


Vaucanson 1.4
TAF-Kit Documentation

about this document

This document is based on a first draft of a Vaucanson User’s Manual written by Alexandre
Duret-Lutz in April 2009 for the version 1.2.95a.

It is first meant to describe as precisely as possible the specifications of TAF-Kit within
Vaucanson 1.4. It is a working document and should help to finalizing TAF-Kit. The
discrepancies, in names and functionalities — there should not be many — will raise final
discussions and decisions. When Vaucanson 1.4 will be released, the same document, with
the adequate corrections, will serve as a rather complete user’s manual for TAF-Kit which
will be the only documented part of that version.

The corresponding version of the Vaucanson platform — Vaucanson 1.4— is meant to
be the last one of a first phase of this project. Officially starting January 2011, a second phase
will be engaged, with different interface specification. It will give rise to versions Vaucanson

2.x.y.

J. S.
December 2010

Comment for the Vaucanson Group (101203): Comme indiqué en bas de page, nous sommes
dans la phase working document. Dans cette version du document, j’ai essayé de décrire l’état
de Vaucanson, et les commentaires que nous en avons fait lors de la réunion du 02/12/10.

Je suis sûr de ne pas avoir tout noté ou retenu. A compléter et corriger.
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Introduction

Vaucanson is a free software platform dedicated to the manipulation of finite state automata.
Here, ‘finite state automata’ is to be understood in the broadest sense: Vaucanson supports
weighted automata over a free monoid, and even weighted automata on some non-free monoids
(currently only automata on products of two free monoids— also known as transducers—are
supported).

The platform consists in a couple of components:

The Vaucanson library is a C++ library that implements objects for automata, rational
expressions, as well as algorithms on these objects. This library is generic, in the sense
that it makes it possible to write an algorithm once and apply it to different types
of automata. However this genericity is achieved in a way that should not cause any
slowdown at runtime: because the type of the automaton manipulated is known at
compile time, compiling an algorithm will generate code that is almost as efficient as
an algorithm written specifically for this type of automaton.

TAF-Kit is a command-line interface to the library that allows user to execute Vaucan-

son’s algorithms without any knowledge of C++. Because the Vaucanson library
needs to know the type of automata at compile time, the TAF-Kit interface has been
instantiated for a predefined set of common automaton types.

TAF-Kit does not allow to write new algorithms nor to manipulate new types of
automata, but it makes it possible to combine without efforts a large set of algorithms
on common automata types.

A repository of automata that shows examples of automata of various types, and also
contains tools to create families of automata.

It is coupled with some other modules:

An XML format for automata and expressions, called FsmXML. This format aims at be-
ing an interchange format for automata and thus at making possible, and hopefully easy,
the communication between various programs that input or output automata. So far,
this format is used as the normal, and default, input and output format for TAF-Kit.

A graphic user interface called Vgi, especially dedicated to Vaucanson so far. It allows
to describe automata and to visualize the result of operation on automata in a graphical
way. All functions defined in TAF-Kit may be called via the menu of Vgi.
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Ideally, a user’s manual for Vaucanson should document all of these components. We
decided not to do so, not so much because it is a lot of work, but also as this work would not
be so useful.

After several years of hard and complex developments, the evolution and progress of the
Vaucanson platform are now stuck and we have reached the conclusion that we have to
undertake a thorough revision of the Vaucanson library that will most probably change its
interface and the one of the associated API. These new developments will give rise to a new
series of versions of Vaucanson, coined Vaucanson 2.x.

On the other hand, there will be a TAF-Kit for these future versions of Vaucanson,
whose functionalities will include all those of the present one and whose interface will es-
sentially be the same as the present one as well. TAF-Kit Vaucanson 1.4 will serve as a
landmark for both functionalities and performance of the first version of Vaucanson. It will
be the only documented part of Vaucanson 1.4.
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Chapter 0

Administrativia

0.1 Getting Vaucanson

All the latest versions of the Vaucanson platform can be downloaded from
http://vaucanson.lrde.epita.fr/

Please note this manual is not meant to be backward compatible withVaucanson versions
prior to 1.4.

0.2 Licensing

Vaucanson 1.4 is a free software released under the GNU General Public Licence version 2. If
you are unfamiliar with this license, please refer to http://www.gnu.org/licenses/gpl-2.0.txt
(a copy of this license is included in each copy of Vaucanson in the file COPYING).

Beware that the license for the next versions of Vaucanson will probably be different
(although Vaucanson will stay an open and free software).

0.3 Prerequisites

C++ compiler G++ 4.x where x < 5.

XML The XML I/O system is based on the use of the Apache Xerces C++ library version 2.7+
(http://apache.org/xerces-c/). (On Ubuntu/Debian, install the following packages:
libxerces27 and libxerces28-dev, or libxerces28 and libxerces28-dev).

Graphviz The display of automata is made using AT&T GraphViz library (On Ubuntu/Debian,
install the following package: graphviz).

Boost Boost provides free peer-reviewed portable C++ source libraries (On Ubuntu/Debian,
install the following packages: libboost-dev, libboost-serialization-dev, libboost-graph,
libboost-graph-dev). Vaucanson is compatible with Boost versions >= 1.34. It
shall be noted that with Boost 1.44, a special flag must be given to the compiler
through the configure file: CPPFLAGS=’-DBOOST SPIRIT USE OLD NAMESPACE’.

Ncurses needed for building TAF-Kit (On Ubuntu/Debian, install the following packages:
libncurses5, libncurses-dev).
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0.4 Building Vaucanson

Detailed information is provided in both INSTALL and doc/README.txt files. The following
installation commands will install Vaucanson in ’/usr/local’.

$ cd vaucanson-1.4

$ ./configure

$ make

$ sudo make install

Depending on your architecture, both Boost and Xercesmight be located in non-standard
directories. If you are unsure of the location of your libraries, you may type in your shell:

$ whereis boost

These commands will return the paths to Boost headers. You can then specify this
directories to the configure file through the use of two environment variables: CPPFLAGS

for the header files and LDFLAGS for the library files. For instance, if your Boost headers
are located in ’/usr/user name/home/my path to boost/include’ and its library files in
’/usr/user name/home/my path to boost/lib’ you will use the following configure line:

$ ./configure

CPPFLAGS=’-I/usr/user name/home/my path to boost/include’

LDFLAGS=’/usr/user name/home/my path to boost/lib’

If you did not install Vaucanson but simply compiled it, you will find the taf-kit binaries
available in the directory ’vaucanson-1.4/taf-kit/tests/’ (This directory contains wrapper
around the real TAF-Kit programs from ’vaucanson-1.4/taf-kit/src/’ that enable them
to run locally).

0.4.1 Apple OS Specifics

In this section, we go through the installation process of Vaucanson and its dependencies on
Apple systems as it is less straightforward than onto other Linux systems.

First, you should ensure your Operating System is up-to-date before going through the
rest of the installation process.

Second, you will need the Macports software (see http://www.macports.org/) installed
on your computer. A complete guide to its installation is available from http://guide.macports.org/.
If you have already installed Macports, please ensure you have the latest version installed by
synchronising your local port tree with the global Macports ports.

$ sudo port selfupdate

There is now three libraries you will need to install in order to build Vaucanson (see
Prerequisite for details): Boost, Xerces, C++ and Ncurses. Executing each of the following
commands will take a while:
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$ sudo port install ncurses

...

$ sudo port install boost

...

$ sudo port install xercesc

...

$

We can now proceed with the Vaucanson installation process. By default, Macports
will install each of the previous software to a non-standard directory on your computer:
/opt/local . Therefore, in order to build Vaucanson, you will have to specify this directory
to the configure file:

$ ./configure CPPFLAGS=’-I/opt/local/include’ LDFLAGS=’-L/opt/local/lib’

Moreover, if you are running with Boost versions >= 1.44, you need to specify an addi-
tional option to the configure:

$ ./configure CPPFLAGS=’-I/opt/local/include

-DBOOST SPIRIT USE OLD NAMESPACE’ LDFLAGS=’-L/opt/local/lib’

You can now complete the installation by typing:

$ make

$ sudo make install

Comment for the Vaucanson Group (101203): A compléter, bien sûr. Mais c’est déjà en
progrès très net, grâce à l’apport d’Alex.
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Chapter 1

Presentation of TAF-Kit

TAF-Kit stands for Typed Automata Function Kit ; it is a command-line interface to Vau-

canson. As stated in the introduction, the Vaucanson platform is dedicated to the compu-
tation of, and with, finite automata, where ‘finite automata’ means weighted automata over
a priori arbitrary monoids.

In the static generic programming paradigm used in the Vaucanson library, the types of
the automata that are treated have to be known at compile time. TAF-Kit, which is a set
of programs that should be called from the shell and that can be used to chain operations
on automata, has therefore been compiled for several predefined types of automata. It thus
allows to use already programmed functions on automata of predefined types. TAF-Kit gives
a restricted access to Vaucanson functionalities, but it is a direct access, without any need
of programming. A basic knowledge of Unix command syntax only is necessary to make use
of TAF-Kit.

In this chapter, we first give a series of examples of commands in the case of ‘classical
automata’. We then present the overall organisation of TAF-Kit, with the list of possible
instances and options. The following section describes the syntax of options that help define
the behaviour of the commands whereas the fourth section describes the syntax of rational
(that is, regular) expressions within Vaucanson. The final section lists the input–output
commands of TAF-Kit; all other commands are presented in the next chapter.

1.1 First contact

Let us first suppose that Vaucanson is fully installed (as explained in Section 0.4).1 Any of
the following commands could be typed and their results observed.

We describe now (some of) the functions of the instance of TAF-Kit which deals with
‘classical automata’, that is, Boolean automata over a free monoid whose generators are
characters. These functions are called by the vcsn-char-b command.

To begin with, we have to deal with an automaton of the correct type. There are several
means to build or define such an automaton, but the most direct way is to use one of those

1If Vaucanson is only compiled without being installed, one should first go to the
‘vaucanson-1.4/taf-kit/tests/’ directory by a cd command, and type ‘./vcsn-char-b’ instead of
‘vcsn-char-b’ for each of the following commands.
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whose definition comes with TAF-Kit. We choose the automaton A1 shown at Figure 1.1
and whose description is contained in the XML file ‘a1.xml’.

a b

a

b

a

b

Figure 1.1: The Boolean automaton A1 over {a, b}∗.

The first command data will just make sure that TAF-Kit knows about this automaton.
It will display the number of states, transitions, initial states, and final states of A1.

$ vcsn-char-b data a1.xml

States: 3

Transitions: 6

Initial states: 1

Final states: 1

This automaton ‘a1.xml’ can also be displayed with the command display:2

$ vcsn-char-b display a1.xml

$

The displayed automaton won’t have a layout as pretty as in Figure 1.1, but it represents
the same automaton nonetheless.

a1.xml { 3 states, 6 transitions, #I = 1, #T = 1 }

0

1

a b

1

a

2

b

1

a b

Figure 1.2: Result of the command vcsn-char-b display a1.xml

The command aut-to-exp outputs a rational expression which denotes the language
accepted by A1. The command eval tells whether a word belongs to that language (answer
with 1 = yes, or 0 = no).

2If the GraphViz package is installed (see Section 0.3).
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$ vcsn-char-b aut-to-exp a1.xml

(a+b)*.a.b.(a+b)*

$ vcsn-char-b eval a1.xml ’babab’

1

$

The automaton A1 is not deterministic and the determinize command will compute its
determinisation. As most TAF-Kit commands, determinize produces its output (an XML file
representing the automaton) on the standard output which would hardly be of interest. The
normal usage is to divert the output by means of a shell redirection to a file for subsequent
computation with other commands.

$ vcsn-char-b determinize a1.xml > a1det.xml

$ vcsn-char-b data a1det.xml

States: 4

Transitions: 8

Initial states: 1

Final states: 2

The file ‘a1det.xml’ has been created into the current directory while ‘a1.xml’ is a file
that is predefined in Vaucanson’s predefined automata repository. We can call the command
data on either files using the same syntax because TAF-Kit will look for automata in both
places.

In the pure Unix tradition, we can of course chain commands with pipes. For instance,
the above two commands could be rewritten as:

$ vcsn-char-b determinize a1.xml | vcsn-char-b data -

States: 4

Transitions: 8

Initial states: 1

Final states: 2

where ‘-’ stands for ‘read from standard input ’.

TAF-Kit actually supports a more efficient way of chaining commands: the internal
pipe. It is called internal because the pipe logic is taken care of by TAF-Kit itself, and not
using a Unix pipe at all: the commands are simply serialized in the same process, using the
automata object created by the previous one. It is more efficient because the automaton does
not have to be converted into an XML file for output, and then parsed back as input of the
next command in the chain. Here is how the above command would look using an internal
pipe; notice how the ‘|’ symbol is protected from its evaluation by the shell.

$ vcsn-char-b determinize a1.xml \| data -

States: 4

Transitions: 8

Initial states: 1

Final states: 2

In the above command, ‘-’ does not designate the standard input, it denotes the result of the
previous command.
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1.2 TAF-Kit organisation

TAF-Kit is indeed one program, and this same program is compiled for different types of
automata. The result of each compilation yields a command (with a distinct name) which
can be called from the shell. As we have seen in the preceding examples, every such command
essentially takes two arguments: the first determines a function and the second an automaton
which is the operand for the function.

1.2.1 Automata types

A (finite) automaton is a (finite) directed graph, labelled by polynomials in K〈M〉, that is, by
(finite) linear combinations of elements of a monoid M with coefficients in a semiring K. The
type of an automaton is thus entirely determined (in Vaucanson 1.43) by the specification
of K and of the type of M .

1.2.1.1 Semirings

The semirings that are instanciated in TAF-Kit 1.4 are shown in Table 1.1. All these
semirings are ‘numerical’ in the sense their elements are implemented as numbers, but for the
rationals: float for R, bool for B, int for the others. The rationals are pairs of integers and
implemented as pairs of an int and an unsigned. They all are commutative semirings.

semiring mathematical symbol suffix in TAF-Kit

Boolean semiring B = 〈B,∨,∧ 〉 ‘-b’
ring of integers Z = 〈Z,+,×〉 ‘-z’
field of reals R = 〈R,+,×〉 ‘-r’
field of rationals Q = 〈Q,+,×〉 ‘-q’
two element field F2 = 〈 {0, 1},+,×〉 (with 1 + 1 = 0 ) ‘-f2’
min tropical semiring Zmin = 〈Z,min,+ 〉 ‘-zmin’
max tropical semiring Zmax = 〈Z,max,+ 〉 ‘-zmax’

Table 1.1: The semirings implemented in Vaucanson TAF-Kit 1.4

1.2.1.2 Monoids

The monoids instanciated in TAF-Kit 1.4 are the free monoids and the direct products of
(two) free monoids. A free monoid is completely determined by the set of generators, called
alphabet. At compile time however, it is not necessary to know the alphabet itself: the type of
its elements, the letters, will suffice. Thus, for TAF-Kit, the type of letters of one alphabet
for a free monoid, of two alphabets for a direct product of two free monoids has to be defined.
In TAF-Kit 1.4, the following types of letters are considered:

1. the simple letters, which may be characters: char, or integers: int;

2. pairs of simple letters.

3We add this precision as in the next version Vaucanson 2, the ‘kind’ of labels will also be a criterion in
the definition of the (programming) type of an automaton.
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The combinations that are instanciated in TAF-Kit 1.4 is shown in Table 1.2.

letter types free monoids free monoid products

characters char char-fmp

integers int int-fmp

pair of characters char-char

pair of integers int-int

pair of character and integer char-int

Table 1.2: The monoids implemented in Vaucanson TAF-Kit 1.4

1.2.2 TAF-Kit instances

As the consequence of the preceding subsection, the type of an automaton is determined by
the following three data:

1. the type of the weight semiring;

2. the fact that the monoid is either a free monoid or a product of two free monoids.

3. the type of the letters that generate the free monoid(s).

Not all possible combinations derived from the types of semiring and free monoid listed
above are instanciated (it would amount to over 70 possibilities — even if one restricts oneself
to the same type for the input and output monoids in transducers). In Vaucanson 1.4, ‘only’
18 combinations are instanciated; Table 1.3 shows these instances, their names (that is, how
they should be called from the shell), and the type of automata they allow to work with.

The first part of the table shows Boolean automata. The first instance, where the letters
are characters, corresponds to classical automata and has been used in the First contact
section. The next instance handles Boolean automata whose letters are integers; the three
others support alphabets of pairs. All of these are called Boolean automata because each
word is associated with a Boolean weight : either the word is accepted and its weight is true,
or it is not and its weight is false.

The instances for weighted automata are listed in the second part of Table 1.3. The first
four instances work with automata with weights in the ring of integers, and over free monoids
with different types of generators, the next five work with automata over a free monoid of
characters and with weights in different semirings. The third part shows the transducers,
instanciated in Vaucanson 1.4; they are called fmp-transducers, where fmp stands for free
monoid products.4

1.2.3 Command options

Every TAF-Kit instance determines the weight semiring and the type of letters in the alpha-
bet(s). This is sufficient at compile time, but when a TAF-Kit command is executed, some

4This name, or precision, comes from the fact that a transducer can be considered as well as an automaton
over the input monoid with weights in the rational series over the output monoid. In Vaucanson, such type
of transducers is called rw-transducers, where rw stands for rational weights, to distinguish them from the
fmp-transducers. No rw-transducers are instanciated in TAF-Kit 1.4.
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program name automaton type alphabet type weight semiring

vcsn-char-b automata characters 〈B,∨,∧〉
vcsn-int-b automata integers 〈B,∨,∧〉
vcsn-char-char-b automata pairs of characters 〈B,∨,∧〉
vcsn-char-int-b automata pairs of character and integer 〈B,∨,∧〉
vcsn-int-int-b automata pairs of integers 〈B,∨,∧〉
vcsn-char-z automata characters 〈Z,+,×〉
vcsn-int-z automata integers 〈Z,+,×〉
vcsn-char-char-z automata pairs of characters 〈Z,+,×〉
vcsn-int-int-z automata pairs of integers 〈Z,+,×〉
vcsn-char-zmax automata characters 〈Z,max,+〉
vcsn-char-zmin automata characters 〈Z,min,+〉
vcsn-char-r automata characters 〈R,+,×〉
vcsn-char-q automata characters 〈Q,+,×〉
vcsn-char-f2 automata characters 〈F2,+,×〉
vcsn-char-fmp-b transducers characters 〈B,∨,∧〉
vcsn-char-fmp-z transducers characters 〈Z,+,×〉
vcsn-int-fmp-b transducers integers 〈B,∨,∧〉
vcsn-int-fmp-z transducers integers 〈Z,+,×〉

Table 1.3: The TAF-Kit instances in Vaucanson 1.4

more informations or data have to be known by, or given to, the command. They roughly fall
into three different classes:

1. the letters in the alphabet(s);

2. informations on the input and output formats, which control the way the arguments
will be read and the results output by the command;

3. data, called writing data, which control the way rational expressions are written or read
as symbol sequences; this is partly related with the letters in the alphabets.

The letters of the alphabets have to be given explicitely to the command. In many cases
however, this is transparent to or unnoticeable by the user: if a command calls an automaton
(or an expression) as a parameter and if this parameter is an XML file — under the the
FsmXML format which is read by Vaucanson—, the letters are contained in the file, and
nothing is to be added. In the other cases, the letters have to be listed in an option.

