
Vaucanson’s Developer’s Guide

This document does not target users of the Vaucanson library. It is meant for developers and those
who wish to contribute code to Vaucanson.

Contents

Tools

Maintainer Tools

Note about some developer tools

Valgrind and the C++ standard library
Using gdb or valgrind on TAF-Kit
Debugging STL

Version control

Access to the Git repository

Layout of the Git repository

Git Workflow

Check list for feature branches

Development

Faster builds

Fast machine, plenty of memory
Local disk
Non-optimized build
Parallel make
ccache
distcc

Making a release

Template arguments naming convention

Macros to handle with care

How can I choose a specific graph implementation?

Tools

Maintainer Tools

We use a number of tools during development which we call maintainer tools, because they are not
required by the end user. You should have these tools installed on your build machine in order to build
a fresh checkout of the Vaucanson repository.

1

Autoconf, Automake, and Libtool Generate the GNU Build System.

Doxygen Is used to build a reference documentation from comments in the source code.

rst2latex Is used to convert reStructuredText into LaTex. This document is written using reStruc-
turedText. rst2latex is often distributed in a package called python-docutils or py-docutils.

Note about some developer tools

Some tools help to improve the code. Use them liberally!

Valgrind and the C++ standard library

Valgrind help catching incorrect memory usage: double deletes, memory leaks, uninitialized memory
readings, and so forth. Usually, to optimize speed, implementations of the C++ library don’t free all
the memory they allocated unless asked. You should export GLIBCXX_FORCE_NEW=1 to force GCC’s
C++ library to free allocated structure.

See the C++ Library FAQ for help for details.
To check memory leaks use valgrind --leak-check=yes. To get more details, add --num-callers=20

--leak-resolution=high --show-reachable=yes.

Using gdb or valgrind on TAF-Kit

The executables that are built in taf-kit/src/ are libtool scripts that call the true executables
(usually hidden under taf-kit/src/.libs/). You cannot run gdb directly on these scripts, you should
always ask libtool to do it for you:

% cd taf-kit/src
% export VCSN_DATA_PATH=$PWD/../../data
% libtool --mode=execute gdb ./vcsn-int-b
(gdb) run determinize x.xml
...

It’s often more convenient to run the scripts from taf-kit/tests because they export VCSN_DATA_PATH
and run the corresponding executable from taf-kit/src for you. In that case you have to use the
PREVCSN environment variable to specify these libtool options:

% cd taf-kit/tests
% PREVCSN=’libtool --mode=execute gdb’ ./vcsn-int-b
(gdb) run determinize x.xml
...

The same commands can of course be used to run other tools like Valgrind. Here is how to run
TAF-Kit under Valgrind and attach a debugger on the first error:

% cd taf-kit/tests
% PREVCSN=’libtool --mode=execute valgrind --db-attach’ ./vcsn-int-b

A note for Darwin users: because your system comes with another tool called libtool, GNU libtool
is usually installed as glibtool. Alternatively, you may want to use the copy of libtool output by
configure at the root of Vaucanson’s build tree.

2

http://gcc.gnu.org/onlinedocs/libstdc++/faq/#4_4_leak

Debugging STL

The GNU standard C++ library comes with some useful debugging features. Just add -D_GLIBCXX_DEBUG
to your CPPFLAGS when compiling Vaucanson.

You are likely to encounter issues with singular iterators. It refers to default-constructed iterators,
which is not the same thing as being the end() of a given container. They are write-only according to
the STL, and copying them is not allowed.

As a result, the following code is incorrect:

std::vector<std::list<int>::iterator> is(10);

This is because this vector constructor builds a single default object (here a default std::list<int>::iterator,
then copies it ten times, which is (ten times) forbidden. As there is no clear means to rewrite the code
to avoid this violation, you might want to use end() iterators, which can be used in comparisons, can
be copied, but cannot be dereferenced:

std::vector<std::list<int>::iterator> is(10, std::list<int>().end());

Version control

Access to the Git repository

The master Git repository is on git.lrde.epita.fr. It can be cloned anonymously using:

git clone git://git.lrde.epita.fr/vaucanson

For write access, send your public SSH key to adl@lrde.epita.fr, then use the following command
instead:

git clone git@git.lrde.epita.fr:vaucanson

Layout of the Git repository

The repository contains the following important branches

• branch master holds the latest release as well as small bugfixes and straightforward patches. It
should be a stable branch.

