‘-aabcdefghijklmnopqrstuvwxyz’. You can
always get the above list of predefined alphabet by typing ‘vcsn-char-b --help’.

Integer alphabets Using integers alphabets, letters must be specified as signed integer (they
are represented by the int C++ type), and should be separated by commas. For instance the
following commands will construct an automaton that reads any sequence of coins of 1, 2, 5, 10,
20, or 50 cents, as long as the values are increasing.

$ vcsn-int-b exp-to-aut -a1,2,5,10,20,50 ’1*2*5*10*20*50*’ > coins.xml

Pair alphabets Pair alphabets should be specified using parentheses and commans to form
pairs. For instance:

$ vcsn-char-int-b exp-to-aut -a’(a,1)(b,2)(a,-1)’ ’(a,-1)(a,1)+(b,2)’ > misc.xml

Transducer alphabets Free monoid products have two alphabets, one for each monoid. The
instances of TAF-Kit that handle transducers consequently support two options ‘--alphabet1=’
and ‘--alphabet2=’, that can be abbreviated respectively ‘-a’ and ‘-A’.

2.6.2 Input and Output Formats

TAF-Kit can input and output several kind of objects: automata, rational expressions, words,
weights and Boolean results.

words are always read as strings given on the command line, and written to standard output.

automata are read from a file whose filename specified on the command line, and output on
standard output. Vaucanson can read automata in two formats: FSMXML (the default),
or the textual format of FSM. It can also write automata in these formats, as well as in the
‘dot’ format that can be used for graphical output.

rational expression are by default read as strings given on the command line, and output as
strings on standard output. Alternatively rational expression can be read from an FSMXML
file whose filename is given on the command line, and output in FSMXML as well.

weight results (such as the result of the evaluation of a word on an automaton) are simply
output as strings on the standard output.

Boolean results (such as the result of asking whether an automaton is empty) are returned
using the status code of the TAF-Kit instance, so that these commands can be used as
conditions in shell scripts.

11

Changing the format for automata and rational expressions The format used to input
automata and rational expressions can be controlled using the ‘--input=’ and ‘--output=’ options
(or ‘-i’, ‘-o’ for short). These options control the I/O formats for both automata and rational
expressions at once. So for instance using ‘-ixml’ will ask TAF-Kit to read any automaton or
rational expression using the FSMXML format. Because rational expression are not supported in
as much formats as automata, they will be read or written as text string if an unsupported format
is requested.

values for ‘-i’ or ‘-o’ format for automata format for rational expressions
(none) FSMXML text string
‘xml’ FSMXML FSMXML
‘fsm’ FSM text string
‘dot’ (for output only) dot text string

For instance to convert an automaton from XML to dot1, we would use:

$ vcsn-char-b identity -odot aut.xml > aut.dot

Verbose Boolean results As said above, boolean results are returned using the program’s
status code using the Unix convention (that is 0 for true and any other value for false). The shell
makes this value available in the ‘$?’ variable. The TAF-Kit option ‘--verbose’ or ‘-v’ can be
used to request an English interpretation of this value.

$ vcsn-int-b is-empty coins.xml

$ echo $?

1
$ vcsn-int-b is-empty -v coins.xml

Input is not empty

2.6.3 Specifying writing data

Section 2.4.2 showed how the empty word and null series can have different representations de-
pending on the alphabet. Vaucanson actually allows other symbols used in rational expression
to be changed to arbitrary strings.

Here is the list of named symbols with their meaning and default values:

symbol meaning default value(s)
‘OPAR’ group start ‘(’
‘CPAR’ group end ‘)’
‘PLUS’ disjunction (additive law of the series) ‘+’
‘TIMES’ concatenation (multiplicative law of the series) ‘.’
‘STAR’ Kleene star ‘*’
‘ONE’ empty word (identity of the monoid) ‘1’,‘e’,‘ e’,‘eps’
‘ZERO’ null series ‘0’,‘z’,‘ z’,‘zero’
‘OWEIGHT’ weight start ‘{’
‘CWEIGHT’ weight end ‘}’
‘SPACE’ space characters (to ignore) ‘ ’

The ‘--parser=’ can be used to change the value of the above tokens. Each of them must be
defined as a non-empty string. TAF-Kit will check that these tokens do not collide. For instance
to use {(,)} as alphabet, we should obviously rename the ‘OPAR’ and ‘CPAR’ tokens.