Data of the two other classes are given default values. They may be useful in order to
get the desired result, they are sometimes necessary to read the parameters as files under a
certain formats.

1.2.4 TAF-Kit’s modus operandi

Each instance of TAF-Kit is a compiled program which offers a set of commands. All TAF-

Kit instances work identically. They differ on the type of automata they handle, and may
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offer different commands because not every algorithms (and thus commands) work on any
automata type (cf. Chapter 2).

Any time an instance of TAF-Kit is run, it breaks its command line into command names
and arguments.

vcsn-char-b︸ ︷︷ ︸
TAF-Kit instance

determinize︸ ︷︷ ︸
name

a1.xml︸ ︷︷ ︸
arg.︸ ︷︷ ︸

command 1

\| minimize︸ ︷︷ ︸
name

-︸︷︷︸
arg.︸ ︷︷ ︸

command 2

\|data︸ ︷︷ ︸
name

-︸︷︷︸
arg.︸ ︷︷ ︸

command 3

The internal pipe, ‘\|’, is used to separate commands. A command starts with a name,
it can be followed by several arguments (although only one is used in the above example).
These arguments can be very different depending on the command. So far, we have used
filenames as well as ‘-’ (to designate either the standard input or the result of the previous
command). Some commands will also accept plain text representing for instance a word or a
rational expression.

As explained in Section 1.2.3, the parameter(s) of a command may be completed and its
behaviour may be controlled by some options. We describe these options with more details
in the next section.

For each command, TAF-Kit will

1. parse the options,

2. parse all expected arguments (using indications that may have been given by options),

3. execute the algorithm,

4. print the result (in a format that can be controlled using options).

When commands are chained internally using ‘\|’ and ‘-’, the printing step of the com-
mand before the ‘\|’ and the parsing step of the command after the ‘\|’ are of course omitted.

1.2.5 Automata repository and factory

Most of TAF-Kit functions allow to build automata from others. There are functions which
take a rational expression and yield an automaton that accepts the language denoted by the
expression, and a function edit that allows to define (or to transform) an automaton element
by element (cf. Section 1.5.5). Other features of TAF-Kit for the definition of automata are
the automata repository and the automata factory.

1.2.5.1 Automata repository

With our first example (cf. Section 1.1), we mentioned that an automaton ‘a1.xml’ is ready
and available to the functions of the instance ‘vcsn-char-b’. There exist some other automata
for the same purpose, and such automata also exist for other instances of TAF-Kit 1.4; their
list is available via the option --list-automata:

$ vcsn-char-b --list-automata

The following automata are predefined:
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- a1.xml

- b1.xml

- div3base2.xml

- double-3-1.xml

- ladybird-6.xml

For every TAF-Kit instance vcsn-xxx-y, the XML files for these automata are located
at in a special directory, vaucanson-1.4/data/automata/xxx-y (cf. Section 1.5.0). More
details on these automata are given at Appendix A.

1.2.5.2 Automata factory

In the same directory as the automata quoted above, some programs have been compiled
which generate new automata, depending on parameters given to the program. The name
of the program is suffixed by the characteristic part of the name of the TAF-Kit instance.5

For instance, the program divkbaseb-char-b generates the automaton that accepts the rep-
resentation in base ‘b’ of numbers divisible by by ‘k’.

$ divkbaseb-char-b 5 3 > div5base3.xml

$ vcsn-char-b data div5base3.xml

States: 3

Transitions: 6

Initial states: 1

Final states: 1

$

We give another example of construction of an automaton with the factory at Section 1.3.4.

1.3 Option specifications

The list of possible options of a TAF-Kit command is obtained with the (classical) ‘--help’
option. They fall in the following categories:

1. options that give information on the instance;

2. specifications of the alphabet(s);

3. determination of the input and output formats;

4. activation of benchmarking options;

5. and finally parametrization of the grammars for rational (that is, regular) expressions.

The description of latter, called writing data, is postponed to the next section.

Along the Unix tradition, the options are given long names, called with the prefix ‘--’,
together with short equivalent names, prefixed with a simple ‘-’, which, in practice, will often
be prefered.

5If Vaucanson is only compiled without being installed, one should first go to the
‘vaucanson-1.4/data/automata/char-b’ directory by a cd command, and type ‘./divkbaseb-char-b’
instead of ‘divkbaseb-char-b’ in the command of the example.
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1.3.1 Information options

They are listed in Table 1.4.

long option short purpose of the option

--help -? Give the help list
--usage Give a short usage message
--version -V Print program version
--list-commands -l List usual commands
--list-all-commands -L List all commands, including debug commands
--list-automata List predefined automata

Table 1.4: Information options

Caveat: The character ‘?’ being interpreted by the shell, it should be protected in order
to be given as an argument to a command. Without such a protection, the behaviour may
depend on the shell, and according to the files within the directory.

This option ‘?’ should probably be suppressed, but it is necessary for the library ‘argp’
which is used for reading the options in the command line and it does not seem easy to get
around it. In any case, it should be avoided, and the ‘--help’ option be used.

1.3.2 Alphabet specification

The necessity of alphabet specification As we have seen (Section 1.2.2), every TAF-

Kit instance determines (or one could say, is determined by) the type of the letters that
generate the free monoid(s) over which the automata or the rational expressions are built.
And this is sufficient at compile time, that is, in order to generate TAF-Kit.

But Vaucanson and the TAF-Kit functions are designed in such a way that they need
to know the complete type of an automaton or an expression in order to handle it, that is,
not only the type of weights and of letters, but also the set of letters that constitute the
alphabet(s).

The XML files which describe automata, or expressions, contain this information and are
so to say self-contained. For instance, when we read ‘a1.xml’ in Section 1.1 and determinized
this automaton, we did not have to tell TAF-Kit that the alphabet was A = {a, b}. On
the contrary, when the automaton, or the expression, does not exist prior to the TAF-Kit

function, then specifying an alphabet is mandatory. For instance, the following commands6

end in error:

$ vcsn-char-b edit aut.xml

Error: alphabet should be explicitly defined using --alphabet

$

$ vcsn-char-b exp-to-aut ’aba+a’

Error: alphabet should be explicitly defined using --alphabet

$

6The function edit is described at Section 1.5.5, exp-to-aut which takes a rational expression and converts
it into an automaton at Section 2.1.5.2.
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In the latter case moreover, and as there is no a priori restriction on the characters that
can be used as letters, Vaucanson needs to know the alphabet over which the expression is
built in order to parse the rational expression: there is no other way for guessing whether the
alphabet is A = {a, b} (and the ‘+’ is a rational operator) or if the alphabet is B = {a, b,+}
and the ‘+’ is just a letter.

Specifying the alphabet can be done by using ‘--alphabet=ab’ or its short equivalent
‘-aab’. For instance, the correct writing of the above command reads:

$ vcsn-char-b --alphabet=ab edit aut.xml

...

$ vcsn-char-b -aab exp-to-aut ’aba+a’ > aut.xml

$ vcsn-char-b display aut.xml

$

aut.xml { 5 states, 4 transitions, #I = 1, #T = 2 }

0

1

1

a

4

a

2

b

3

a

1

1

Figure 1.3: Result of the command vcsn-char-b display aut.xml

Table 1.5 reviews the alphabet specification options. The different possibilities: characters,
integers, and pairs need to be described with more details.

long option short purpose of the option

--alphabet -a specify the alphabet of automata or rational expressions
--alphabet1 -a specify the first (or input) alphabet of transducers (fmp)
--alphabet2 -A specify the second (or output) alphabet of transducers (fmp)

Table 1.5: Alphabet options

Character alphabets For characters alphabets (as with the ‘char’ TAF-Kit instances
used in the above examples), the letters of the alphabets can be arbitrary ASCII characters,
and need just to be listed after the ‘--alphabet=’ or ‘-a’ option. Some character alphabets
are predefined. These are:
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‘letters’ for the lower case letters {a, b, . . . , z}.
‘alpha’ for the upper and lower case letters {a, b, . . . , z, A,B, . . . , Z}.
‘digits’ for all digits {0, 1, . . . , 9}.

For instance, ‘-aletters’ is an abbreviation for ‘-aabcdefghijklmnopqrstuvwxyz’. The
above list of predefined alphabets is obtained by typing ‘vcsn-char-b --help’.

When specifying characters alphabets, the following characters have to be escaped with a
backslash:

� (space) ‘’’ ‘"’ ‘(’ ‘)’ ‘=’ ‘,’ ‘\’

and in this case the list of characters has to be put within quotes. The same characters are
then used normally — without being escaped — in the expression. For instance, the following
commands will create an automaton that recognize all ‘decimal’ numbers written in base 2,
and then display the quotient7.

$ vcsn-char-b -a’01\,’ exp-to-aut ’1(0+1)*+1(0+1)*,(0+1)(0+1)*’ > dec-bin.xml

$ vcsn-char-b quotient dec-bin.xml \| display -

dec-bin.xml { 4 states, 9 transitions, #I = 1, #T = 1 }

0

e

1

1

2

1

e

0 1

0 1

3

,

1 0

Figure 1.4: Result of the command vcsn-char-b quotient dec-bin.xml \| display -

Integer alphabets The letters of an integer alphabet must be specified as signed integer
(they are represented by the C++ type int), and should be separated by commas. For instance,
the following command will construct an automaton that reads any sequence of coins of 1, 2,
5, 10, 20, or 50 cents, as long as the values are increasing.

$ vcsn-int-b -a1,2,5,10,20,50 exp-to-aut ’1*2*5*10*20*50*’ > coins.xml

$ vcsn-int-b eval coins.xml ’1210’

1

$ vcsn-int-b eval coins.xml ’12105’

7The function quotient is described at Section 2.2.1.4; ‘dec-bin.xml’ is an automaton with 12 states and
27 transitions and diplaying it would have been messy.
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0

$ vcsn-int-b eval coins.xml ’121050’

1

$

Note that digits are characters and not integers, even if they look like the latter (for
integers between 0 and 9) and if, in Vaucanson 1.4, no operations on integer letters are
implemented that could differentiate them. The only difference is thus the syntax when
listing them in the option.

Pair alphabets Pair alphabets should be specified using parentheses and commas to form
pairs — with types of letter that match theTAF-Kit instance, of course —, as in the following
example:

$ vcsn-char-int-b -a’(a,1)(a,-1)(b,2)’ exp-to-aut ’((a,-1)+(a,1))(b,2)’ > misc.xml

$ vcsn-char-int-b display misc.xml

$

misc.xml { 4 states, 4 transitions, #I = 1, #T = 1 }

0

1

1

(a,-1)

2

(a,1)

3

(b,2) (b,2)

1

Figure 1.5: Result of the command vcsn-char-int-b display misc.xml

Alphabets for transducers The products of two free monoids have two alphabets, one
for each monoid. The instances of TAF-Kit that handle transducers consequently support
two options ‘--alphabet1=’ and ‘--alphabet2=’, that can be abbreviated to ‘-a’ and ‘-A’
respectively. Table 1.3 gives the two possible choices for these alphabets in TAF-Kit 1.4:
both character, or both integer, alphabets. The following command calls for the interactive
construction of the right normaliser for numbers written in base 2 which is then shown below
(cf. [4]).

$ vcsn-int-fmp-b -a0,1,2 -A0,1 edit norm2.xml

...

$

Caveat: La fonction exp-to-aut n’est pas implémentée dansTAF-Kit 1.4 pour les instances
fmp (cf. Section 2.5).
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norm2.xml { 2 states, 6 transitions, #I = 1, #T = 1 }

0

e

(0,0)(1,1)

e

1

(2,0) (0,1)

(1,0)(2,1)

Figure 1.6: The normaliser in base 2

Unix usage The command line is first interpreted by the shell, which makes the characters
‘.’, ‘?’, ‘*’, ‘’’, etc. being given their meaning for the shell. In order to give them their
meaning in the current alphabet and in the writing of rational expressions, they have to be
protected by ‘’’, or ‘"’.

$ vcsn-char-b -aab cat-E aab

aab

$ vcsn-char-b -aab cat-E aa(b)

zsh: unknown file attribute

$ vcsn-char-b -aab cat-E ’aa(b)’

aa.b

$ vcsn-char-b -aab cat-E aab*

zsh: no matches found: aab*

$ vcsn-char-b -aab cat-E "aab*"

aab*

The normal unix shell definition, allocation and utilisation of variables may be mixed
with the usage of TAF-Kit command lines. For instance, the following command will create
an automaton that recognize numbers of the form ‘12,456,789’, where a comma must be
used as thousand separator:

$ d="(0+1+2+3+4+5+6+7+8+9)"

$ vcsn-char-b exp-to-aut -a’0123456789\,’ "($d+$d$d+$d$d$d)(,$d$d$d)*" > numbers.xml

$ vcsn-char-b eval numbers.xml 1,234,987

1

$ vcsn-char-b eval numbers.xml 1,24,987

0

Note how the expression must be enclosed with ‘"’ rather than with ‘’’ in order to be correctly
interpreted.

$ d="(0+1+2+3+4+5+6+7+8+9)"

$ vcsn-char-b exp-to-aut -a’0123456789\,’ ’($d+$d$d+$d$d$d)(,$d$d$d)*’ > numbers.xml

Lexer error, unrecognized characters: $d+$d$d+$d$d$d)(,$d$d$d)*

1.3.3 Input and output formats

The TAF-Kit commands are supposed to input and output objects of different sorts: au-
tomata, rational expressions, words, weights and Boolean results. Their formats are controlled
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by the attributes of the input and output options. As shown on Table 1.6, there is one default
format when no format option is called.

long option short purpose of the option

--input -i select input format for automata and rational expressions
--output -o select output format for automata and rational expressions
--verbose -v select verbose option for Boolean results

values for -i or -o format for automata format for rational expressions

(none) FsmXML text string
xml FsmXML FsmXML

fst OpenFst —
dot (output only) dot —

Table 1.6: Input and output options and formats

These options are used not only to control and adequatly adjust the format of data handled
by TAF-Kit in order to process them but allow also to make TAF-Kit a translator between
different format for a given object.

1.3.3.1 Automata formats

Automata are always files; they are read from a file whose filename is specified on the com-
mand line, and the file is output on the standard output (or can be diverted to a named file
in the Unix way).

Vaucanson can read automata in two formats: FsmXML (the default format), or the
textual format of OpenFst. It can write automata in these formats, as well as in the ‘dot’
format8 that can then be used for graphical output afterwards.

$ vcsn-char-b -ofst cat b1.xml

0 0 a 0

0 0 b 0

0 1 b 0

1 1 a 0

1 1 b 0

1 0

$ vcsn-char-z -ofst cat b1.xml \| -ifst eval - ’bab’

2

$

The first two comand lines below are equivalent to the third one.

$ vcsn-char-b -odot cat b1.xml > b1.dot

$ dotty b1.dot

$

$ vcsn-char-b display b1.xml

$

8dot files can be processed and visualized using the GraphViz package.

Working document --- Do not circulate – 23 – Compiled July 8, 2011 at 668



1.3.3.2 Rational expression formats

Rational expressions are given either as character strings — default format — or XML files —
xml format.

By default, rational expressions are read as strings given on the command line, and output
as strings on the standard output. Both can be diverted in the Unix way, but a string written
in a file cannot be passed to TAF-Kit as a file.

$ vcsn-char-b -aab cat-E ’(a+b(a(b)*a)*b)*’

(a+b.(a.b*.a)*.b)*

$ vcsn-char-b -aab cat-E ’(a+b(a(b)*a)*b)*’ > exp.txt

$ cat exp.txt

(a+b.(a.b*.a)*.b)*

$ vcsn-char-b -aab cat-E exp.txt

Lexer error, unrecognized characters: exp.txt

$ cat exp.txt | vcsn-char-b -aab cat-E -

(a+b.(a.b*.a)*.b)*

Alternatively, rational expressions can be read from an FsmXML file whose filename is
given on the command line, and output as an FsmXML file as well.

$ vcsn-char-b -aab -oxml cat-E ’(a+b(a(b)*a)*b)*’ > exp.xml

$ vcsn-char-b -ixml cat-E exp.xml

(a+b.(a.b*.a)*.b)*

1.3.3.3 Word formats

Words are always strings of letters, that are read on the command line, and written on the
standard output.

Caveat: Although words are, from a formal point of view, a (simple) instance of a rational
expression, TAF-Kit 1.4 handles them as objects of different and uninterchangeable types.
We come back to the subject in the next section.

1.3.3.4 Weight formats

Weights, that is, elements of the weight semiring, and such as the result of the evaluation of
a word in an automaton for instance, are simply output as strings on the standard output.

$ vcsn-char-z eval c1.xml ’101101’

45

$

The way they are input, as strings sa well, as part of a rational expression, is described
in the next section.
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1.3.3.5 Boolean result formats

Some TAF-Kit functions, such as is-empty which determines whether an automaton is
empty or not, yield Boolean results. In the default format, such results are returned using
the status code of the TAF-Kit instance, so that the correponding commands can be used
as conditions in shell scripts. According to Unix convention, the status code is 0 for true
and any other value for false. The shell makes this value available in the ‘$?’ variable.

The TAF-Kit option ‘--verbose’ or ‘-v’ can be used to request an English interpretation
of this value.

$ vcsn-int-b is-empty coins.xml

$ echo $?

1

$ vcsn-int-b -v is-empty coins.xml

Input is not empty

1.3.4 Benchmarking options

The functions in Vaucanson library are interspersed with instructions which trigger time
measurement in case some dedicated variables are set up in a certain way. This feature is
primarily intended to the adjustment and improvement of the programming of the library
rather than to the benefit of TAF-Kit users. It can nevertheless be activated through TAF-

Kit by instantiating some options. As they appear when the --help option is called, we
list them in Table 1.7 and briefly present them afterwards. We do not fully document these
options as they are anyway not yet finalized.

long option short purpose of the option

--report-time[=VERBOSE DEGREE] -T Report time statistics
--export-time-dot[=VERBOSE DEGREE] -D Export time statistics in DOT format
--export-time-xml[=VERBOSE DEGREE] -X Export time statistics in XML format

--bench=NB ITERATIONS -B Bench
--bench-plot-output=OUTPUT FILENAME -O Bench output filename

Table 1.7: Benchmarking options and formats

1.3.4.1 Time statistics

The --report-time option, -T for short, builds a file with some time statistics for the exe-
cution of the function it is called with, and outputs it on the standard error output. It is
recommanded to divert it (with the 2> redirection) to a file which will be exploited afterwards.
The example below shows only some lines (the most important ones) of this file.9

$ vcsn-char-b -T1 determinize ladybird-10.xml > ldb10det.xml 2> ldb10-time.txt

$ cat ldb10-time.txt

Taf-kit command bench

9The automaton ladybird-10.xml has been built beforehand by the factory ladybird-char-b.
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...

Charge id: <name> total self calls self avg. total avg.

100.0% 0: _program 343.78ms 343.78ms 1 0.34s 0.34s

64.0% 9: automaton output 220.02ms 220.02ms 1 0.22s 0.22s

29.5% 7: determinize 101.29ms 101.25ms 1 101.25ms 101.29ms

3.9% 1:CMD[0]: determiniz 123.52ms 13.52ms 1 13.52ms 123.52ms

2.4% 2: automaton input 8.19ms 8.19ms 1 8.19ms 8.19ms

0.1% 4: eps_removal 0.29ms 0.29ms 1 0.29ms 0.29ms

0.1% 3: cut_up 0.21ms 0.21ms 1 0.21ms 0.21ms

0.0% 8:is_realtime (autom 0.04ms 0.04ms 1 0.04ms 0.04ms

0.0% 5: accessible_states 0.03ms 0.03ms 1 0.03ms 0.03ms

0.0% 6: sub_automaton 0.01ms 0.01ms 1 0.01ms 0.01ms

...