• the exp/* branches contain any development that need to mature before inclusion in a release.
Use one branch per feature. Any experimental branch of development should be based off master
or another experimental branch.

• branch hive merges all the above experimental branches. It should contain only merge commits.
Never base another branch off hive.

Git Workflow

The suggested workflow bellow applies only when you are developing a new feature, or anything that
will take time. Any straightforward patch (like a quick bug fix) can of course be applied directly to
master. Other work should be done on an experimental branch, then merged into hive. Once they
have matured, experimental branches will eventually be merged into master when preparing a release.

• Initially, you should work locally. There is no need to show your early developments (unless you
seek comments). By working locally it’s easier for you to reorganize your work or even start over,
and you often need to do that in the early stages of development.

3

mailto:adl@lrde.epita.fr

– Create a branch on your local clone with:
git checkout -b exp/my-new-feature origin/master

You may need to base your branch off another experimental branch if there is some depen-
dency, but please never base your branch off hive, it would make it difficult to merge your
feature in a release without merging in all the other features that are in hive.

– Work on that branch locally until you have something reasonably stable that can be made
public. Occasionally, update your branch to the latest upstream changes with:

git pull --rebase

(This will fetch all recent revisions from the server, and rebase your branch against the new
version of origin/master.)

• Once you are ready to publish your branch, review your changes with git log, gitk, or any other
interface. If needed, cleanup and reorder your history using git rebase -i origin/master.

– Push the branch with:
git push origin exp/my-new-feature

If you want to publish your branch under a different name, the syntax is:
git push origin private-name:exp/public-name

Please push only one branch at a time. There is a script on the server that post a news
for each push, and it will behave strangely if you push two branches that share some new
patches.

– Your local branch is still tracking origin/master, but now that a copy of that branch is
public and that other people can write to it, it is probably more sensible to change your local
branch to track origin/exp/my-new-feature:

git config branch.exp/my-new-feature.remote origin
git config branch.exp/my-new-feature.merge refs/heads/exp/my-new-feature

• You may now continue to work locally in your exp/my-new-feature branch to prepare another
set of patches. At any point you may run git pull --rebase to rebase your work on top of any
recent changes pushed to origin/exp/my-new-feature.

It is better to avoid repeated merges when working on a feature branch, but if for instance you
absolutely need to retrieve some fixes from master, you can run:

git merge origin/master

You may also want to perform such a merge after a release (that does not include your branch).

• You can push any new development made into your branch using the same syntax as above:

git push origin exp/public-name

Again, please do not use git push origin because that will push all your local branches that
match a branch on the server, and we only want to push one branch at a time.

• After you have pushed new patches to a public branch, it is often a good idea to update the hive.
(It’s obviously a bad idea if that branch is known to be in a sorry state.)

:: git checkout -b hive origin/hive git merge exp/my-new-feature git push origin hive

Git can merge several branches at once, so you can also write git merge exp/feature1 exp/feature2
exp/feature3. This will result in one merge commit (with 4 parents) instead of three separate
merge commits.

The hive branch should contain only merge commits. So if at any time you have to fix a bug on
hive, please fix it in the appropriate exp/* branch and merge it back into hive.

4

• When preparing a release we will want to pick some of the mature exp/* branches and merge
them into master. (This is why you should never fix hive directly.) Once a branch has been
merged into master, it can be erased.

Check list for feature branches

The experimental branches (exp/* and hive) obviously do not need to be perfect. Ideally we would
like any public branch to compile and pass all its tests. Please keep your broken branches on your local
repositories. As time goes we expect each developed branch to mature and improve in quality.

Here is a non-exhaustive list of items you should consider to assess the maturity of a branch.

• Does the branch compiles and passes tests?

• Is the feature documented? This includes the Doxygen documentation (any public C++ interface
should be documented), the LaTeX documentation (for instance new TAF-Kit features should be
documented), any README file around, but also comments in the code.

Documentation does not concern only new feature. When working on an existing feature you
should probably also update and maybe improve its documentation.

• When documenting an algorithm, it is important to

– Define precisely what is being computed.
For instance the Doxygen documentation for the function realtime(), that converts an
automaton to a realtime automaton, is a good place to define what a realtime automaton is.
Other places that use realtime automata should point to this definition.