The following command creates an automaton that recognizes the words ‘()’, ‘(())’, ‘(()())’,
‘(()()())’, etc.

1dot files can be processed using the GraphViz package

12

b

b

a

b

a

Figure 2.2: B1: When defined over the Boolean semiring 〈B,∨,∧〉, B1 accepts words with at least
one b. When defined over the integer semiring 〈Z, +,×〉, B1 counts the number of b in a word.

$ vcsn-char-b -a’’ --parser=’OPAR=[CPAR=]’ exp-to-aut ’([()]*)’ >parens.xml

The values of these symbols, which we call the writing data, are stored in the XML file, so
there is no need to specify them again when working from a file.

$ vcsn-char-b aut-to-exp parens.xml

(.(.[).(]*.).)+(.)
$ vcsn-char-b eval parens.xml ’(()())’

1

Overwriting the writing data When TAF-Kit reads an automaton or a rational expression
from an XML file (that contains writing data) or from the internal pipe, it does not need additional
information to read its input. However the ‘--parser=’ option can still be used to modify the way
the object will be output.

Here is an example where we create a rational expression over the alphabet {(,)} using ‘[’
and ‘]’ for grouping, and store it into the file ‘p.xml’. We can then convert this file back into a
string using either the original writing data that were stored in the file, or overwriting these data
with different ones (here using ‘<’ and ‘>’ for grouping).

$ vcsn-char-b -a’’ --parser=’OPAR=[CPAR=]’ identity-exp -oxml ’([()]*)’ >p.xml

$ vcsn-char-b identity-exp -ixml p.xml

(.[(.)]*.)
$ vcsn-char-b --parser=’OPAR=< CPAR=>’ identity-exp -ixml p.xml

(.<(.)>*.)

2.7 An example of Z-automaton

This part shows some uses of the program vcsn-char-z.

2.7.1 Counting ‘b’s

Let’s consider B1 for Figure 2.2: a Z-automaton, i.e. an automaton whose label’s weights are in
Z. This time the evaluation of the word w by the automaton B1 will produce a number, rather
than simply accept or reject w. For instance let’s evaluate ‘abbb’ and ‘abab’:

$ vcsn-char-z eval b1.xml abbb

3
$ vcsn-char-z eval b1.xml abab

2

Indeed, B1 counts the number of ‘b’s.

13

Power

Now let’s consider the Bn
1 , where

Bn
1 =

n∏
i=1

B1, n > 0

This is implemented by the power function:

$ vcsn-char-z power b1.xml 4 > b4.xml

The file ‘b4.xml’ now contains the automaton B4
1. Let’s check that the evaluation of the words

‘abab’ and ‘bbab’ by B4
1 gives the fourth power of their evaluation by B1:

$ vcsn-char-z eval b4.xml abbb

81
$ vcsn-char-z eval b4.xml abab

16

Quotient

Successive products of an automaton create a lot of new states and transitions.

$ vcsn-char-z info b1.xml

States: 2
Transitions: 5
Initial states: 1
Final states: 1
$ vcsn-char-z info b4.xml

States: 16
Transitions: 97
Initial states: 1
Final states: 1

One way of reducing the size of our automaton is to use the quotient algorithm.

$ vcsn-char-z quotient b4.xml \| vcsn-char-z info -

States: 5
Transitions: 15
Initial states: 1
Final states: 1

14

Chapter 3

Automaton Repository

Vaucanson comes with a set of interesting automata that can be used to toy with TAF-Kit
(chapter 2) for instance. In this chapter, we present each one of these automata.

3.1 B automata

The following automata are predefined files that can be loaded with vcsn-char-b.

3.1.1 ‘a1.xml’ (A1)

a b

b

a

b

a

The automaton A1, defined over the alphabet A = {a, b}, recognizes any word of A? that
contains ab.