$

The content of the time statistics output is controlled by an integer called VERBOSE DEGREE

and which can take the values 1, 2, or 3. Default value is 2.

The -D and -X options have the same behaviour as -T but output the file under another
format:

1.3.4.2 Benching

The --bench option, -B for short, makes TAF-Kit to repeat the functions that follow the
option the number of times that is specified (compulsory parameter) with the option. The
data shown in the example above are stored in a result file for each of the execution, and then
a summary of these data is made, which contains the mean, the sum, the minimum and the
maximum. This result file is output on the standard error output, which can be diverted
as usual.

$ vcsn-char-b -B5 determinize ladybird-10.xml > ldb10det.xml 2> ldb10-bench.txt

$ cat ldb10-bench.txt

------------------------- SUMMARY -------------------------

------------------------- Arithmetic mean

[Task list:]

Charge id: <name> total self calls self avg. total avg.

100.0% 0: _program 351.14ms 351.14ms 1 0.35s 0.35s

64.0% 9: automaton output 224.79ms 224.79ms 1 0.22s 0.22s

30.1% 7: determinize 105.71ms 105.69ms 1 105.69ms 105.71ms

3.5% 1:CMD[0]: determiniz 126.12ms 12.29ms 1 12.29ms 126.12ms

2.2% 2: automaton input 7.65ms 7.65ms 1 7.65ms 7.65ms

0.1% 4: eps_removal 0.24ms 0.24ms 1 0.24ms 0.24ms

0.1% 3: cut_up 0.19ms 0.19ms 1 0.19ms 0.19ms

0.0% 8:is_realtime (autom 0.03ms 0.03ms 1 0.03ms 0.03ms

0.0% 5: accessible_states 0.02ms 0.02ms 1 0.02ms 0.02ms

0.0% 6: sub_automaton 0.01ms 0.01ms 1 0.01ms 0.01ms

...

$
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1.4 The writing of rational expressions

The definition of rational (or regular) expressions is rather an easy and classical subject of any
first year course in computer science (at least for the Boolean case). Reading and writing the
same expressions prove to be a much more tricky matter, for several reasons. Some are specific
to Vaucanson: to begin with, no characters are reserved for the rational operators and the
usual ones may appear as letters in the alphabet over which the expressions are built; the
writing of weights, and the possibility of having integers as letters add to the problem. The
effective implementation of reading and writing strings that represent expressions, together
with the usual, and necessary, convention and simplification also conceal difficulties that have
to be circumvented by any software that deals with expressions.

1.4.1 The definition of expressions

1.4.1.1 Construction of expressions

The general definition reads as follow. A rational expression over a monoid M with weight
in a semiring K is a well-formed formula built from:

• the elements of M , which are the atomic formulas;

• the following operators:

1. two 0-ary operators, or constants, denoted by ‘0’ and ‘1’ ;

2. one unary operator star, denoted by ‘∗’ ;
3. two binary operators, sum and product, denoted by ‘+’ and ‘·’ ;
4. and, for every k in K, two unary operators, the left and right exterior multiplica-

tions by k, denoted by ‘k.’ and ‘.k’ .

This definition is the one taken by members of the Vaucanson group in their writings
about weighted rational expressions (cf. [7, 5]). It must be said that it is not the most
common one. In general — if one may say so of the few publications that deal with weighted
rational expressions —, the elements of K are atomic formulas and the left and right exterior
multiplications are expressed with the product operator.

The Vaucanson choice is more natural for the definition of the derivation of expressions,
even if it has the theoretical drawback of introducing an infinity of operators — something
that logicians do not like very much usually.

Being a formula, an expression may be viewed as a (finite) tree whose (inner) nodes are
labelled with operators and leaves by atoms. The tree itself may be faithfully represented
in different ways. The FsmXML format (cf. Appendix B) provides all necessary tags to
describe such a tree.

1.4.1.2 Reduction of expressions

Like automata, the rational expressions are a symbolic (and finite) representation of lan-
guages or series. Natural valuation of the atoms and induction rules make every expression
denotes a language or a series. Two rational expressions are equivalent if they denote the
same languages, or series. We want a priori to distinguish between two distinct equivalent
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expressions — in particular since it is not always possible to decide whether two expressions
are equivalent or not.

For several reasons, we distinguish indeed between expressions that are obviouly equiva-
lent, such as (E+ F) and (F+ E) , or ((E+ F) + G) and (E+ (F+ G)) . There are however
expressions which can be constructed by the above rules, such as (E+0) or (1·E) , and which
we do not want to exist. Such convention are not only useful for simplifying expressions, they
are also necessary to make some computation processes (such as derivation) finite.

Everytime a rational expression is constructed inside Vaucanson, either as the result
of a computation or as the mere consequence of the reading of a string of symbols that
represents it, the following rewriting rules, called trivial identities, and listed in Table 1.8,
are automatically applied, giving rise to a so-called reduced expression which is obviously
equivalent to the original expression.

In this table, E stands for any rational expression, m is any monoid element (that is, a
word, or a pair of words), k and h are weights, while {0K} and {1K} designate the zero and
unit of the weight semiring. Any subexpression of a form listed to the left of a ‘⇒’ is rewritten
as indicated on the right.

E.0 ⇒ 0 0.E ⇒ 0 E+ 0 ⇒ E 0+ E ⇒ E E.1 ⇒ E 1.E ⇒ E 0� ⇒ 1 (T)

{0K}E ⇒ 0 E{0K} ⇒ 0 {k}0 ⇒ 0 0{k} ⇒ 0 {1K}E ⇒ E E{1K} ⇒ E (TK)

{k}({h}E) ⇒ {kh}E (E{k}){h} ⇒ E{kh} ({k}E){h} ⇒ {k}(E{h}) (AK)

1{k} ⇒ {k}1 E.({k}1) ⇒ E{k} ({k}1).E ⇒ {k}E (UK)

m{k} ⇒ {k}m (Cat)

Table 1.8: The trivial identities

$ vcsn-char-z -aab cat-E ’{2}ab{3}’
{2} (ab {3})
$ vcsn-char-z -aab cat-E ’{2}a{3}’
{6} a

These rewriting rules mean that it is impossible for Vaucanson to output a rational
expression such as ‘({3}(0(ab)))*{4}’. This expression is by construction equal to ‘{4}1’ as
it can be verified with the following command:

$ vcsn-char-z -aab cat-E ’({3}(0(ab)))*{4}’
{4} 1

This command cat-E does not apply any algorithm to the rational expression. Its only
purpose is to read and write the rational expression using any I/O option supplied on the
command-line. The trivial identities are performed while reading the expression.

1.4.2 Parsing strings into expressions

As we wrote above, there are several classical ways of faithfully representing an expression by
a string of symbols. We are nevertheless faced with two, and even three, problems.
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First, we want to avoid the blotted form of marking languages, and even of fully parenthe-
sised forms, and to be able to use the more natural and common way of writing expressions
with implicit precedence of operators. Another difficulty arises when the operators, letters,
and weights share the same alphabet of characters for their represention. Finally, the possi-
bility of having integers as generators of a free monoid, that is, ‘letters’ that are written as
sequences of characters, brings in another problem. We treat these questions one after the
other, and begin with what can be considered as the default conventions.

We first suppose that the alphabet is an alphabet of characters (letters and/or digits for
the time being) and has been defined by means of the --alphabet option. According to
the above definition, we define in Vaucanson rational expressions over A∗ (as opposed to
rational expressions over A), that is, any word of A∗ — string of letters of A — is seen as an
atomic expression. This feature may prove to be somewhat misleading (see below).

1.4.2.1 The rational operators

The three rational operators, sum, product and (Kleene) star are represented — by default —
as in the following Table 1.9. The representation of the (left and right) exterior multiplications,
that is, of weights, is described at Section 1.4.2.2.
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Input Output Operator

E* E* Kleene star
EF or E.F E.F concatenation (implicit or explicit)

E+F E+F disjunction
(E) as necessary grouping

Table 1.9: Rational operators

Operators precedence The classical precedence relation between operators which allows
to spare grouping symbol is extended in order to include the exterior multiplcations:

‘ ∗ > k. > .k > · > + ’ .

For instance, the rational expression which denotes the language that consists of all words
that contain ‘ab’ as a factor can be written (by a user) as ‘(a+b)*ab(a+b)*’. Vaucanson

outputs it by making the product between non-atomic subexpressions explicit.

$ vcsn-char-b -aab cat-E ’(a+b)*ab(a+b)*’

(a+b)*.ab.(a+b)*

$ vcsn-char-b -aab cat-E ’((a+b)*)(((ab))(a+b)*)’

(a+b)*.ab.(a+b)*

An atom which is enclosed in grouping symbols is not an atom anymore.

$ vcsn-char-b -aab cat-E ’((a)(b))’

a.b

Caveat: because Vaucanson builds rational expressions on top of words, the Kleene
star operator and the weights (see below) apply to words and not to letters as it is usually
the case in other applications. For instance, ‘ab*’ is the same rational expression as ‘(ab)*’
for Vaucanson, but it is different from ‘a.b*’ or ‘a.(b*)’.

Associativity Sum and product of languages or series are associative, but it is not the case
of the corresponding rational operators, as we have recalled above. The default bracketing is
on the left, that is, a+ b+ c is the same as (a+ b) + c, and a+ (b+ c) is another expression,
as shown by the construction of the Thompson automata: the outcome of the following
commands is shown at Figure 1.7.

$ vcsn-char-b -aabc thompson ’a+b+c’ > thomp-abc-left.xml

$ vcsn-char-b display thomp-abc-left.xml

$ vcsn-char-b -aabc thompson ’a+(b+c)’ > thomp-abc-right.xml

$ vcsn-char-b display thomp-abc-right.xml

$ vcsn-char-b -aabc cat-E ’a+b+c’

a+b+c

$ vcsn-char-b -aabc cat-E ’a+(b+c)’

a+b+c
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$ vcsn-char-b -aabc cat-E ’a.b.c’

a.b.c

$ vcsn-char-b -aabc cat-E ’a.(b.c)’

a.b.c

thomp-abc-left.xml { 10 states, 11 transitions, #I = 1, #T = 1 }

0

1

a

3

1

2

1

4

1

7

1

5

b

1

6

1

1

8

1

1

9

c

1

thomp-abc-right.xml { 10 states, 11 transitions, #I = 1, #T = 1 }

0

1

a

3

1

2

1

1

6

1

1

4

5

b

7

1

1

8

1

1

9

c

1

Figure 1.7: The operator ‘+’ is not associative

1.4.2.2 The weights

Weights are written in braces, as in ‘{3}’. When the expression is output by Vaucanson,
weights are also followed10 by a blank space.

$ vcsn-char-z -aab cat-E ’{2}a + {2} b’

{2} a+{2} b

As another example, the automaton C1 of Figure 1.8 is described in the file c1.xml and gives
rise to the following command and output:

$ vcsn-char-z aut-to-exp c1.xml

(a+b)*.b.({2} a+{2} b)*

$ vcsn-char-z display c1.xml

Eventhough all semirings which are instantiated in TAF-Kit 1.4 are commutative, this is
not an assumption which is made in Vaucanson in general. In any case, the weight semiring
be commutative or not, the left and right exterior multiplications yield distinct expressions,
from which distinct automata are built.

10This is not so good and will hopefully be corrected in further versions of Vaucanson.

Working document --- Do not circulate – 31 – Compiled July 8, 2011 at 668



b

a

b

2a

2b

c1.xml { 2 states, 3 transitions, #I = 1, #T = 1 }

0

1

a+b

1

b

1

({2} a)+({2} b)

Figure 1.8: The Z-automaton C1 and its display by Graphviz.

$ vcsn-char-z -aab cat-E ’{2}ab{3}’
{2} (ab {3})
$ vcsn-char-z -aab cat-E ’{2}{3}ab’
{6} ab

1.4.3 Parser parametrization

As there is a priori no restriction on the alphabet, the representation of the rational operators
— called token — may collide with the one of elements of the monoid. Vaucanson actually
allows every operator to be represented by an arbitrary string. The set of these representations
is called the writing data.

It is a feature of Vaucanson that some different default values are prepared for the
constants so that TAF-Kit may try to choose a representation which does not collide with
the words. For the same purpose, the other tokens have to be given explicitely.

1.4.3.1 Implicit parametrization: the constants

The constants 0 and 1 are naturally written by default as 0 and 1. This is witnessed, for
instance, in the following command call that instantiates the last of the trivial identities (T)
(cf. Table 1.8):

$ vcsn-char-b -aab cat-E ’0*’

1

If ‘1’ is a letter in the alphabet — as a character (digit) — the same symbol cannot be
used for representing the constant 1 nor the identity of the monoid, that is, the empty word.11

Vaucanson chooses the first available representation of the identity from the following list
of candidate symbols: ‘1’, ‘e’, or ‘ e’, which does not collide with any letter of the alphabet.
If the alphabet contains the three characters ‘1’, ‘e’, and ‘ ’, the default representation of the
constant 1 is still ‘ e’ and another less ambiguous representation has to be chosen explicitely
(cf. below).

11In TAF-Kit 1.4, the functions which parse or compute with rational expressions over a product of free
monoids are not implemented (cf. Section 2.5).
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$ vcsn-char-b -aab1 cat-E ’0*’

e

$ vcsn-char-b -aabe1 cat-E ’0*’

e

$ vcsn-char-b -a abe1 cat-E ’0*’

e

Similarly, if ‘0’ is a letter in the alphabet — as a character (digit) — the same symbol cannot
be used for representing the constant 0 nor the null series and Vaucanson chooses the first
available representation of the zero from the following list of candidate symbols: ‘0’, ‘z’, or
‘ z’, which does not collide with any letter of the alphabet. Because of the trivial identities
(see Section 1.4.1.2), this is a much rarer situation. The following calls to the expand function
(cf. Section 2.1.5.3) yields 0 in a non trivial way:

$ vcsn-char-z -aa1 expand ’a+{-1}a’
0

$ vcsn-char-z -aa01 expand ’a+{-1}a’
z

$ vcsn-char-z -aaz01 expand ’a+{-1}a’
z

$ vcsn-char-z -a_az01 expand ’a+{-1}a’
z

For integer alphabets, the constant 1 and the empty word on one hand, the constant 0
and the null series on the other, are always (that is, even if the integers ‘1’ or ‘0’ are not in
the alphabet) written as ‘e’ and ‘z’ respectively.

$ vcsn-int-z -a’2,3’ expand ’2+{-1}2’
z

$ vcsn-int-z -a’2,3’ expand ’(2+{-1}2)*’
e

1.4.3.2 Explicit parametrization: the parser option

Table 1.10 shows the tokens that are used in the writing of rational expressions within Vau-

canson, together with their meaning and default values. The --parser option can be used
to modify the values of these tokens. Each of them must be defined as a non-empty string.

This ability of the user to defne the tokens at will allows to use characters of any kind as
letters of the alphabet. For instance, one may define the language of well-parenthetized words
of nested depth at most 2, over the alphabet {(, )}, for which one should obviously rename
the ‘OPAR’ and ‘CPAR’ tokens.

$ vcsn-char-b -a’\(\)’ --parser=’OPAR=[ CPAR=]’ cat-E ’[([()]*)]*’

[(.()*.)]*

The values of the writing data are stored12 in the XML file which contains the automaton
or the expression, so there is no need to specify them again when working from a file.

12This is a questionable feature of both Vaucanson 1.4 and the corresponding version of FsmXML, but it
is so.
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token meaning default value(s)

‘ZERO’ constant ‘0’ and the null series ‘0’, ‘z’, ‘ z’
‘ONE’ constant ‘1’ and the identity of the monoid ‘1’, ‘e’, ‘ e’
‘STAR’ Kleene star ‘*’
‘PLUS’ sum ‘+’
‘TIMES’ product ‘.’
‘CONCAT’ concatenation (product within the monoid) ‘’, ‘#’

‘OPAR’ group start ‘(’
‘CPAR’ group end ‘)’
‘OWEIGHT’ weight start ‘{’
‘CWEIGHT’ weight end ‘}’
‘SPACE’ space character (to be ignored) ‘ ’

Table 1.10: Tokens of the parser option: the writing data

$ vcsn-char-b -a’\(\)’ --parser=’OPAR=[ CPAR=]’ exp-to-aut ’[([()]*)]*’ > par.xml

$ vcsn-char-b aut-to-exp par.xml

(.[(.).[(.)]*.)+)].[(.[(.).[(.)]*.)+)]]*+1

Caveat: It is the responsability of the user to define the tokens in such a way there is no
collision between them nor with the elements of the monoid.

In case there exists such collisions, the way the tokens are recognized in a string of letters
may depend upon the token.13

$ vcsn-char-b -a abe1 cat-E ’ e0*+e e .e’

e+e .e

$ vcsn-char-z -a_aez01 cat-E ’z_a0+a_z0+a(_z)0+a_z_e0’

z_a0+a_z0+a._z.0+a_z0

In the first line, the string e has been recognized as the constant 1; in the second, the string
z has not been recognized as the constant 0.

As a consequence, it is not possible in Vaucanson 1.4 to use the alphabet of all ASCII
characters.

The token TIMES As noted at Table 1.9, the token TIMES is given a unique value for the
output of strings by Vaucanson, but the empty string is always accepted as input for the
‘representation’ of the same operator product.

$ vcsn-char-b -aab cat-E ’(a+b)(b+a)’

(a+b).(b+a)

$ vcsn-char-b -a’ -.’ --parser=’TIMES=x PLUS=|’ cat-E ’... --- (... |-... )’

... --- x(... |-... )

13This has to be corrected in the forthcoming versions of Vaucanson.
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The token CONCAT The token CONCAT is used to represent the same operator product, but
between letters of the alphabet, when such a sequence forms an element of the monoid. As
for TIMES, CONCAT is given a unique value for the output of strings by Vaucanson, but the
empty string is always accepted as input for the ‘representation’ of the same operator. Indeed,
the existence of this token is hardly noticeable when one uses alphabet of characters as its
default value in this case is the empty string as well. It is necessary to explicitely give it a
non empty value in order to make it appear.

$ vcsn-char-b -aab cat-E ’(aba)(bab)’

aba.bab

$ vcsn-char-b -aab --parser=’CONCAT=-’ cat-E ’(aba)(bab)’

a-b-a.b-a-b

This token is useful, and necessary, when the generators of the monoid, that is, the letters,
are not characters but written as sequences of symbols. In TAF-Kit 1.4, this happens for the
instances in which the type of letters are integers. In this case, the default value of CONCAT
is ‘#’. The token is necessary when the set of letters, viewed as a set of words on the alphabet
of digits, is not a prefix code.

$ vcsn-int-b -a’0,1,2’ cat-E ’10(12+21)*’

1#0.(1#2+2#1)*

$ vcsn-int-b -a’0,1,12,22’ cat-E ’10(12+122)*’

vcsn-int-b: Lexer error, unrecognized characters: 2)*

$ vcsn-int-b -a’0,1,12,22’ cat-E ’10(12+1#22)*’

1#0.(12+1#22)*

One understands that the parser matches the longest prefix of the string it reads with the
letters of the alphabet.