– Explain how the computation is performed if that is easy, or refer to a place (preferably give
the full references to a paper) where we can learn how the algorithm works.
Note that citing a paper does not exempt you from documenting your work in other ways.
The reader should not have to read a paper to understand what a function does and how to
use it.

– Explicit any assumptions on the input (preconditions).

• It’s often a good idea to document the algorithm before actually implementing it.

• Testing is important, and difficult. One error students often do is to write a small program to
test an algorithm on a simple case, and then commit the algorithm without their test program.
This is bad in many ways:

– The test is not automated (in the make check sense), so your are wasting some
time testing things by hand.

– There is only one test, and it is unlikely to cover a large class of inputs. Please
consider basic automata as well as extreme cases that often cause problems (two ex-
amples are the empty automata, and automata whose initial or final functions have
a nonempty support). Please also check how your algorithm behave on erroneous
input (if you have the right preconditions that should not be a problem).

– The test is not public, so other people may not warn you that the test is so weak
that it means almost nothing. An example of weak test is running an algorithm on
an automaton without checking the output in any way: the only thing you learn
here is that the algorithm is not broken to the point that it would segfault the given
automaton. (There many tests like this in Vaucanson, please don’t add any more.)

5

– Because the test is not public, other people can break the algorithm without notic-
ing. This has occurred many times in the history of Vaucanson, with algorithms
that where either not tested, or had very weak tests. You should consider testing
as a kind of defensive programming: you want to add as much tests as needed to
guarantee, no only that your algorithm works perfectly in all situations, but also
to ensure that this will still be true in the future, regardless of how Vaucanson is
changed.

– It’s a good idea to test a generic algorithm in different contexts, but do not go
overboard. There is often little point in testing an algorithm with different kinds of
letters (characters, pairs, integers...), unless that algorithm deals with the properties
of these letters.

– It’s often a good idea to write some tests before even writing the new feature, so
that you know what your goal is.

– For serious bug fixes, you should write a test case that reproduce the bug before
attempting to fix that bug. Then commit the test case along with the fix to ensure
that this bug will never have to be fixed again.

• If your branch changes the name of a symbol, use git grep to make sure you caught all occur-
rences.

• Please remove any cruft like disabled code that has been commented out or files that are no longer
used. Keeping a trace of this history is the job of Git.

Development

Faster builds

Vaucanson takes a long time to build, but the time can be reduced dramatically with a few simple
measures.

Fast machine, plenty of memory

Use a fast machine with plenty of memory. 2GB seems to be a minimum for an optimized build; any
less causes severe swapping.

Local disk

Build on a local disk, not in an NFS mount.

Non-optimized build

Use:

./configure ... CCFLAGS="-g -ggdb -Wall" CXXFLAGS="-g -ggdb -Wall"

N.B. The variables go at the end of the line.

Parallel make

If you have N CPU cores, use make -jN to build up to N targets at the same time. Under Linux you
can find the number of cores by looking at /proc/cpuinfo.

6

ccache

At the time of writing (Vaucanson 1.2.95a) running make CC=’ccache gcc’ CXX=’ccache g++’ re-
quires 100MB of cache, and running make CC=’ccache gcc’ CXX=’ccache g++’ check requires 500MB
of cache.

However if you are switching between multiple GIT branches (and you should), you will may want
to multiply these values by your number of branches. A cache size of 4GB can be setup with:

ccache -M 4G

Note the because Vaucanson usually compiles a lot of header files into a single program, it’s likely
that a change to a common include file will invalidate most of your cache.

distcc

The following instructions are for LRDE users, but may be adapted to other places.

1. Wake up as much machines as you want with lrde-wakeonlan. Use lrde-wakeonlan . to
wake up all hosts.

2. Configure with:

./configure CC=gcc-4.2 CXX=g++-4.2

You need to specify the GCC version number to make sure all machines use the same
compiler.

3. Update the .distcc/hosts files with the list of build hosts available. It should look some-
thing like:

berville-en-caux.lrde.epita.fr/2,lzo
marvejols.lrde.epita.fr/2,lzo
whiteagonycreek.lrde.epita.fr/2,lzo
--randomize

The script ~adl/usr/bin/update-distcc-hosts can create this file automatically for you.