3.1.2 ‘b1.xml’ (B1)

b

b

a

b

a

The Boolean automaton B1 accepts words with at least one b.
See also subsection 3.2.1 where B1 is defined over 〈Z, +,×〉.

15

3.1.3 ‘div3base2.xml’

0 1 20

1 0

1

01

This deterministic automaton is defined on the alphabet A = {0, 1} and recognizes the base-2
representations of all the integers that are divisible by 3.

The source code distribution of Vaucanson actually comes with a programs called divkbaseb
that can generate a divisor by any integer k in any base b. The program is located in ‘data/automata/char-b/divkbaseb’
in the source tree, and take k and b as arguments.

In the general case the binary digits should be read from left to right. In the case of ‘div3base2.xml’
the digits can also be read from right to left because the automaton is symmetric.

3.1.4 ‘double-3-1.xml’

0

1

2

a

a

a

b

b

b

This deterministic automaton has three states organized as a double ring. It can read a in one
direction and b in the other direction.

The program data/automata/char-b/double ring can be used to generate a ring of any
number of states. It takes that number of states as first argument, and the list of initial states in
the remaining arguments. The above example uses 3 states and state 1 as initial state, hence the
name ‘double-3-1.xml’.

3.1.5 ‘ladybird-6.xml’

a

a

a

a

a

a

b, cb, c

b, c

b, c b, c

c
c

c

c
c

A non-deterministic automaton of 6 states whose determinized version (using the powerset
construction) has 26 states. We call it ladybird simply because its drawing looks like a Coccinella.

The data/automata/char-b/ladybird program can be used to produce ladybirds of any size,
just pass the number of states n as first argument. We like to use ladybirds for benchmarking
because their determinization always produce the worst case with 2n states.

16

3.2 Z automata

The following automata are predefined files that can be loaded with vcsn-char-z.

3.2.1 ‘b1.xml’ (B1)

b

b

a

b

a

This automaton has the same structure as the one from subsection 3.1.2 but a different type.
When defined over the 〈Z, +,×〉 semiring, this automaton is counting the number of b in a word.

3.2.2 ‘c1.xml’ (C1)

1

0 + 1 {2}0 + {2}1

This automaton converts a binary representation into an integer. For instance the word
‘101010’ is associated to the weight 42. Note that the alphabet is A = {0, 1} while the weights
are taken in Z. Because weights are always specified in braces, there is no confusion possible.

3.2.3 ‘d1.xml’ (D1)

a + {−1}b

a + b a + b

This automaton defined on the alphabet A = {a, b} computes the difference between the
number of a and b in a word.

3.3 B FMP

The following transducers are predefined files that can be loaded with vcsn-char-fmp-b.

3.3.1 ‘quot3base2.xml’

0 1 2(0, 0) (1, 1)

(1, 0)

(1, 1)

(0, 0)

(0, 1)

A transducer computing the quotient by 3 of a binary number, read from left to right.
The program ‘data/automata/char-fmp-b/quotkbaseb’, in the source tree, can be used to

construct such a divisor by k in any base b.

17

3.3.2 ‘t1.xml’

(1, y)

(a, 1)

(1, x)

(b, 1)

3.3.3 ‘u1.xml’

(x, 1)

(1, v)

(y, 1)

(1, u)

18

	Administrativia
	Getting Vaucanson
	Licensing
	Building Vaucanson
	Getting in Touch

	TAF-Kit
	TAF-Kit Instances
	A First Contact
	TAF-Kit's Modus Operandi
	Writing (Weighted) Rational Expressions
	Rational operators
	Empty word and null series
	Weights
	Trivial Identities

	Interactive Definition of Automata
	Command I/O options
	Specifying alphabets
	Input and Output Formats
	Specifying writing data

	An example of Z-automaton
	Counting `b's

	Automaton Repository
	B automata
	`a1.xml' (A1)
	`b1.xml' (B1)
	`div3base2.xml'
	`double-3-1.xml'
	`ladybird-6.xml'

	Z automata
	`b1.xml' (B1)
	`c1.xml' (C1)
	`d1.xml' (D1)

	B FMP
	`quot3base2.xml'
	`t1.xml'
	`u1.xml'