The token SPACE The token SPACE is meant to be a character or a string that is equivalent
to the empty sequence and that makes the writing of expressions as strings more readable
by the users. Of course, its default value is the space character and is likely to keep this
value unless the space character itself is a letter of the alphabet (as in the Morse alphabet
considered in the example above).

Unfortunately, TAF-Kit 1.4 does not exactly implement this specification. When SPACE

is used between letters of the alphabet, it is replaced by TIMES, instead of CONCAT as it should
be.

$ vcsn-char-b -aab cat-E ’(aba)(bab)’

aba.bab

$ vcsn-char-b -aab cat-E ’(a b a) (b a b)’

a.b.a.b.a.b

$ vcsn-char-b -aab --parser=’CONCAT=-’ cat-E ’(aba)(bab)’

a-b-a.b-a-b

$ vcsn-char-b -aab --parser=’CONCAT=-’ cat-E ’(a b a) (b a b)’

a.b.a.b.a.b

$ vcsn-char-b -aab --parser=’CONCAT=- SPACE=#’ cat-E ’(a#b#a)(b#a#b)’

a.b.a.b.a.b
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1.4.3.3 Overwriting the writing data

The writing data are used when parsing a string into a rational expression and when writing
back a rational expression as a string, or even when displaying an automaton. A rational
expression or an automaton themselves do not call on the writing data. Nevertheless, and as
we said above, the writing data are embarked in the XML file that contains an automaton
or an expression (cf. Appendix B). It makes these objects fully self-contained and allows for
instance to convert them as a rational expression written as a string without giving additional
information.

The ‘--parser=’ option can then be used to modify the way the object will be output.

$ vcsn-char-b -a’\(\)’ --parser=’OPAR=[ CPAR=]’ -oxml cat-E ’[([()]*)]*’ > p.xml

$ vcsn-char-b -ixml cat-E p.xml

[(.[(.)]*.)]*

$ vcsn-char-b --parser=’OPAR=< CPAR=>’ -ixml cat-E p.xml

<(.<(.)>*.)>*

If we edit the file p.xml and suppress the writing data in it (and write the result in the
file pp.xml), we then get the output with the default values for the tokens.

$ vcsn-char-b -ixml cat-E pp.xml

((.((.))*.))*

1.5 TAF-Kit IO functions

We end this chapter with the description of the input and output commands available within
TAF-Kit. The other commands that perform computations on the automata and expressions
are described in the next chapter.

1. data <aut>

2. cat <aut>

3. cat-E <exp>

4. display <aut>

5. edit <aut>

1.5.0 Data file location

TAF-Kit works (or a user works with TAF-Kit) in a current directory called working direc-
tory. On the other hand, every instance vcsn-xxx-y of TAF-Kit knows a directory, called
data directory, located at vaucanson-1.4/data/automata/xxx-y, and where automata pre-
defined by Vaucanson are stored. The latter form the automata repository of the instance
(cf. Section 1.2.5).

Every TAF-Kit command writes in the working directory (or in any directory which is
assigned by the usual Unix file path scheme). As we mentioned in Section 1.1, every TAF-

Kit command first reads in the working directory, and, if the automaton is not found there,
it then reads from the data directory.
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1.5.1 data

$ vcsn data a.xml

$
Prints some characteristic data on the automaton a.xml.

Specification:

The printed data are

#states, #transitions, #initial states, #final states.

1.5.2 cat

$ vcsn cat a.xml > b.xml

$
Reads the automaton a.xml and writes it in the file b.xml.

Comments: The cat function of Vaucanson works very much in the same way as the Unix
cat command and allows in the same way to write a file on the standard output or in another
file.

The main difference is the behaviour described above: the cat command first reads from
the working directory and then from the data directory and thus allows to ‘load’ predefined
automata from the data directory to the working one.

The next difference is that the format of both the input and output may be controlled
via the -i and -o options, as described at Section 1.3.3.1. The cat function thus allows to
convert a representation in one format into a representation in another one.

1.5.3 cat-E

$ vcsn-char-b -aab cat-E ’exp’

<red-exp>

$ vcsn-char-b -oxml cat-E ’exp’ > e.xml

$ vcsn-char-b -ixml cat-E e.xml

<red-exp>

Read the expression exp given as a string,
stores it in the memory, and writes it back,
as a string by default.
It can also read and write the expression as
an XML file.

Comments: The different behaviours of the cat-E function according to the possible formats
have been described at Section 1.3.3.2.

A rational espression output by cat-E is in reduced form (cf. Section 1.4.1.2).

1.5.4 display

$ vcsn display a.xml

$
Display the automaton a.xml via Graphviz.

Comments: The ame functionality may be achieved by outputting the automaton a.xml in
the dot format and then calling dotty directly (cf. Section 1.3.3.1).

The possibility of using Vgi, a graphic interface written within the Vaucanson project,
will be given as soon as possible.
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1.5.5 edit

$ vcsn edit a.xml

$
Create and edit the automaton a.xml via keyboard interface.

This command edit provides a textual interface to define automata interactively. It takes
as argument the filename of the automaton to be defined or modified. If the file does not
yet exist, the alphabet of the automaton should be specified on the command line (using the
--alphabet or --a option as with any other command), and the file will be created when the
editor is exited; if the file does exist, the alphabet will be read from the file along with the
automaton itself, and the file will be overwritten upon exit.

The interface is based on a menu of choices as shown on the following example.

$ vcsn-char-z --alphabet=ab edit test.xml

Automaton description:

States: (none)

Initial states: (none)

Final states: (none)

Transitions: (none)

Please choose your action:

1. Add states.

2. Delete a state.

3. Add a transition.

4. Delete a transition.

5. Set a state to be initial.

6. Set a state not to be initial.

7. Set a state to be final.

8. Set a state not to be final.

9. Display the automaton in Dotty.

10. Exit.

11. Exit without saving.

Your choice [1-11]:

Enter 1, you will be prompted for the number of states to add; enter 1 again. The state 0 is
created. To make it initial, select 5, and:

Your choice [1-10]: 5

For state: 0

With weight:1

To make it final, use choice 7 likewise.
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Your choice [1-10]: 7

For state: 0

With weight:-3

Add finally a transition:

Your choice [1-10]: 3

Add a transition from state: 0

To state: 0

Labeled by the expression: a+2b

As shown above, rational expressions are valid labels, that is, the automaton created is a gen-
eralized automaton. On top of the interactive menu, the current definition of the automaton
is reported in a textual yet readable form:

Automaton description:

States: 0

Initial states: 0 (W: 1)

Final states: 0 (W: -3)

Transitions:

1: From 0 to 0 labeled by a+(2 b)

Note that states are numbered from 0, but transitions numbers start at 1.

Finally, hit 10 to save the resulting automaton in the file ‘test.xml’.
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Chapter 2

Specification of functions on
automata and rational expressions

Functions are classified according to the type of automata they are applied to. They depend
upon the type of the monoid: free monoid and direct product of two free monoids at this
stage of TAF-Kit (Vaucanson 1.4) and upon the type of the multiplicity semiring: ‘nu-
merical’ semiring in general, and R (implemented as float) as an example of a field and
Boolean semiring in particular. Some functions are specialised to even more particular type
of alphabets. Note that TAF-Kit (Vaucanson 1.4) offers no instance where the multiplicity
semiring is a semiring of series (over a free monoid with multiplicity in a numerical semiring)

In this chapter, we give the specifications of the functions, that is, the preconditions on
their arguments, and the description of the result and how it is related to the argument.

1. General automata and rational expressions

2. Weighted automata and rational expressions over free monoids

3. Automata and rational expressions over free monoids with weights in a field.

4. Boolean automata and rational expressions over free monoids

5. Weighted automata over product of two free monoids

6. Weighted automata over free monoids over alphabets of pairs

This classification is used to organise the lists of commands. Every instance of TAF-

Kit contains the commands of the first section and of one or several others, as indicated in
Table 2.1 below. A command with input and output arguments with different types belongs
to the instance corresponding to the input type. Moreover, such a command exists only if the
type of the output argument is instanciated as well (cf. partial-identity, Section 2.2.1.5).

Comment for the Vaucanson Group (101205): Chacune des sections suivantes commence
par la liste des commandes dont on a pu penser, à un moment ou un autre et en particulier
au cours de la seconde Jam session, qu’elles devraient être implémentées dans Vaucanson

1.4.

En commentaire, et dans le corps de la section, l’état actuel et les projets.
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command name alphabet type weight semiring function sections

vcsn-char-b characters 〈B,∨,∧〉 1, 2, 4
vcsn-int-b integers 〈B,∨,∧〉 1, 2, 4

vcsn-char-z characters 〈Z,+,×〉 1, 2
vcsn-int-z integers 〈Z,+,×〉 1, 2
vcsn-char-zmax characters 〈Z,max,+〉 1, 2
vcsn-char-zmin characters 〈Z,min,+〉 1, 2
vcsn-char-r characters 〈R,+,×〉 1, 2, 3
vcsn-char-q characters 〈Q,+,×〉 1, 2, 3
vcsn-char-f2 characters 〈F2,+,×〉 1, 2, 3

vcsn-char-char-b pairs of characters 〈B,∨,∧〉 1, 2, 4, 6
vcsn-char-int-b pairs of character and integer 〈B,∨,∧〉 1, 2, 4, 6
vcsn-int-int-b pairs of integers 〈B,∨,∧〉 1, 2, 4, 6
vcsn-char-char-z pairs of characters 〈Z,+,×〉 1, 2, 6
vcsn-int-int-z pairs of integers 〈Z,+,×〉 1, 2, 6

vcsn-char-fmp-b characters 〈B,∨,∧〉 1, 5
vcsn-char-fmp-z characters 〈Z,+,×〉 1, 5
vcsn-int-fmp-b integers 〈B,∨,∧〉 1, 5
vcsn-int-fmp-z integers 〈Z,+,×〉 1, 5

Table 2.1: The TAF-Kit instances in Vaucanson 1.4 and their commands
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2.1 General automata and rational expressions

Automata are ‘labelled graphs’, and these labels are, in full generality, elements of a monoid
associated with a multiplicity (taken in a semiring). The commands considered in this section
make assumption neither on the monoid, nor on the weight semiring. They are thus called
by any instance of TAF-Kit, for automata of any type.1

1. Graph functions

(1.1) accessible <aut>, coaccessible <aut>

(1.2) trim <aut>, is-trim <aut>

(1.3) is-empty <aut>

(1.4) is-useless <aut>

2. Transformations of automata

(2.1) proper <aut>, is-proper <aut>

(2.2) standardize <aut>, is-standard <aut>

3. Operations on automata

(3.1) union <aut1> <aut2>

(3.2) sum <aut1> <aut2>

(3.3) concatenate <aut1> <aut2>

(3.4) star <aut>

(3.5) left-mult <aut> <k>

(3.6) right-mult <aut> <k>

(3.7) chain <aut> <n>

4. Operations on behaviours of automata

(4.1) sum-S <aut1> <aut2>

(4.2) cauchy-S <aut1> <aut2>

(4.3) star-S <aut>

5. Automata and expressions; operations on expressions

(5.1) aut-to-exp <aut>, aut-to-exp-DM <aut>, aut-to-exp-SO <aut>

(5.2) expand <exp>

(5.3) exp-to-aut <exp>

The following function is not implemented. It is just convenient to describe specification
of ‘dual’ functions in this section. It differs from transpose as it has no effect on the labels.

$ vcsn reverse a.xml > b.xml

$

Reverses every edge of the underlying graph of the automaton
a.xml, as well as exchanges the initial and final edges and
write the result in b.xml.

1Allowing some exceptions, mentioned when describing the functions.
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2.1.1 Graph functions

Automata are ‘labelled graphs’: a number of functions on automata are indeed functions on
the graph structure, irrespective of the labels.

2.1.1.1 accessible, coaccessible

$ vcsn accessible a.xml > b.xml 2

$

Computes the accessible part of the automaton a.xml and
writes the result in b.xml.

Specification:

The description of the function is the specification. It is realised by a traversal of the under-
lying graph of a.xml.

$ vcsn coaccessible a.xml > b.xml.

$

Computes the co-accessible part of the automaton a.xml and
writes the result in b.xml.

Specification:

coaccessible(a.xml) = reverse(accessible(reverse(a.xml)))

2.1.1.2 trim, is-trim

$ vcsn trim a.xml > b.xml

$

Computes the trim part of the automaton a.xml and writes
the result in b.xml.

Specification:

trim(a.xml) = coaccessible(accessible(a.xml))

$ vcsn -v is-trim a.xml

Input is not trim Tells whether or not the automaton a.xml is trim.

Specification:

is-trim(a.xml) = is-accessible(a.xml) ∧ is-coaccessible(a.xml)3

2.1.1.3 is-empty

$ vcsn -v is-empty a.xml

Input is not empty
Tells whether or not the automaton a.xml is empty.

2As the functions of this section are valid for all instances of TAF-Kit 1.4, the instance in the description
is shown under the generic name vcsn.

3Even if the functions coaccessible and is-coaccessible are not implemented, the specification is clear.
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2.1.1.4 is-useless

$ vcsn -v is-useless a.xml

Input is has successful computations

Tells whether or not the automaton a.xml has successful com-
putations.

Specification:

is-useless(a.xml) = is-empty(trim(a.xml))

Comments: is-useless is a graph function and tests whether there are successful computa-
tions in the automaton, that is a sequence of co-terminal transitions, the first one beginning in
an ‘initial state’, the last one ending in a ‘final state’. By definition, or by the way automata
are specified in Vaucanson, each of these transitions have a non-zero label. This does not
imply that the label of the computation itself is different from zero, nor that the behaviour
of the automaton is different from zero.

For instance, the behaviour of the Z-automaton usl.xml of Figure 2.1 is the null series.
Nevertheles one has:

$ vcsn-char-z -v is-useless usl.xml

Input has a successful computation

usl.xml { 2 states, 2 transitions, #I = 1, #T = 1 }

0

1

1

a({-1} a)

1

Figure 2.1: The Z-automaton usl.xml

2.1.2 Transformations of automata

2.1.2.1 is-proper, proper

$ vcsn -v is-proper a.xml

Input is not proper
Tells whether or not the automaton a.xml is proper.

Specification:

An automaton is proper if it has no spontaneous transitions,4 that is, no transition labelled
by the identity of the monoid (empty word for free monoids, the pair of empty words for
product of free monoids). If a transition is labelled by a polynomial and not by a monomial,
this means that the support of the polynomial does not contain the identity.

4Often called also epsilon transitions.
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$ vcsn proper a.xml > b.xml

$

Computes a proper automaton equivalent to a.xml and writes
the result in b.xml.

Specification:

(i) This procedure can be called for automata of any type.

(ii) The procedure eliminates the spontaneous transitions of the automaton. The result may
not be defined for some automata of certain type. We follow the definition taken in [7, 8]
and consider that the result is defined if, and only if, the family of weights of computations
labelled by the identity is summable.

(iii) The spontaneous-transition elimination algorithm implemented in Vaucanson 1.4 is
novel. It is valid for automata whose weight semiring is positive (such as K = B, (Z,min,+),
(Z,max,+)) or ordered, with a ‘positive’ part which is a subsemiring and a ‘negative’ part
which is the opposite of tbe positive part (such as K = Z, Q, R). Finally, the case of K = F2

is treated separately.

Altogether, the algorithm is valid for all instances of TAF-Kit 1.4. It is (will be indeed)
documented in [6] and at Section C.1.2.1.

2.1.2.2 is-standard, standardize

$ vcsn -v is-standard a.xml

Input is standard Tells whether or not the automaton a.xml is standard.

Specification:

An automaton is said to be standard if it has a unique initial state which is the destination of
no transition and whose initial multiplicity is equal to the unit (of the multiplicity semiring).

$ vcsn standardize a.xml > b.xml

$

Transforms a.xml into a standard automaton and writes the
result in b.xml.

Specification:

(i) If a.xml is standard, b.xml=a.xml.

(ii) As a standard automaton is not necessarily proper, nor accessible, and the initial func-
tion of a state may a priori be any polynomial, standardize is not completely specified by
the definition of standard automaton and (i) above.

(iii) Roughly, the procedure amounts to make ‘real’ the subliminal initial state, eliminate by
a backward closure the spontaneous transitions thus created, and suppress among the former
initial states those ones that have become not accessible after the closure.

A more precise specification is given by the description of the algorithm at Section C.1.2.2.

Example: Figure 2.2 shows a transducer tt1.xml built for the sake of the example and the
result of the command:

$ vcsn-char-fmp-b standardize tt1.xml \| display -

Comments: Every automaton is equivalent to a standard one.
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tt1.xml { 5 states, 7 transitions, #I = 2, #T = 2 }

0

1

1

(1,y)1 (a,1)

1

2

(1,x) (b,1)

3

1

1(aab,xyx)

4

(ab,yx)

- { 5 states, 7 transitions, #I = 1, #T = 3 }

0

1

1

(1,y) (a,1)

1

2

(1,x) (b,1)

4

(ab,yx)

5

1

1+(a,1)+(aab,xyx)

(1,x)

1

Figure 2.2: A transducer and its standardization

2.1.3 Operations on automata

2.1.3.1 union

$ vcsn union a.xml b.xml > c.xml

$

Builds the automaton that is the union of a.xml and b.xml

and writes the result in c.xml.

Precondition: No precondition.

2.1.3.2 sum

$ vcsn sum a.xml b.xml > c.xml

$

Build the automaton that is the ‘sum’ of a.xml and b.xml and
writes the result in c.xml.

Precondition: a.xml and b.xml are standard for the sum operation is defined only on
standard automata.

Specification:

cf. Section C.1.3.2

2.1.3.3 concatenate

$ vcsn concatenate a.xml b.xml > c.xml

$

Build the automaton that is the ‘concatena-
tion’ of a.xml and b.xml and writes the result
in c.xml.

Precondition: a.xml and b.xml are standard for the concatenation operation is defined
only on standard automata.

Specification:

cf. Section C.1.3.3.
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Comments: The concatenate function of two automata realises the (Cauchy) product of
their behaviours. We keep the word ‘product’ for a product function which is based on
the Cartesian product of the automata and which realises the intersection of the accepted
languages in the case of Boolean automata, and the Hadamard product of the behaviours in
the general case of weigted automata (cf. Section 2.2.4.1).

2.1.3.4 star

$ vcsn star a.xml > b.xml

$

Build the automaton that is the star of a.xml and writes the
result in b.xml.

Precondition: a.xml is standard for the star operation is defined only on standard au-
tomata.

Specification:

cf. Section C.1.3.4

2.1.3.5 left-mult

$ vcsn left-mult a.xml k > b.xml

$

Build the automaton that is obtained by multiplication on the
left of a.xml by k and writes the result in b.xml.

Precondition: a.xml is standard for the left ‘exterior’ multiplication operation is defined
only on standard automata.

Specification:

cf. Section C.1.3.5

Comments: Beware that although the multiplication is on the left, the operand k is the
second argument, and thus written on the right of a.xml.

2.1.3.6 right-mult

$ vcsn right-mult a.xml k > b.xml

$

Build the automaton that is obtained by multiplication on the
right of a.xml by k and writes the result in b.xml.