4. Run make -jN CC=’distcc gcc-4.2’ CXX=’distcc g++-4.2’ where N is the number of
available hosts. Beware that preprocessing and linking are still done locally, so you may not
want to use more than -j8 on a single core CPU (or use make’s -l flag to limit the load).

If you want to use both ccache and distcc, type CCACHE_PREFIX=distcc make -jN CC=’ccache
gcc-4.2’ CXX=’ccache g++-4.2’.

Making a release

Don’t do these steps from memory.

• Make sure the last run of the autobuilder was successful.

• Check trac to make sure there are no important pending tickets.

• Run make maintainer-check in doc/manual.

• Make sure doc/NEWS.txt is up-to-date. (Mention important known bugs!)

• Make sure doc/README.txt is up-to-date.

• Make sure doc/HACKING.txt is up-to-date.

• Make sure AUTHORS is up-to-date.

7

Make sure your system has up-to-date tools (Autotools, Swig, Doxygen, ...) before continuing.

• Bump the version number in configure.ac.

• Run bootstrap.

• Write the ChangeLog entry for all the above changes (But don’t commit it before
distcheck.)

• Run make distcheck.

• Commit all changes on success. Commit suicide otherwise.

• Tag the repository for the release.

• Append a a to the version number in configure.ac and commit this new change so
that the next run of the autobuilder won’t create a release.

• Copy the files created by distcheck to /lrde/dload/vaucanson/ don’t forget to chmod
a+rX all files and directories, and to update the latest link.

• Create the release page on the LRDE wiki.

• Update the Vaucanson page to point to it.

• Update the Vaucanson download page to point to the release.

• Send an announcement to vaucanson@lrde.epita.fr. The text of the announcement
should explain what Vaucanson is (so we can forward the mail to another mailing list)
and should include the list of major improvements since the last version (i.e., the top
of NEWS). Do not assume that people will follow links to get details.

• If the release is a beta release, or an intermediate release before a major release, make
it clear in the announcement and on the wiki.

• Install any new major release on vcsn.enst.fr.

• Complete and detail this list with what was missing (whatever will help the next guy
doing the release).

Template arguments naming convention

Template arguments:

• A : Automaton structure.

• AI : Automaton implementation.

• S : Series.

• SI : Series implementation.

• W : a Word.

In the case where multiple possibilities could be used, suffix the template argument with the appro-
priate numbering. For example, to enable the use of two different automaton implementations for each
argument of an algorithm:

template <typename A, typename AI1, typename AI2>
Element<A, AI1>
algorithm(const Element<A, AI1>& a1, const Element<A, AI2>& a2>);

8

mailto:vaucanson@lrde.epita.fr

Macros to handle with care

The VCSN_GRAPH_IMPL macro must only appear in three locations:

• include/vaucanson/context

• include/vaucanson/automata/generic_contexts

• include/vaucanson/misc/usual_macros.hh (be careful when defining new macros
using it)

Any other use is irrelevant and may be very harmful. Moreover this macro must never be used in a
file with guards.

How can I choose a specific graph implementation?

Use configure’s --with-default-graph-impl option to control the default graph implementation of
the library. The default is bmig (a graph represented using Boost Multi Indexes), the other choice is
listg (a graph represented using adjacency lists). For instance if you want to compile Vaucanson using
listg by default, use:

./configure --with-default-graph-impl=listg

The Vaucanson libraries will be compiled with this default implementation, but if you do not use
these libraries you can switch the default graph implementation at any time using the VCSN_DEFAULT_GRAPH_IMPL
preprocessor macro, for instance:

make CPPFLAGS=-DVCSN_DEFAULT_GRAPH_IMPL=listg myprogram

9

	Contents
	Tools
	Maintainer Tools
	Note about some developer tools
	Valgrind and the C++ standard library
	Using gdb or valgrind on TAF-Kit
	Debugging STL

	Version control
	Access to the Git repository
	Layout of the Git repository
	Git Workflow
	Check list for feature branches

	Development
	Faster builds
	Fast machine, plenty of memory
	Local disk
	Non-optimized build
	Parallel make
	ccache
	distcc

	Making a release
	Template arguments naming convention
	Macros to handle with care
	How can I choose a specific graph implementation?