Precondition: a.xml is standard for the right ‘exterior’ multiplication operation is defined
only on standard automata.

Specification:

cf. Section C.1.3.6

Example: Figure 2.3 shows the effect of a left and a right exterior multiplication on the
standardization of the Z-automaton c1.xml.

$ vcsn-char-z standardize c1.xml \| left-mult - 3 \| display -

$ vcsn-char-z standardize c1.xml \| right-mult - 5 \| display -
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- { 3 states, 5 transitions, #I = 1, #T = 1 }

0 0+1

1

1

e

({2} 0)+({2} 1)

2

e

({3} 0)+({3} 1)

({3} 1)

- { 3 states, 5 transitions, #I = 1, #T = 1 }

0 0+1

1

1

({5} e)

({2} 0)+({2} 1)

2

e

0+1

1

Figure 2.3: Left and right multiplication on a standard Z-automaton

2.1.3.7 chain

$ vcsn chain a.xml n > b.xml

$

Build the concatenation of n copies of a.xml by and writes the
result in b.xml.

Precondition: a.xml is standard for the concatenation operation is defined only on stan-
dard automata.

Example: Figure 2.4 shows the effect of a concatenation of 3 copies of the standardization
of the (B-)automaton a1.xml.

$ vcsn-char-z standardize a1.xml \| chain - 3 \| display -

- 
{ 

10
 s

ta
te

s,
 2

4 
tr

an
si

tio
ns

, #
I 

=
 1

, #
T

 =
 1

 }

0
a

b

1

a

2b

a
b

4

a+
b 5

a31

a+
b

a

a
b

a

6b

a
b

7

a+
b 8

a
a

b

a

9b 1

a
b

Figure 2.4: Concatenation of 3 copies of the standardization of a1.xml.

Comments: This function compensates for the absence of exponents in the writing of rational
expressions. Note that it may easily yield large automata and entail long execution time.

$ vcsn-char-b -T exp-to-aut -aa ’1+a’ \| chain - 1000 > e.xml

Charge id: <name> total self calls self avg. total avg.

100.0% 0: _program 357.13s 357.13s 1 5.95m 5.95m
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58.1% 2: CMD[1]: chain 334.75s 207.43s 1 207.43s 5.58m

35.6% 4:concat_of_standard 127.30s 127.30s 999 127.43ms 127.43ms

6.3% 5: automaton output 22.37s 22.37s 1 22.37s 22.37s

0.0% 3: is_standard 0.02s 0.02s 1998 0.01ms 0.01ms

0.0% 1:CMD[0]: exp-to-aut 0.00s 0.00s 1 0.31ms 0.31ms

$ vcsn-char-b data e.xml

States: 1001

Transitions: 500500

Initial states: 1

Final states: 1001

$ vcsn-char-b -T exp-to-aut -aa ’a’ \| chain - 1000 > f.xml

Charge id: <name> total self calls self avg. total avg.

100.0% 0: _program 870.36ms 870.36ms 1 0.87s 0.87s

58.4% 2: CMD[1]: chain 814.54ms 508.55ms 1 0.51s 0.81s

34.6% 4:concat_of_standard 300.73ms 300.73ms 999 0.30ms 0.30ms

5.9% 5: automaton output 51.30ms 51.30ms 1 51.30ms 51.30ms

0.6% 3: is_standard 5.27ms 5.27ms 1998 0.00ms 0.00ms

0.0% 1:CMD[0]: exp-to-aut 0.21ms 0.21ms 1 0.21ms 0.21ms

$ vcsn-char-b data f.xml

States: 1001

Transitions: 1000

Initial states: 1

Final states: 1

$ vcsn-char-b concatenate e.xml f.xml > g.xml

$ vcsn-char-b -T eval g.xml ’a^1024’ 5

Charge id: <name> total self calls self avg. total avg.

100.0% 0: _program 410.71s 410.71s 1 6.85m 6.85m

67.7% 7: eval 277.97s 277.97s 1 277.97s 277.97s

27.7% 4: eps_removal 113.62s 113.62s 1 113.62s 113.62s

3.6% 2: automaton input 14.77s 14.77s 1 14.77s 14.77s

0.5% 1: CMD[0]: eval 410.71s 2.12s 1 2.12s 6.85m

0.5% 3: cut_up 1.88s 1.88s 1 1.88s 1.88s

0.1% 5: accessible_states 0.33s 0.33s 1 0.33s 0.33s

0.0% 6: sub_automaton 0.03s 0.03s 1 26.80ms 26.80ms

2.1.4 Operations on behaviour of automata

These functions implement somehow (one direction of) Kleene’s Theorem by building stan-
dard automata which realize the rational operations on the behaviour of the parameters (the
-S stands for ‘series’, as the behaviour is a series in general).

5Bien sûr pas sous cette forme.
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2.1.4.1 sum-S

$ vcsn sum-S a.xml b.xml > c.xml

$

Build a standard automaton whose behaviour is the sum of
the behaviours of a.xml and b.xml and writes the result in
c.xml.

Precondition: No precondition.

Specification:

sum-S(a.xml, b.xml) = sum(standardize(a.xml),standardize(b.xml))

2.1.4.2 cauchy-S

$ vcsn cauchy-S a.xml b.xml > c.xml

$

Build a standard automaton whose behaviour is the (Cauchy)
product of the behaviours of a.xml and b.xml and writes the
result in c.xml.

Precondition: No precondition.

Specification:

cauchy-S(a.xml, b.xml) = concatenate(standardize(a.xml),standardize(b.xml))

Comments: The terminology used here is meant to recall that the product of behaviours
of automata, seen as series, is the Cauchy product, and corresponds to the concatenation of
automata (when they are standard automata) and not to their product. The latter is defined
for realtime automata over a free monoid only (cf. Section 2.2.4.1).

2.1.4.3 star-S

$ vcsn star a.xml > b.xml

$

Build a standard automaton whose behaviour is the star of the
behaviour of a.xml and writes the result in b.xml.

Precondition: No precondition.

Specification:

star-S(a.xml) = star(standardize(a.xml))

2.1.5 Automata and expressions; operations on expressions

2.1.5.1 aut-to-exp, aut-to-exp-DM <aut>, aut-to-exp-SO <aut>

In Vaucanson, expressions are computed from automata by the state elimination method.
The algorithm is then specified by the order in which the states are eliminated. In TAF-Kit

1.4, the order is either an order computed by a heuristics called the naive heuristics — which
is the default option —, or an order computed by a heuristics due to Delgado–Morais [3], or
simply the order of the states identifiers.
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$ vcsn aut-to-exp a.xml > e.xml

$

$ vcsn aut-to-exp-DM a.xml > e.xml

$

$ vcsn aut-to-exp-SO a.xml > e.xml

$

Build a rational expression which denotes the behaviour of
a.xml and writes the result in e.xml.

Precondition: No precondition.

Specification:

cf. Section C.1.4.

Example: The three orders applied to the automaton ladybird-3.xml (Figure 2.5) give the
following results.

$ vcsn-char-b aut-to-exp ladybird-3.xml

a.(c.a+b+c+a.(b+c)*.(c+a).a)*.(c+a.(b+c)*.(c+a))+1

$ vcsn-char-b aut-to-exp-DM ladybird-3.xml

(a.(b+c)*.c+a.(b+c)*.a.(b+c)*.(c+a))*

$ vcsn-char-b aut-to-exp-SO ladybird-3.xml

a.(c.a+b+c)*.a.((c+a).a.(c.a+b+c)*.a+b+c)*.((c+a).a.(c.a+b+c)*.c+c+a)+a.(c.a+b+c)*.c+1

On this example the DM heuristics seems to be better than the naive one. They give
indeed the same results in many cases (eg for ladybird-n.xml for n � 4). A thorough
comparison between the two heuristics remains to be done.

The same functions apply of course to weighted automata and transducers as well.

$ vcsn-char-z aut-to-exp c1.xml

(0+1)*.1.(2 0+2 1)*

$ vcsn-char-fmp-b aut-to-exp t1.xml

((a,1).(1,y)+(1,x).(b,1))*.((a,1)+1)

$ vcsn-char-fmp-b aut-to-exp-SO t1.xml

((a,1).(1,y))*.(1,x).((b,1).((a,1).(1,y))*.(1,x))*.(b,1).((a,1).(1,y))*.

((a,1)+1)+((a,1).(1,y))*.((a,1)+1)

ladybird-3.xml { 3 states, 9 transitions, #I = 1, #T = 1 }

0

1

1

1

a c

b c

2

a

a c

b c

Figure 2.5: The automaton ladybird-3.xml
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2.1.5.2 exp-to-aut

$ vcsn -ixml exp-to-aut e.xml > a.xml

$

Build an automaton whose behaviour is denoted by the ex-
pression e.xml and writes the result in a.xml.

Precondition: no precondition.

Specification:

The automaton a.xml is the ‘standard automaton’ of the expression e.xml, computed by the
recursive use of the operations on automata, as described at Section 2.1.3 and as specified at
Section ??.

For the specification of the expression formats, cf. Section 1.3.3.2.

Caveat: (i) For technical reasons, the exp-to-aut function is not implemented for the
fmp instances, that is, for transducers, in TAF-Kit 1.4.

(ii) The actual implementation of exp-to-aut carries out first a ‘letterization’ of the expres-
sion, which is not necessary in principle. As it is, it is completely synonymous to the standard
function (cf. Section 2.2.3). This is one of the reasons for which it is not implemented for the
fmp instances.

Example: The exp-to-aut function is not implemented for transducers, but is for weigted
automata, as shown at Figure 2.6, result of the following command (cf. [7, Exer. III.2.24]).

$ vcsn-char-q -aab exp-to-aut ’(1/6a* + 1/3b*)*’ \| display -

- { 3 states, 6 transitions, #I = 1, #T = 3 }

0

1

({2} 1)

1

({1/3} a)

3

({2/3} b)

({2} 1)

({4/3} a)

({2/3} b) ({1/3} a)

({2} 1)

({5/3} b)

Figure 2.6: A standard Q-automaton built by exp-to-aut

2.1.5.3 expand

$ vcsn -ixml -oxml expand e.xml > f.xml

$

Expands the expression e.xml and writes the
result in a.xml.

Specification:
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Distribute product over addition. For the specification of the expression formats, cf. Sec-
tion 1.3.3.2.

Caveat: Not implemented for the fmp instances, that is, for expressions over a direct product
of free monoids.

Example:

$ vcsn-char-b -aabc expand ’(a+b+1)((a+ba)(ca+cc))*’

a.(aca+acc+baca+bacc)*+b.(aca+acc+baca+bacc)*+(aca+acc+baca+bacc)*

Comment for the Vaucanson Group (110626): Fonction de service, pour présenter certains
résultats de façon plus naturelle et lisible.

Dans mon souvenir, la distributivité s’effectuait récursivement de gauche à droite, jusqu’à
la première sous-expression étoilée, et s’arrêtait alors, sans franchir cette sous-expression et
sans rentrer dedans.

Je pense que cette fonction peut avoir différents comportements, l’actuel, celui décrit
précédemment, et peut-être d’autres, commandés par un paramètre. Il faudrait aller y voir de
plus près.

Working document --- Do not circulate – 53 – Compiled July 8, 2011 at 668



2.2 Weighted automata and expressions over free monoids

The following functions concern automata over a free monoid — as opposed to automata
over a direct product of free monoids. A priori, there is no assumption on the multiplicity
semiring. However, in Vaucanson 1.4, TAF-Kit gives access to automata with weight in
‘numerical’ commutative semirings only.

The next two sections, Section 2.3 and Section 2.4, will describe functions that are special
to automata with multiplicity in a field (R and Q) and in B respectively.

1. Properties and transformations of automata

(1.1) transpose <aut>

(1.2) is-realtime <aut>, realtime <aut>

(1.3) is-unambiguous <aut>

(1.4) quotient <aut>

(1.5) partial-identity <aut>

2. Behaviour of automata

(2.1) eval <aut> <word>

(2.2) eval-S <aut> <word>

3. From expressions to automata

(3.1) standard <exp>

4. Operations on automata and their behaviour

(4.1) product <aut1> <aut2>

(4.2) power <aut> <n>

(4.3) shuffle <aut1> <aut2>, infiltration <aut1> <aut2>

2.2.1 Properties and transformations of automata

The following function is not implemented. It is just convenient to describe the specification
of realtime.

$ vcsn letterize a.xml > b.xml

$

Computes from a.xml an equivalent automaton whose transi-
tions are all labelled by letters or the empty word, by cutting
the label of every transition into letters and writes the result
in b.xml.
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2.2.1.1 transpose

$ vcsn transpose a.xml > b.xml

$

Computes the transposition of the automaton a.xml and
writes the result in b.xml.

Specification:

Builds the transposition of the underlying graph, and exchanges the initial and final functions
(that is, realises the function reverse (cf. Section 2.1). Finally, transposes the labels as well,
that is, takes the mirror image of the words that label the transitions and in the initial and
final functions.6

Comments: (i) The behaviour of At, the tranpose of A, is the transpose of the behaviour
of A.

(ii) There exists a transpose function for transducers (fmp) as well, that will be redefined
explicitely for them (cf. Section 2.5.1.2).

2.2.1.2 is-realtime, realtime

$ vcsn is-realtime -v a.xml

Input is realtime Tells whether or not the automaton a.xml is realtime.

Specification:

An automaton (over a free monoid) is realtime if it is both letterized and proper.

$ vcsn realtime a.xml > b.xml

$

Computes from a.xml an automaton by eliminating the spon-
taneous transitions from the letterized version of a.xml and
writes the result in b.xml.

Specification:

realtime(a.xml) = proper(letterize(a.xml))

Comments: (i) The problem with realtime is the same as the one of proper and has
been mentioned at Section 2.2.4.1.

(ii) letterize(proper(a.xml)) is another realtime automaton, which has potentially many
more states and transitions than realtime(a.xml).

2.2.1.3 is-unambiguous

$ vcsn -v is-unambiguous a.xml

Input is unambiguous
Tells whether or not the automaton a.xml is unambiguous.

Precondition: a.xml is a realtime automaton.

Specification:

An automaton is unambiguous if every word accepted by the automaton is the label of only
one successful computation.

Comments: An automaton A is ambiguous if, and only if, the trim part of the product
A×A contains a state outside of the diagonal.

6Such automata can be built by using the edit or the image functions for instance.
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2.2.1.4 quotient

$ vcsn quotient a.xml > b.xml

$
Computes the quotient of a.xml and writes the result in b.xml.

Precondition: a.xml is a realtime automaton.

Specification:

The quotient function implements an iterative refinement of equivalences over states (by a
variant of Hopcroft’s algorithm) cf. Section C.2.1.1.

$ vcsn-char-z -T power c1.xml 10 \| quotient - \| display -

Taf-kit command bench

...

[Task list:]

Charge id: <name> total self calls self avg. total avg.

100.0% 0: _program 20.15s 20.15s 1 20.15s 20.15s

93.2% 7: eps_removal 18.78s 18.78s 1 18.78s 18.78s

1.0% 10: quotient 0.23s 0.21s 1 0.21s 0.23s

1.5% 6: cut_up 0.31s 0.31s 1 0.31s 0.31s

1.5% 3: product 0.31s 0.30s 9 32.89ms 33.89ms

1.2% 5: CMD[1]: quotient 19.61s 0.25s 1 0.25s 19.61s

1.1% 1: CMD[0]: power 0.54s 0.23s 1 0.23s 0.54s

0.2% 8: accessible_states 0.04s 0.04s 1 36.56ms 36.56ms

0.2% 4:is_realtime (autom 0.03s 0.03s 19 1.62ms 1.62ms

0.0% 9: sub_automaton 0.01s 0.01s 1 6.97ms 6.97ms

0.0% 2: automaton input 0.01s 0.01s 1 5.12ms 5.12ms

0.0% 11: CMD[2]: display 0.00s 0.00s 1 0.95ms 1.46ms

0.0% 12: automaton output 0.00s 0.00s 1 0.52ms 0.52ms

2.2.1.5 partial-identity

$ vcsn partial-identity a.xml > t.xml

$

Transforms the automaton a.xml over A∗ into an automaton
over A∗×A∗ (a fmp-transducer) which realises the identity
on the behaviour of a.xml and writes the result in t.xml.

Precondition: no precondition.

Specification:

Every transition of t.xml is obtained from a transition of a.xml by keeping the same weight
and by replacing the label f by the pair (f, f).

Example:

$ vcsn-char-z partial-identity c1.xml > c1pi.xml

$ vcsn-char-fmp-z display c1pi.xml
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c1pi.xml { 2 states, 5 transitions, #I = 1, #T = 1 }

0

1

(0,0)(1,1)

1

(1,1)

1

({2} (0,0))({2} (1,1))

Figure 2.7: A weighted partial identity

Caveat: (i) The partial-identity function is implemented for the TAF-Kit instances
vcsn-char-b, vcsn-int-b, vcsn-char-z, et vcsn-int-z only, so that the type of the result
matches an implemented instance for fmp.

(ii) As the type of the result is different from the type of the input, it is not possible to use
the intern pipe to chain the functions.

2.2.2 Behaviour of automata

The function aut-to-exp (cf. Section 2.1.5.1) applies to these automata.

2.2.2.1 eval

$ vcsn eval a.xml ’word’

<value>

Computes the coefficient of the word word in the series realized
by a.xml.

Precondition: (i) a.xml is realtime.

(ii) word is a sequence of letters in the input alphabet of a.xml (the generators of A∗).

Example:

$ vcsn-char-z power c1.xml 10 > c10.xml

$ vcsn-char-z eval c10.xml ’10’

1024

Caveat: The parameter word must be a sequence of letters, and not an expression which
denotes a word.

$ vcsn-char-z eval c10.xml ’1 0’

FATAL: Cannot parse 1 0

Comments: Not so trivial algorithm (cf. Section ??).
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2.2.2.2 eval-S

$ vcsn eval-S a.xml ’word’

<value>

Computes the coefficient of the word word in the series realized
by a.xml.

Precondition: (i) No condition on a.xml.

(ii) As for eval, word is a sequence of letters in the input alphabet of a.xml.

Specification:

eval-S(a.xml,word) = eval(realtime(a.xml),word).

2.2.3 From expressions to automata

2.2.3.1 standard

$ vcsn standard e.xml > a.xml

$

Computes the standard automaton of e.xml and writes the
result in a.xml.

Specification:

We call standard automaton what is often called in the literature Glushov automaton or
position automaton of the expression that is thus understood to be ‘letterized’ (even if it not
necessarily so in Vaucanson 1.4).

Comments: In TAF-Kit 1.4, the standard function is synonymous to exp-to-aut, or to
be more precise, the exp-to-aut function is synonymous to standard (cf. Section 2.1.5.2).

2.2.4 Operations on automata and their behaviour

2.2.4.1 product

$ vcsn product a.xml b.xml > c.xml

$

Computes the product of a.xml and b.xml and writes the
result in c.xml.

Precondition: (i) a.xml and b.xml are realtime automata.

(ii) This operation requires, to be meaningful, that the weight semiring be commutative,
and this is the case for all the instances implemented in TAF-Kit 1.4.

Specification:

The product of a.xml and b.xml is, by definition, the accessible part of the cartesian product
of the two automata whose transitions are defined by

∀p, q ∈ A , ∀r, s ∈ B p
a|k−−−→
A

q and r
a|h−−−→
B

s =⇒ (p, r)
a|kh−−−−→
A×B

(q, s)

and the initial and final functions by

∀p ∈ A , ∀r ∈ B I(p, r) = I(p)I(r) and T (p, r) = T (p)T (r) .

Comments: (i) The result c.xml is a realtime automaton.

(ii) In terms of representations, the representation of the product is the tensor product of
the representations of the operands.
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2.2.4.2 power

$ vcsn power a.xml n > d.xml

$

Computes the product of a.xml by itself n times and writes
the result in d.xml.

Precondition: (i) a.xml is realtime.

(ii) This operation requires, to be meaningful, that the weight semiring be commutative,
and this is the case for all the instances implemented in the TAF-Kit 1.4.

2.2.4.3 shuffle

$ vcsn shuffle a.xml b.xml > c.xml

$

Computes the shuffle of a.xml and b.xml and writes the result
in c.xml.

Precondition: (i) a.xml and b.xml are realtime automata.

(ii) This operation requires, to be meaningful, that the weight semiring be commutative.

Specification:

The shuffle of a.xml and b.xml is, by definition, the accessible part of the automaton whose
set of states is the cartesian product of the sets of states of the two automata and whose
transitions are defined by

∀p, q ∈ A , ∀r ∈ B p
a|k−−−→
A

q =⇒ (p, r)
a|kh−−−−→
A�B

(q, r)

∀p ∈ A , ∀r, s ∈ B r
a|h−−−→
B

s =⇒ (p, r)
a|kh−−−−→
A�B

(p, s)

and the initial and final functions by

∀p ∈ A , ∀r ∈ B I(p, r) = I(p)I(r) and T (p, r) = T (p)T (r) .

2.2.4.4 infiltration

$ vcsn infiltration a.xml b.xml > c.xml

$

Computes the infiltration of a.xml and b.xml

and writes the result in c.xml.

Precondition: (i) a.xml and b.xml are realtime automata.

(ii) This operation requires, to be meaningful, that the weight semiring be commutative.

Specification:

The infiltration of a.xml and b.xml is, by definition, the accessible part of the automaton
whose set of states is the cartesian product of the sets of states of the two automata and
whose transitions are those of the product and of the shuffle.
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2.3 Automata and rational expressions on free monoids with

weights in a field

Three instances of TAF-Kit 1.4 implement a weight semiring which is a field : vcsn-char-q,
vcsn-char-r, and vcsn-char-f2, for which the weight semiring is Q, R, and F2 = Z/2Z
respectively (cf. Section 1.2.2). In addition to all the functions of the preceding section which
obviously apply, a function reduce is specific those automata whose weight semiring is a field.
It then easily allows to test the equivalence of two automata or expressions.

1. Operations on automata

(1.1) reduce <aut>

(1.2) are-equivalent <aut1> <aut2>

2. Operations on expressions

(2.1) are-equivalent-E <exp1> <exp2>

2.3.1 Operations on automata

2.3.1.1 reduce

$ vcsn reduce a.xml > b.xml

$

Computes from a.xml an equivalent automaton of minimal
dimension and writes the result in b.xml.

Precondition: a.xml is realtime.

Comments: Implements Schützenberger algorithm for reduction of representations (cf. Sec-
tion C.3).

$ vcsn-char-r power c1.xml 5 \| reduce - \| data -

States: 7

Transitions: 56

Initial states: 1

Final states: 1

$ vcsn-char-q power c1.xml 5 \| reduce - \| data -

States: 7

Transitions: 49

Initial states: 1

Final states: 1

$ vcsn-char-r power c1.xml 2 \| quotient - \| reduce - > c2qr.xml

$ vcsn-char-q display c2qr.xml

$ vcsn-char-q eval c2qr.xml ’bbba’

196

$ vcsn-char-q eval c2qr.xml ’bbbb’

-15/286331153
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$ vcsn-char-q eval c2qr.xml ’baaaaaaaaaaaaaaa’

1073741824

$ vcsn-char-q eval c2qr.xml ’baaaaaaaaaaaaaaaa’

0

c2qr.xml { 3 states, 12 transitions, #I = 1, #T = 1 }

0

1

a

1

b ({-11} a) ({-32} b)

1

({4} a)({9} b)

2

a ({-1/1431655765} b)

({-8} a) ({24} b)

({-2/4294967295} a)({2/4294967295} b)

Figure 2.8: L’automate c2qr.xml

2.3.1.2 are-equivalent

$ vcsn -v are-equivalent a.xml b.xm

Automata are not equivalent
Tells whether or not the automata a.xml and b.xml realize
the same series.

Precondition: no precondition.

Specification:

are-equivalent(a.xml,b.xml) =
is-useless(reduce(sum(realtime(a.xml),left-mult(realtime(b.xml),-1))))

$ vcsn-char-r power c1.xml 3 \| quotient - > c3q.xml

$ vcsn-char-r power c1.xml 3 \| transpose - \| quotient - \| transpose - > c3cq.xml

$ vcsn-char-q -v are-equivalent c3q.xml c3cq.xml

Automata are not equivalent

2.3.2 Operations on expressions

2.3.2.1 are-equivalent-E

$ vcsn -v -ixml are-equivalent-E e.xml f.xml

Expressions are equivalent

Tells whether or not the expressions e.xml

and f.xml denote the same language.

Specification:

are-equivalent-E(e.xml,f.xml)= are-equivalent(standard(e.xml),standard(f.xml))

Caveat: The specifications for the input format of rational expressions apply for this function.

Example:
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$ vcsn-char-q -aab -v are-equivalent-E ’b*((2a).b*)*’ ’((2a)*b)*(2a)*’

Expressions are equivalent
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2.4 Boolean automata and rational expressions on free monoids

The classical theory of automata has been developed for automata with no weight, that is,
with weight taken in the Boolean semiring. All functions of Section 2.1 and Section 2.2
obviously apply. But a number of other functions, very important ones indeed, are specific
to Boolean automata.

1. Operations on automata

(1.1) is-complete <aut>, complete <aut>

(1.2) is-deterministic <aut>, determinize <aut>

(1.3) complement <aut>

(1.4) minimize <aut>

(1.5) prefix <aut>, suffix <aut>, factor <aut>

2. Operations on behaviours of automata

(2.1) enumerate <aut>

(2.2) shortest <aut>

(2.3) intersection <aut1> <aut2>

(2.4) are-equivalent <aut1> <aut2>

3. Operations on expressions

(3.1) derived-term <exp>

(3.2) are-equivalent-E <exp1> <exp2>

Comments: For clarifying specifications, we make use of some specific automata:

• V is the empty automaton (no state);

• W is the one-state automaton, where the unique state is initial but not final, and is
both the source and the target of a transition labeled by every letter of the alphabet.

2.4.1 Operations on automata

2.4.1.1 is-complete, complete

$ vcsn -v is-complete a.xml

Input is complete
Tells whether or not the automaton a.xml is complete.

Precondition: a.xml is realtime.

Specification:

A realtime automaton a.xml over the alphabet A is complete if

(a) it has at least one initial state;
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(b) every state of a.xml is the origin of at least one transition labelled by a, for every a
in A.

Comments: As a consequence of the specifications, every word of A∗ is the label of at least
one computation in a.xml (characteristic property which makes (a) necessary), possibly a not
successful one.

(i) The definition thus depends not only on a.xml itself, but also on the alphabet on which
a.xml is constructed. Or, to tell it in another way, not only on the value of the automaton,
but also on its type.

(ii) The empty automaton V is not complete.

(iii) Once the definition is written down, it appears that it could be taken for automata over
a free monoid in general, and not only for Boolean automata. It is the function complete()

which would be meaningless, or, at least, artifical.

(iv) One must acknowledge that the definition is rather artifical also for automata which are
not accessible.

$ vcsn complete a.xml > b.xml

$

Computes from a.xml an equivalent complete automaton and
writes the result in b.xml.

Precondition: a.xml is realtime.

Specification:

If a.xml is not complete,

(a) add a new state z to a.xml;

(b) for every state p of a.xml (including z), and for every a in A, if there exist no transi-
tion (p, a, q) in a.xml, add a transition (p, a, z) to a.xml;

(c) if there exist no initial state in a.xml, make z initial.

Comments: complete(V) = W.

2.4.1.2 is-deterministic, determinize

$ vcsn is-deterministic -v a.xml

Input is not deterministic Tells whether or not the automaton a.xml is deterministic.

Precondition: a.xml is realtime.

Specification:

A realtime automaton a.xml over the alphabet A is deterministic if

(a) it has at most one initial state;

(b) every state of a.xml is the origin of at most one transition labelled by a, for every a
in A.

Comments: As a consequence, every word of A∗ is the label of at most one computation
in a.xml (characteristic property which makes (a) necessary).

(i) The result depends indeed only on a.xml itself, not on its type.

(ii) The empty automaton V is deterministic.
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$ vcsn determinize a.xml > b.xml

$

Computes the ‘determinisation’ of a.xml and writes the result
in b.xml.

Precondition: a.xml is realtime.

Specification:

Computes the accessible part of the ‘subset automaton’, an algorithm sometimes refered to
as ‘the subset construction’. The result is thus accessible and complete.

determinize(V) = W

2.4.1.3 complement

$ vcsn complement a.xml > b.xml

$

Computes the ‘complement automaton’ of a.xml and writes
the result in b.xml.

Precondition: a.xml is complete (thus realtime) and deterministic.

Specification:

Swap terminal for non-terminal states in a.xml.

Comments: Thanks to the preconditions, the language accepted by complement(a.xml) is
the complement of the language accepted by a.xml.

2.4.1.4 minimize

$ vcsn minimize a.xml > b.xml

$

Computes the ‘minimized automaton’ of a.xml and writes the
result in b.xml.

Precondition: a.xml is complete (thus realtime) and deterministic.

Specification:

minimize(a.xml) = quotient(a.xml).

Comments: Thanks to the preconditions,

(a) minimize(a.xml) is the minimal automaton of the language accepted by a.xml.

(b) a variant of the quotient algorithm (known as Hopcroft algorithm) can be used and is
indeed implemented in TAF-Kit (cf. Section C.4.1.1)

2.4.1.5 prefix, suffix, factor

$ vcsn prefix a.xml > b.xml

$
Makes every state of a.xml final and writes the result in b.xml.

Precondition: a.xml is realtime and trim.

Comments: Thanks to the preconditions, b.xml= prefix(a.xml) is an automaton which
accepts all prefixes of words in the language accepted by a.xml.

$ vcsn suffix a.xml > b.xml

$

Makes every state of a.xml initial and writes the result in
b.xml.
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Precondition: a.xml is realtime and trim.

Comments: Thanks to the preconditions, b.xml= suffix(a.xml) is an automaton which
accepts all suffixes of words in the language accepted by a.xml.

$ vcsn factor a.xml > b.xml

$

Makes every state of a.xml initial and final and writes the
result in b.xml.

Precondition: a.xml is realtime and trim.

Comments: Thanks to the preconditions, b.xml= factor(a.xml) is an automaton which
accepts all factors of words in the language accepted by a.xml.

Example: Figure 2.9 shows the automata for the prefixes, suffixes, and factors of div3base2.xml.

- { 3 states, 6 transitions, #I = 1, #T = 3 }

0

e

0

e

1

1 1

e

2

0 0

e

1

- { 3 states, 6 transitions, #I = 3, #T = 1 }

0

e

0

e

1

1 e1

2

0 e0

1

- { 3 states, 6 transitions, #I = 3, #T = 3 }

0

e

0

e

1

1 e1

e

2

0 e0

1

e

Figure 2.9: Automata for the prefixes, suffixes, and factors of div3base2.xml

2.4.2 Behaviour of automata

2.4.2.1 enumerate

$ vcsn enumerate a.xml n

< list of words >

Computes the list of the words of length less than or equal to
n in the support of the series realized by a.xml.

Precondition: a.xml is realtime.

Specification:

(i) The words are enumerated in the radix ordering, and output as one word per line.

(ii) If is-useless(a.xml), then the list is empty.

Example: The next command enumerates the words with an even number of a’s.

$ vcsn enumerate apair.xml 3

1

b

aa

bb
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aab

aba

baa

bbb

2.4.2.2 shortest

$ vcsn shortest a.xml

< word >

Computes the shortest word in the support of the series real-
ized by a.xml.

Precondition: a.xml is realtime.

Specification:

If is-useless(a.xml), exits with a nonzero exit code.

2.4.3 Operations on behaviours of automata

2.4.3.1 intersection

$ vcsn intersection a.xml b.xm > c.xml

$

Computes from a.xml and b.xml an automa-
ton which accepts the intersection of the lan-
guages accepted by a.xml and b.xml and
writes the result in c.xml.

Precondition: no precondition.

Specification:

intersection(a.xml,b.xml) = product(realtime(a.xml),realtime(b.xml))

2.4.3.2 are-equivalent

$ vcsn are-equivalent -v a.xml b.xm

Automata are not equivalent

Tells whether or not the automata a.xml and b.xml accept
the same language.

Precondition: no precondition.

Specification:

are-equivalent(a.xml,b.xml) =
is-useless(intersection(a.xml, complement(determinize(realtime(b.xml)))))

∧ is-useless(intersection(complement(determinize(realtime(a.xml))),b.xml))

2.4.4 Operations on expressions

2.4.4.1 derived-term

$ vcsn derived-term e.xml > a.xml

$

Computes the derived term automaton of e.xml and writes
the result in a.xml.
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Precondition: no precondition.

Specification:

The precise specification of derived-term is to be found elsewhere.

Caveat: The specifications for the input format of rational expressions apply for this function.

Example: As shown with the next commands and Figure 2.10, the automaton div3base2.xml

yields again a good example (cf. [7, Exer. I.5.5]).

$ vcsn-char-b aut-to-exp-SO div3base2.xml

0*.1.(1.0*.1)*.0.(0.(1.0*.1)*.0+1)*.0.(1.0*.1)*.1.0*+0*.1.(1.0*.1)*.1.0*+0*

$ vcsn-char-b aut-to-exp-SO div3base2.xml \| derived-term - \| display -

- { 7 states, 17 transitions, #I = 1, #T = 2 }

0

e

e

1

0

2

0

3

0

4

1

5

1

e

0

0

1

0

1

1

6

0

1 1

0

0

1

Figure 2.10: The derived term automaton of an expression computed from div3base2.xml

Comments: The definition of the derived term automaton of an expression in the Boolean
case is due to Antimirov [1]. The computation of the derived terms of an expression in
Vaucanson 1.4 implements the ideas introduced in [2] (cf. Section C.4.3.1).

The derived term automaton of an expression can be defined for weighted expressions as
well and not only for Boolean expressions (cf. [5]). This is not implemented in Vaucanson

1.4 (but will be in subsequent versions of Vaucanson).

2.4.4.2 are-equivalent-E

$ vcsn -v -ixml are-equivalent-E e.xml f.xm

Expressions are equivalent

Tells whether or not the expressions e.xml

and f.xml denote the same language.
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Precondition: no precondition.

Specification:

are-equivalent-E(e.xml,f.xml)= are-equivalent(standard(e.xml),standard(f.xml))

Caveat: The specifications for the input format of rational expressions apply for this function.
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2.5 Weighted automata over a product of two free monoids

Automata over a product of (two) free monoids are called transducers in the literature and
fmp-transducers in Vaucanson, ‘fmp’ stands for free monoid product. Their behaviours are
series over A∗×B∗, that is, weighted subsets of A∗×B∗, or weighted relations from A∗ (input
monoid) to B∗ (output monoid) but looked at rather symmetrically.

Transducers can also be considered as automata over the input alphabet with multiplicity
in the semiring of (rational) series over the output alphabet (the equivalence between the two
points of view is asserted by the Kleene-Schützenberger Theorem). These would be called
rw-transducers in Vaucanson, ‘rw’ stands for rational weights and are not implemented
in TAF-Kit Vaucanson 1.4 (cf. Section 1.2.2). They will be implemented in subsequent
versions of Vaucanson.

In the sequel, we denote the input monoid by A∗, the output monoid by B∗ — in TAF-

Kit 1.4, they are both alphabets of characters or both alphabets of integers — and the weight
semiring (numerical, and commutative) by K — in TAF-Kit 1.4, B or Z. We denote the
transducers by tdc rather than by aut.

In theory, all functions of Section 2.1 should apply. But few, which involve reading
rational expressions: cat-E, exp-to-aut, are not implemented in TAF-Kit 1.4. A number
of functions are specific to transducers, and described in this section.

1. Transformations of transducers

(1.1) inverse <tdc>

(1.2) transpose <tdc>

(1.3) is-subnormalized <tdc>, subnormalize <tdc>

(1.4) is-ltl <tdc>

(1.5) ltl-to-pair <tdc>

2. Operations on transducers

(2.1) domain <tdc>, image <tdc>

(2.2) composition <tdc1> <tdc2>

(2.3) evaluation <tdc> <aut>

(2.4) eval <tdc> <word>

3. Operations on behaviours of transducers

(3.1) composition-R <tdc1> <tdc2>

(3.2) evaluation-S <tdc> <aut>

Comment for the Vaucanson Group: Bilan de la réunion du 2/12/10:

(i) Pas implémentées, et ne le seront pas rapidement parce que pas urgent ou important:

W-image;

(ii) Pas encore implémentées mais le seront peut-être:

eval, composition-R, evaluation-S;
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2.5.1 Transformations of transducers

2.5.1.1 inverse

$ vcsn inverse t.xml > u.xml

$

u.xml realizes what is called the inverse relation of the relation
realized by t.xml

Precondition: no precondition.

Specification:

Swaps the first for the second component in the labels of the transitions of the transducer
t.xml and writes the result in the transducer u.xml.

Comments: inverse(t.xml) is kind of pivotal function and will have an influence on the
specification of other functions.

2.5.1.2 transpose

$ vcsn transpose t.xml > u.xml

$

Computes the transposition of the transducer t.xml and
writes the result in the transducer u.xml.

Precondition: no precondition.

Specification:

(i) Builds the transposition of the underlying graph.

(ii) Transposes the labels of the transitions thanks to the extension of the function transpose()
from words to pair of words:
transpose((f,g))= (transpose(f),transpose(g)).

2.5.1.3 is-subnormalized, subnormalize

$ vcsn is-subnormalized -v t.xml

Input is not subnormalized Tells whether or not the transducer t.xml is subnormalized.

Specification:

A transducer is subnormalized if it is

1. proper ;

2. weakly ‘letterized’, in the sense that the labels of transitions are either in (A×1B∗) or
in (1A∗×B), or in (A×B);

3. initial and final functions are scalar, that is, take values in the weight semiring.

Comments: The terminology ‘subnormalized’ is new and comes from ‘normalized’, which
means that the labels of transitions are either in (A×1B∗) or in (1A∗×B). The terminology
‘normalized’ is not so good, as it collides with the notion of normalized automata, but is
widely accepted and used. Once ‘normalized’ is accepted, ‘subnormalized’ is not so bad.
Other suggestions are still welcome: no established terminology exists.
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$ vcsn subnormalize t.xml > u.xml

$

Computes from t.xml a subnormalized transducer and writes
the result in u.xml.

Precondition: no precondition.

Specification:

1. As for proper above, one wants to ‘letterize’ first, and then eliminate the spontaneous
transitions.

2. We are to ‘letterize’ monomials such as m = {k}(f, g) with f in A∗ and g in B∗.

A monomial of the form {k}(abc, xy) will be decomposed in the product of n =
sup(|f | , |g|) ‘generators’ in the following way:

({k}(a, x)) (b, y) (c, 1)

3. create n − 1 states between the origin and the end of the transition labeled by the
monomial and the n transitions such that each of them is labeled by one of the generators
we have computed in the above decomposition, the first one being possibly weighted.

4. eliminate the spontaneous transitions with a ‘backward’ procedure.

Comments: The function subnormalize is only a ‘decomposition’ algorithm; it does not
attempt to make the automaton more compact: this would be the task of other, and more
sophisticated, algorithms.

2.5.1.4 is-ltl

$ vcsn is-ltl -v t.xml

Input is letter-to-letter

Tells whether or not the label of every transition of t.xml is
in A×B.

2.5.1.5 ltl-to-pair

$ vcsn ltl-to-pair t.xml > a.xml

$

Transforms t.xml into an automaton over (A×B)∗ with weight
in K and writes the result in a.xml.

Precondition: t.xml is letter-to-letter.

Specification:

The label of every transition of t.xml becomes a letter in the alphabet (A×B) and the weight
of the transition is kept unchanged.
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2.5.2 Operations on transducers

2.5.2.1 domain, image, W-image

$ vcsn domain t.xml > a.xml

$

Forgets the second component of the label and the weight of
the transitions of the transducer t.xml and writes the result
in the Boolean automaton a.xml on A∗.

Precondition: no precondition.

$ vcsn image t.xml > b.xml

$

Forgets the first component of the label and the weight of the
transitions of the transducer t.xml and writes the result in
the Boolean automaton b.xml on B∗.

Precondition: no precondition.

Comments: The specification for image is taken so that the following identities hold:

image(t.xml) = domain(inverse(t.xml)) and

domain(t.xml) = image(inverse(t.xml)).

$ vcsn W-image t.xml > c.xml

$

Forgets the first component of the label (and not the weight)
of the transitions of the transducer t.xml and writes the result
in the weighted automaton c.xml on B∗.

Precondition: no precondition.

Comments: Mostly ancillary: needed for evaluation.

Comment for the Vaucanson Group (101205): Pas implémentée.

2.5.2.2 composition

$ vcsn composition t.xml u.xml > v.xml

$

Realizes the composition algorithm on t.xml

and u.xml and writes the result in v.xml.

Precondition: t.xml and u.xml are subnormalized, with matching monoids (output of
t.xml = input of u.xml) and same weight semirings.

Specification:

The composition algorithm used in TAF-Kit is described at Section C.5.2.2.

Comments: When the weight semiring is not complete, it may be the case that the compo-
sition is not defined, in which case the call to composition will produce an error.

Working document --- Do not circulate – 73 – Compiled July 8, 2011 at 668



2.5.2.3 evaluation

$ vcsn evaluation t.xml a.xml > b.xml

$

Computes an automaton which realizes the
image of the series realized by a.xml by the
relation realized by t.xml and writes the re-
sult in b.xml.

Precondition: t.xml is subnormalized, a.xml is a realtime automaton over the input
monoid of t.xml, t.xml and a.xml have the same weight semiring.

Specification:

evaluation(t.xml, a.xml)= W-image(composition(partial-identity(a.xml),t.xml))

Comments: When the weight semiring is not complete, it may be the case that the evaluation
is not defined, in which case the call to evaluation will produce an error.

2.5.2.4 eval

$ vcsn eval t.xml w > b.xml

$

Computes an automaton which realizes the
image of the word w by the relation realized
by t.xml and writes the result in b.xml.

Precondition: t.xml is subnormalized, w is a word over the input monoid of t.xml.

Specification:

eval(t.xml, w) = evaluation(t.xml, standard(w))

Comments: Just a wrapper for evaluation.

Comment for the Vaucanson Group (101205): Pas implémentée.

2.5.3 Operations on behaviours of transducers

2.5.3.1 composition-R

$ vcsn composition-R t.xml u.xml > v.xml

$

Computes a transducer that realizes the com-
position of the relations realized by t.xml and
u.xml and writes the result in v.xml.

Precondition: t.xml and u.xml have matching monoids (output of t.xml = input of
u.xml) and the same weight semiring.

Specification:

composition-R(t.xml, u.aml)= composition(subnormalize(t.xml), subnormalize(u.xml))

Comment for the Vaucanson Group (101205): Pas implémentée.
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2.5.3.2 evaluation-S

$ vcsn evaluation-S t.xml a.xml > b.xml

$

Computes an automaton which realises the
series which is the image of the series realized
by a.xml by the relation realized by t.xml

and writes the result in b.xml.

Precondition: t.xml is any transducer, a.xml is any automaton over the input monoid of
t.xml, t.xml and a.xml have the same weight semiring.

Specification:

evaluation-S(t.xml, a.xml) = evaluation(subnormalize(t.xml),realtime(a.xml))

Comment for the Vaucanson Group (101205): Pas implémentée.
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2.6 Weighted automata on free monoids over alphabets of

pairs

An alphabet of pairs A is defined by a pair of alphabets B and C and letters in A are pairs
(b, c) with b in B and c in C. A is thus a subset of B×C, (B×C)∗ is easily identified with a
subset of B∗×C∗ and in this way some functions apply to automata over A∗ that correspond
to functions on automata over B∗×C∗.

The alphabets of pairs are the key to several constructions on automata and transducers.
One example is when letters within an expression or an automaton are indexed ; another one
is the treatment of letter-to-letter transducers as automata on a free monoid. In TAF-Kit

of Vaucanson 1.4 there are not many functions special to automata over such alphabets.
There will be more in subsequent versions. At this stage, what is more important is the mere
existence of this type of automata whithin TAF-Kit, which already allows to demonstrate the
usefulness of going forth and back between the class of transducers and the one of automata.

1. Transformations of automata

(1.1) first-projection <aut>, second-projection <aut>

(1.2) pair-to-fmp <aut>

Comment for the Vaucanson Group: Bilan de la réunion du 2/12/10:

Aucune de ces commandes n’a encore été testée en dehors des tests associés à la génération–
compilation de la tarball.

2.6.1 Transformations of automata

2.6.1.1 first-projection, second-projection

$ vcsn first-projection a.xml > b.xml

$

yields an automaton over B∗ (resp. C∗), by keeping the first
(resp. second) component of every letter.

2.6.1.2 pair-to-fmp

$ vcsn pair-to-fmp a.xml > t.xml

$

yields fmp-transducer over B∗×C∗ every letter (b, c) to the
corresponding element of B∗×C∗.

Specification:

A transition labelled by (a, x)(b, x)(a, y) becomes a transition labelled by (aba, xxy).
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Appendix A

Automata repository and factory

The Vaucanson 1.4 distribution contains a folder data/automata/ where a number of au-
tomata and of Vaucanson programs which build automata are ready for use by the TAF-Kit

commands.

A.1 B-automata

A.1.1 Repository

The following automata files are stored ‘data/automata/char-b/’ directory (and accessible
by the command vcsn-char-b cat).

A.1.1.1 ‘a1.xml’ for A1

a b

a

b

a

b

Figure A.1: The Boolean automaton A1 over {a, b}∗ (cf. Figure 1.1).

A.1.1.2 ‘b1.xml’ for B1

b

a

b

a

b

Figure A.2: The Boolean automaton B1 over {a, b}∗.

A.1.2 Factory

The following programs are in the ‘data/automata/char-b/’ directory.
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A.1.2.1 Program ‘divkbaseb’

$ divkbaseb 4 3 > div4base3.xml

$

Generates an automaton over the digit alphabet {0, . . . , b−1}
that recognises the writing in base b of the numbers divisible
by the integer k.

Comments: The ‘divisor’ ‘div3base2.xml’ (Figure A.3) is already in the repository.

1

1

0

0

0 1

Figure A.3: The ‘divisor’ ‘div3base2.xml’ over {0, 1}∗.

A.1.2.2 Program ‘double ring’

$ double ring 6 1 3 4 5 > double-6-1-3-4-5.xml

$

Generates an n state automaton over the al-
phabet {a, b} that consists in a double ring of
transitions: a counter clockwise ring of tran-
sitions labelled by a and a clockwise ring of
transitions labelled by b.

Specification:

The states are labelled from 0 to n-1. State 0 is initial. The number of states n is the
first parameter and the next parameters give the list of final states. Figure A.5 shows the
automaton built by the above command.

Comments: The double-ring automata are closely related to the star-height problem. Schützen-
berger used them to give the first example of automata over a 2 letter alphabet that have
arbitrary large loop complexity and McNaughton to give the simplest example of minimal
automata which do not achieve the minimal loop complexity for the language the recognize.
This was then reinterpreted in terms of universal automata (cf. [7, Sec. II.8]).

The automaton ‘double-3-1.xml’ (Figure A.5) is already in the repository.

0

1 2

3

45

a

a

a

a

a

a

b

b
b

b

b
b

0

1

2

a

a

a

b
b

b

Figure A.4: The ‘double rings’ H6 and ‘double-3-1.xml’
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A.1.2.3 Program ‘ladybird’

$ ladybird 6 > ladybird-6.xml

$

Generates an n state automaton over the alphabet {a, b, c}
whose equivalent minimal deterministic automaton has 2n

states.

Specification:

The states are labelled from 0 to n-1. State 0 is initial and final. The number of states n is
the first parameter and the next parameters give the list of final states. Figure A.5 shows the
automaton built by the above command.

Comments: The determinisation of ‘ladybird-n’ has 2n states and is minimal as it is
co-deterministic.

‘ladybird-n’ is used in the benchmarking of Vaucanson.

The automaton ‘ladybird-6.xml’ (Figure ??) is already in the repository.

0

1 2

3

45

a

a

a

a

a

a
c c

c

c
c

b, c b, c

b, c

b, cb, c

Figure A.5: The ‘ladybird’ L6

A.1.2.4 Function ‘universal’

To be completed

A.2 Z-automata

A.2.1 Repository

The following automata files are stored ‘data/automata/char-z/’ directory (and accessible
by the command vcsn-char-z cat).

A.2.1.1 ‘b1.xml’

The chacteristic automaton of the automaton B1 (cf. Figure A.2). The different outcomes of
functions such as power n b1.xml \quotient - on the automaton ‘b1.xml’ illustrate well
the influence of the weights.
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A.2.1.2 ‘c1.xml’ for C1

Comments: The series realized by C1 associated with every word w of {a, b}∗ its value in
the binary notation, when a is interpreted as 0 and b as 1.

b

a

b

2a

2b

Figure A.6: The Z-automaton C1 over {a, b}∗.

A.2.2 Factory

The following program is in the ‘data/automata/char-z/’ directory.

A.2.2.1 Program ‘rem divkbaseb’

$ rem divkbaseb 4 3 > rem-div4base3.xml

$

Generates an automaton over the digit alpha-
bet {0, . . . , b− 1} that computes the remain-
der of the division by the integer k of the num-
bers written in base b (cf. Figure A.7).

Comments: The ‘divisor’ ‘rem-div3base10.xml’ is already in the repository.

0 3

1

2

{1}e

{3}e

{2}e

1
1

0

0

2

2

1
1

0 2

2

0

Figure A.7: The ‘divisor’ ‘rem-div4base3.xml’ over {0, 1, 2}∗.

A.3 B-fmp-transducers

A.3.1 Repository

The following automata files are stored ‘data/automata/char-z/’ directory (and accessible
by the command vcsn-char-z cat).
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A.3.1.1 ‘t1.xml’ for T1

a |1

1 |x

b |1

1 |y

Figure A.8: The fmp-transducer T1 over {a, b}∗×{x, y}∗ (cf. Section C.5.2.2).

A.3.1.2 ‘u1.xml’ for U1

x |1 y |1

1 |u1 |v

Figure A.9: The fmp-transducer U1 over {x, y}∗×{u, v}∗ (cf. Section C.5.2.2).

A.3.2 Factory

The following program is in the ‘data/automata/char-fmp-b/’ directory.

A.3.2.1 Program ‘quotkbaseb’

$ quotkbaseb 3 2 > quot3base2.xml

$

Generates an fmp-transducer over the digit alphabets
{0, . . . , b − 1} that computes the integer quotient of the divi-
sion by the integer k (first parameter) of the numbers written
in base b (second parameter).

Comments: The ‘divisor’ ‘quot3base2.xml’ (cf. Figure A.10) is already in the repository.

1 |0

1 |1

0 |0

0 |1

0 |0 1 |1

Figure A.10: The ‘divisor’ ‘quot3base2.xml’ over {0, 1, 2}∗.
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Appendix B

FSMXML,
an XML format for automata

Comment : This appendix gives the description of the format FsmXML that had been given
in May 2008 under a layout that is lighter than the reference card that can be found on the
web page of format.

This description is not up to date anymore and has to be updated.

FsmXML is an XML format proposal for the description of weighted automata, transduc-
ers, and regular expressions.

The aim of this XML format is to make possible, and hopefully easy, the communication be-
tween the various programs and systems that deal with weighted automata and transducters.
FsmXML is part of the Vaucanson Project. In particular, FsmXML is the input/output
format of TAF-Kit, the command line interface to the Vaucanson library.

This document gives a pseudo-formal description of the format.

All tags of the format are listed, with their children, and attributes.
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1 The root tag

0. <fsmxml/>

The unique possible root of an FsmXML file, which can contain any number of au-
tomata and standalone rational expressions.

<fsmxml xmlns="" version="">

<automaton/> 0 or more occ.
<regExp/> 0 or more occ.

</fsmxml>

2 The value type tags

Both <automaton/> and <regExp/> have a child in common: the <valueType/> tag which
describes the ‘type’ of the behaviour of the automaton or of the series denoted by the expres-
sion.

1. <valueType/>

<valueType>

<writingData/> opt.
<semiring/> req.
<monoid/> req.

</valueType>

2. <semiring/>

· Pivotal att.: type = numerical |series token, req.

2.1. type = numerical

<semiring type=numerical set=’’ operation=’’ >

<writingData/> opt.
</semiring>

· Att: set = B |N |Z |Q |R |C token, req.
operation = classical | minPlus | maxPlus token, req.

· Tag <writingData identitySymbol=’’ zeroSymbol=’’/>

· Att.: identitySymbol = ’ ’ string, req.
zeroSymbol = ’ ’ string, req.

2.2. type = series

<semiring type=series>

<writingData/> opt.
<semiring/> req.
<monoid/> req.

</semiring>

· Constraint: <monoid/> should not be of type = unit
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3. <monoid/>

· Pivotal att.: type = unit |free |product token, req.

3.1. type = unit

This type means ’no monoid’ and gives the possibility of describing within the
format graphs valued by numerical semirings only.

<monoid type=unit/>

· Constraint: not allowed in <semiring type=series/> (cf. 2.2)
nor in <monoid type=product/> (cf. 3.3)

3.2. type = free

· Pivotal att.: genKind = simple |tuple token, req.
· Pivotal att.: genDescrip = enum |range |set token, req.

This attribute genDescrip is put for further development. No alternative value is
described here.

3.2.1. genKind = simple

<monoid type=free genKind=simple genDescrip=’enum’ genSort=’’>

<writingData/> opt.
<monGen/> 1+ occ. req.

</monoid>

· Att.: genSort = letter |digit |alphanum |integer token, req.
· Tag <writingData identitySymbol=’’/>

identitySymbol = ’ ’ string,
Tells how the identity of the monoid should be written when output (e.g. in expressions)

3.2.2. genKind = tuple

<monoid type=free genKind=tuple genDim=’’ genDescrip=’enum’>

<writingData/> opt.
<genSort> req.

<genCompSort/> "genDim" occ. req.
</genSort>

<monGen/> 1+ occ. req.
</monoid>

· Att.: genDim = ’ ’ integer strictly larger than 1, req.
· Tag <genSort/> holds the "genDim" <genCompSort/> tags
· Tag <genCompSort value=’’/>

value = ’ ’ has the same role as the attribute genSort in 3.2.1
for the corresponding coordinate of the monoid generator
and can take the same token values.
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3.3. type = product

<monoid type=product prodDim=’’>

<writingData/> opt.
<monoid/> "prodDim" occ. req.

</monoid>

· Att.: prodDim = ’ ’ integer strictly larger than 1, req.

– Constraint: no children <monoid/> can be of type = unit

4. <monGen/>

Describes a monoid generator for a free monoid.
Its form will depend on the pivotal attribute genKind.
(The only case considered here is when genDescrip = enum.)

4.1. genKind = simple

<monGen value=’’/>

· Att.: value must be consistent with genSort req.

4.2. genKind = tuple

<monGen>

<monCompGen/> "genDim" occ. req.
</monGen>

· Tag <monCompGen value=’’/>

– Constraint: each value must be consistent with the corresponding genCompSort
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3 The rational (regular) expressions

5. <regExp/>

<regExp name="">

<valueType/> req.
<typedRegExp/> req.

</regExp>

· Att.: name= ’ ’ string, opt.

– Constraint: the <monoid/> cannot be of type = unit

– At this stage, one could think of a <writingData/> tag which would contains writing
options for the expressions: a dot or nothing for the product, delimitors for the weight,
etc.

6. <typedRegExp/>

<typedRegExp>

{Body::typedRegExp} plays the role of a non terminal in a grammar.
</typedRegExp>

{Body::typedRegExp}= <sum/>|<product/>|<star/>|
<rightExtMul/>|<leftExtMul/>|
<zero/>|<one/>|<monElmt/>

7. <sum/>

<sum>

{Body::typedRegExp}
{Body::typedRegExp}

</sum>

8. <product/>

<product>

{Body::typedRegExp}
{Body::typedRegExp}

</product>

9. <star/>

<star>

{Body::typedRegExp}
</star>
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10. <rightExtMul/> or <leftExtMul/>

<xxxExtMul>

<weight/>

{Body::typedRegExp}
</xxxExtMul>

11. <zero/> and <one/> ”final” tags

12. <monElmt/>

Depends on the pivotal attribute type of the <monoid/> in the <valueType/>.

12.1. type = free

<monElmt>

<monGen/> 1+ occ. req.
</monElmt>

12.2. type = product

<monElmt>

<one/>|<monElmt/> "prodDim" occ. req.
</monElmt>

13. <weight/>

Depends on the pivotal attribute type of the <semiring/> in the <valueType/>.

13.1. type = numerical

<weight value=’’/>

· Att.: value= ’ ’ string, that will be interpreted according to the attribute set

– If set =Q , one can think of having 2 integers values.

13.2. type = series

<weight>

{Body::typedRegExp} of the <valueType/> defined by <semiring/>

</weight>
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4 The automata

14. <automaton/>

<automaton name=’’ readingDir=’’>

<geometricData/> opt.
<drawingData/> opt.
<valueType/> req.
<automatonStruct/> req.

</automaton>

· Att.: name = ’ ’ string, opt.
readingDir = left |right token,

· Tag <geometricData x=’’ y=’’/> gives relative origin
· Tag <drawingData drawingClass=’’ /> or something more complicated

15. <automStruct/>

<automStruct>

<states/> req.
<transitions/> req.

</automStruct>

16. <states/>

<states>

<state/> 0 or more occ.
</states>

17. <state/>

<state id=’’ name=’’ key=’’ >

<geometricData/> opt.
<drawingData/> opt.

</state>

· Att.: id = ’ ’ string, req. must be unique in the whole automaton.
name = ’ ’ string, opt.
key = ’ ’ integer opt. may be used to pass an ordering on the states.

· Tag <geometricData x=’’ y=’’/> coordinates of the state
· Tag <drawingData drawingClass=’’ /> or something more complicated
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18. <transitions/>

<transitions>

<transition/> 0 or more occ.
<initial/> 0 or more occ.
<final/> 0 or more occ.

</transitions>

19. <transition/>

<transition source=’’ target=’’>

<geometricData/> opt.
<drawingData/> opt.
<label/> req.

</transition>

· Att.:source = ’ ’ string, req. must be a valid id

target = ’ ’ string, req. must be a valid id

· Tag <geometricData transitionType=’’ labelPos=’’ labelDist=’’ loopDir=’’/>

· Pivotal att.: transitionType = EdgeL |EdgeR |ArcL |ArcR token, req.
source must be different from target

transitionType = Loop source must be equal to target

· Att.: loopDir = N |S |E |W |NE |NW |SE |SW token, req.
or integer between 0 and 360 (E 0)
but only if transitionType = Loop

labelPos = ’ ’ float opt.
labelDist = ’ ’ float opt.

· Tag <drawingData drawingClass=’’ /> or something more complicated

20. <initial/>

<initial state=’’>

<geometricData/> opt.
<drawingData/> opt.
<label/> req.

</initial>

· Att.: state = ’ ’ string, req. must be a valid id

· Tag <geometricData initialDir=’’ labelPos=’’ labelDist=’’/>

(cf. 19)

· Tag <drawingData drawingClass=’’ /> or something more complicated

It is assumed that initial states are marked with an incoming arrow.
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21. <final/>

<final state=’’>

<geometricData/> opt.
<drawingData/> opt.
<label/> req.

</final>

· Att.: state = ’ ’ string, req. must be a valid id

· Tag <geometricData finalMod=’’ finalDir=’’ labelPos=’’ labelDist=’’/>

· Pivotal att.: finalMod = circle |arrow token, req.
· Other att: cf. 19.

· Tag <drawingData drawingClass=’’ /> or something more complicated

22. <label/>

<label>

{Body::typedRegExp}
</label>
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Appendix C

Algorithm specification,
description and discussion

C.1 General automata and rational expressions functions

C.1.1 Graph functions

C.1.1.0 reverse

This is a hidden (and ancillary) graph function, not accessible to the user through TAF-

Kit (because it would be somewhat confusing with transpose. It builds the transpose of the
graph including the initial and final function that can be seen as labels of arcs from subliminal
to real states, but leaves the labels untouched.

C.1.1.1 accessible, coaccessible, trim

Graph traversal. Implemented by depth-first, or breadth-first search?

Should be in-place by default in the library.

C.1.2 Transformations of automata

C.1.2.1 proper

From a theoretical point of view, the algorithm proper cannot be described, nor understood,
before addressing the problem of the star in a semiring of series.

(1) If M is graded, then K〈〈M〉〉, equipped with the Cauchy product, is a semiring as well.1

If T is a semiring, and t is in T, by definition

t∗ =
∑
n∈N

tn

and as infinite sums are not always defined, t∗ is not always defined. Hence a semiring should
be equipped with two supplementary methods (supplementary to the defining operations of
the semiring) is-starable() and star(), with obvious meaning and result.

1If M is not graded, this may not be the case anymore, but is out of the scope of Vaucanson for the time
being, and for certain while.
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If s is a series in K〈〈M〉〉, we denote by c(s) its constant term, that is, the coefficient of 1M .
Thus, a series s is proper if its constant term is nul: c(s) = 0K. And the proper part of an
arbitrary series s is the proper series sp such that s = c(s)1M + sp. Under a natural, and not
restrictive, hypothesis on K (cf. [7, 8]), the following property holds.

Property 1 A series s in K〈〈M〉〉 is starable if, and only if, c(s) is starable and it holds:
s∗ = (c(s))∗ (sp (c(s))∗)∗

As a conclusion to this paragraph, we can say that star is not always defined in K, and
thus in K〈〈M〉〉.
(2) Let A be an automaton over M with multiplicityin K. We say that the behaviour of A,
|||A|||, is defined if, and only if, for every pair of states p and q in A, the family of labels of
computations from p to q is summable.

Let A0 be the automaton obtained from A by retaining the transitions labelled by 1M
only. We then have:

Property 2 The behaviour of A is defined if, and only if, the behaviour of A0 is.

(3) Let A = 〈 I,E, T 〉 and A0 = 〈 I,E0, T 〉 be their respective matrix description. We
write Ep for the proper matrix such that E = Ep +E0 .

Property 3 If the behaviour of A is defined, we have:

|||A||| = I · E0
∗ · (Ep ·E0

∗)∗ · T .

It is important to note that it is not true that |||A||| is necessarily defined when E0
∗, and

thus I · E0
∗ · (Ep ·E0

∗)∗ · T are defined (cf. [7, 8] for more details and example).

TO BE COMPLETED

C.1.2.2 standardize

An automaton is said to be standard if it has a unique initial state which is the destination of
no transition and whose initial multiplicity is equal to the unit (of the multiplicity semiring).

Not only every automaton is equivalent to a standard one, but a simple procedure, called
‘standardization’, transforms every automaton A in an equivalent standard one. The difficulty
in specifying standardization comes from the fact that on the one hand side a standard
automaton is not necessarily proper nor accessible and on the other the initial function of a
state may a priori be any polynomial.

The procedure goes as follows.

(i) Add a new state s , make it initial, with initial multiplicity equal to the unit of the
multiplicity semiring.

(ii) For every initial state i of A , with initial function I(i) , add a transition from s to i with
label I(i), and set I(i) to 0K (the zero of the multiplicity semiring) — which is equivalent to
say that i is not initial anymore.

(iii) Suppress by a backward closure every spontaneous transition that has been created
in (ii).
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By convention, we consider that a transition from s to i is spontaneous if I(i) is scalar,
that is, if the support of I(i), seen as a polynomial over A∗, is restricted to the identity 1A∗ .

(iv) Remove the former initial states of A that are the destination of no incoming transition.

Comments: (a) Steps (iii) and (iv) are necessary to insure the following property:

The standardization of a standard automaton A is isomorphic to A.

(b) We say ‘by convention’ in (iii) as we could have chosen different policies without loosing
the above property (which is in the specification of standardize).

– A non-proper polynomial I(i) could give rise to a spontaneous transition labelled with
its constant term. We prefered not to do it in order to change as few things as possible.

– We could have decided to perform no closure as soon as there exists at least one initial
function which is not scalar. We have prefered to have a choice which is more local to every
intial state, but this is certainly disputable.

C.1.3 Operations on automata

A small sketch is worth a long speech.

Let A = <Q,A,E, {i}, T> and B = <R,A, F, {j}, U> be two standard automata:

i

p

q

r

Ti Tq

Tr
Ei,p

Ei,q

A j

s

t

u

Uj Ut

UuFj,s

Fj,t

B

C.1.3.1 union

Just the union of the two automata. It is a graph function indeed.

C.1.3.2 sum

Precondition: a.xml and b.xml are standard for the sum operation is defined only on
standard automata.

Specification:

• The standard automaton A+ B = <Q ∪R \ {j}, A,G, {i}, V > is defined as:
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∀p, q ∈Q ∪R \ {j} ,

Gp,q =


Ep,q if p, q ∈ Q

Fp,q if p, q ∈ R

Fj,q if p = i and q ∈ R

0K otherwise

∀p ∈Q ∪R \ {j} ,

Vp =


Ti ⊕ Uj if p = i

Tp if p ∈ Q \ {i}
Up if p ∈ R

p

q

r

Ti ⊕ Uj

Tq

Tr

Ei,p

Ei,q

s

t

u

Ut

Uu

Fj,s

Fj,t

A+ B

C.1.3.3 concatenate

Precondition: a.xml and b.xml are standard for the concatenation operation is defined
only on standard automata.

Specification:

• The standard automaton A · B = <Q ∪R \ {j}, A,G, {i}, V > is:

∀p, q ∈Q ∪R \ {j} ,

Gp,q =


Ep,q if p, q ∈ Q

Fp,q if p, q ∈ R

TpFj,q if p ∈ Q and q ∈ R

0K otherwise

∀p ∈Q ∪R \ {j} ,

Vp =

{
Up if p ∈ R

Tp Uj if p ∈ Q

i

p

q

r

Ti Uj

Tq Uj

Tr Uj

Ei,p

Ei,q

s

t

u

Ut

Uu

Ti Fj,s

Ti Fj,t

Tq Fj,s

Tq Fj,t

Tr Fj,s

Tr Fj,s

A · B

C.1.3.4 star

Precondition: a.xml is standard for the star operation is defined only on standard au-
tomata.

Specification:
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• The standard automaton A∗ = <Q,A,E(∗), {i}, T (∗)> is:

∀p, q ∈Q,

E(∗)
p,q =

{
T ∗
i Ei,q if p = i

TpT
∗
i Ei,q ⊕ Ep,q otherwise

∀p ∈Q,

T (∗)
p =

{
T ∗
i if p = i

TpT
∗
i otherwise

i

p

q

r

T ∗
i TqT

∗
i

TrT
∗
i

T ∗
i Ei,p

T ∗
i Ei,q

Tr T
∗
i Ei,p

Tr T
∗
i Ei,q

Tq T
∗
i Ei,p Tq T

∗
i Ei,q

A∗

C.1.3.5 left-mult

Precondition: a.xml is standard for the left ‘exterior’ multiplication operation is defined
only on standard automata.

Specification:

• The standard automata kA = <Q,A,E(k.), {i}, T (k.)> is defined by:

∀p, q ∈ Q , E(k.)
p,q =

{
k Ep,q if p = i

Ep,q otherwise

∀p ∈ Q , T (k.)
p =

{
k Tp if p = i

Tp otherwise

i

p

q

r

k Ti Tq

Tr
k Ei,p

k Ei,q

kA

C.1.3.6 right-mult

Precondition: a.xml is standard for the right ‘exterior’ multiplication operation is defined
only on standard automata.

Specification:

• The standard automata Ak = <Q,A,E, {i}, T (.k)> is defined by:

∀p ∈ Q , T (.k)
p = Tp k i

p

q

r

Ti k Tq k

Tr kEi,p

Ei,q

Ak

C.1.4 From automata to expressions

Vaucanson implements the state elimination method for computing the rational expression
that denotes the behaviour of an automaton. The outcome of the algorithme depends upon
the order in which the states are ‘eliminated’.
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In Vaucanson library, this order of states is given to the fonction as a second parameter
called ‘chooser’. The chooser either runs over a list of states that is given explicitely, or
implements a heuristics that computes at each step the next state to be suppressed. Two
heuristics are implemented in the library: the ’näıve heuristics which is described below, and
a variant of it which takes into account not only the number of transitions incident to every
given state, but also the length of the expressions that label these transitions it is due to
Delgado and Morais and described in [3].

Note that in any case and for a precise specification (in view of the derivation procedure
in particular), one should specify the bracketting:

p
F−−→ q

G−−→ q
H−−→ r gives p

F·(G∗·H)−−−−−−→ r (C.1)

after the elimination of the state q.

C.1.4.1 The ‘näıve’ heuristics

(a) Make real the initial and final subliminal states i and t. From i to every initial state p,
there is thus a transition with label I(p). Dually, from every final state r to t, there is thus a
transition with label T (r).

(b) For every state p (outside i and t) compute a two component index (l(p), k(p)):
– l(p) = 1 if p is the origin of a loop, l(p) = 0 otherwise;
– k(p) = [i(p)− 1][o(p) − 1] where i(p) is the in-degree of p and o(p) its out-degree.
– Lexicographically order the states by their index.

(c) While there remains states,
– choose the state q with smallest index,
– remove it and replace the incoming and outgoing transitions according to (C.1),
– recompute the index for those states that were adjacent to q.

(d) Return the label of the transition from i to t.

Comment for the Vaucanson Group (101206):

(i) It is to be carefully checked whether the NHChooser and the DMChooser correctly imple-
ment the näıve and the Delgado–Morais heuristics respectively.

(ii) I do not see why we put k(p) = [i(p)− 1][o(p) − 1] rather than k(p) = [i(p)][o(p)] in the
description of the ‘näıve heuristics.

C.2 Weighted automata and rational expressions over free

monoids

C.2.1 Transformations of automata

C.2.1.1 quotient

As announced, a variant of Hopcroft’s algorithm.

Comment for the Vaucanson Group (101205): Mérite d’être décrit, au moins dans les
grandes lignes.
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C.2.2 Behaviour of automata

C.2.2.1 eval

Comment for the Vaucanson Group (101205): Mérite d’être décrit, au moins dans les
grandes lignes.

C.3 Automata and rational expressions on free monoids with
weights in a field

C.3.1 Operations on automata

C.3.1.1 Reduction of representations over a field

Automata and representation

Any finite automaton over A∗ with multiplicity in K is equivalent to a realtime automa-
ton A with set of states Q: A = 〈 I,E, T 〉 where I and T are vectors in KQ and E is a
square matrix of dimension Q, whose entries are linear combination with coefficients in K of
letters in A. One can then write:

E =
∑
a∈A

aµa

where every aµ is a square matrix of dimension Q with entries in K. These matices define
a morphism µ from A∗ into KQ×Q, and for every w in A∗ the coefficient of w in the series s
realised by A is <s,w> = I · wµ · T . The tuple (I, µ, T ) is called a representation (of
dimension Q) of s.

Rational series over a field

If K is a field F, for every F-rational series s, there exists an integer r, called the rank
of s which is the minimal dimension of any representation of s. A representation of minimal
dimension is said to be reduced.

Theorem 1 (Schützenberger) A reduced representation of a F-rational series s is effec-
tively computable from any representation of s.

A reduced representation of a rational series is an object comparable to the minimal
automaton of a rational language, to the extent it is not unique but defined up to a basis
transformation within F

Q
. The theorem implies two F-automata which realize s and t are

equivalent if, and only if the reduced representation of the series s− t is of dimension 0 and
this is decidable.

The algorithm

A representation (I, µ, T ) of dimension Q being given, the algorithm that underlies the
theorem amounts to find a maximal prefix-closed subset P of A∗ such that the vectors I · pµ
are independent (in FQ). Such set of vectors allows in turn to compute a new and equivalent
representation, of dimension P . The substance of the theorem is that it is sufficient to perform
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this algorithm twice in a row, on the given representation and then on its transpose in order
to get the reduced representation.

The elementary step in this algorithm is thus to determine whether a given vector belongs
to a subspace generated by a set of given independent vectors and in the positive case to
compute its coordinates in this system, that is to solve a system of linear equations. In order
to reach the optimal complexity, and also to be able to treat the case of non-commutative
fields (a case which does not appear in Vaucanson 1.4), these systems are solved by an
iterative method of Gaussian elimination.

C.4 Boolean automata and rational expressions on free monoids

C.4.1 Operations on automata

C.4.1.1 minimize

As announced, Vaucanson implements Hopcroft’s algorithm.

Comment for the Vaucanson Group (101205): Mérite d’être décrit, au moins dans les
grandes lignes.

C.4.3 Operations on expressions

C.4.3.1 derived-term

The derived term automaton is constructed (in the Boolean case) by the following algorithm
(rédigé par PYA):

(i) L’expression est transformée en prat exp

(include/vaucanson/algorithms/internal/partial rat exp.hxx). Il s’agit d’une liste de
noeuds représentant donc une concaténation de sous-expressions. En fait:

- prat(E+ F) = E+ F

- prat(E∗) = E∗
- prat(E.F) = prat(E),F

Les états de l’automate vont être des prat exp, la transformation de l’expression initiale
donne l’état initial, l’automate est construit de manière incrémentale.

(ii) A chaque état:

- on vérifie le terme constant de la prat exp et on rend l’état final en fonction

- pour chaque lettre de l’alphabet on dérive la prat exp

(include/vaucanson/algorithms/internal/partial rat exp derivation.hxx) et on ajoute
une transition en fonction.

Les états sont identifiés grace à l’opérateur == défini sur les prat exp dans
include/vaucanson/algorithms/internal/partial rat exp.hxx .
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C.5 Weighted automata over a product of two free monoids

C.5.2 Operations on transducers

C.5.2.2 composition

Product of normalized transducers

We first consider two proper normalized transducers:

T = 〈Q,A∗×B∗, E, I, T 〉 and U = 〈R,B∗×C∗, F, J, U 〉 ,

that is, the transitions of T are labelled in A×1 or in 1×B and those of U are labelled in
B×1 or in 1×C.

The proof of the Composition Theorem is equivalent to the construction of the transducer

T �� U = 〈Q×R,A∗×C∗, G, I×J, T×U 〉

by the following rules.

(i) If
(
p, (a, 1), q

)
∈ E then for all r ∈ R

(
(p, r), (a, 1), (q, r)

)
∈ G .

(ii) If
(
r, (1, u), s

)
∈ F then for all q ∈ Q

(
(q, r), (1, u), (q, s)

)
∈ G .

(iii) If
(
p, (1, x), q

)
∈ E and (r, (x, 1), s) ∈ F then

(
(p, r), (1, 1), (q, s)

)
∈ G .

A next possible step is to eliminate the transitions with label (1, 1) by means of a clas-
sical closure algorithm. Figure C.1 shows an example of such product, before and after the
elimination of spontaneous transitions.

T1

1 |y

1 |x
b |1

a |1

U1
x |1 y |1

1 |u1 |v

b |1

a |1

b |1

a |1

b |1

a |1

1 |u
1 |v

1 |u1 |v

1 |u1 |v

1 |1

1 |1

T1 �� U1

b |1

a |1

1 |v

1 |u

b |1

1 |v

a |1

1 |u

Figure C.1: Composition Theorem on Boolean transducers

Product of subnormalized transducers

This construction can easily be extended to subnormalized transducers, which are such
that transitions are labelled in Â×B̂ \ (1, 1) where Â = A∪ {1} . It amounts to replace (iii)
by

(iii’) If
(
p, (a′, x), q

)
∈ E with a′ ∈ Â and

(
r, (x, u′), s

)
∈ F with u′ ∈ Ĉ

then
(
(p, r), (a′, u′), (q, s)

)
∈ G .

In this form, it contains as a particular case the composition of letter-to-letter transducers.
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Product of subnormalized transducers and composition

It is known that this construction, which works perfectly well for Boolean transducers,
does not yields a transducer for the composition if the multiplicities are to be taken into
account.

For instance, there is one path labeled (aa, y) in T1 and one path labeled (y, u) in U1; and
there are two paths labeled (aa, u) in T1 �� U1. Hence, T �� U does not realize the composition
of the weighted relations realized by T and U .

Preparation of transducers for the composition

In order to have a product of transducers that realises the weighted composition, we
performa preliminary operation on both operands that distinguishes between transitions and
the take advantage of this supplementary information in order to supress some transitions in
the product.

The construction on T and U can be described as follows:

(a) Split the states of T and their outgoing transitions in such a way they are labeled either
in (A×1) — black states — or in Â×B (or the state is final) — white states; the incoming
transitions are duplicated on split states. This is transducer T ′.
(b) Split the states of U and their incoming transitions in such a way they are labeled either
in (1×C) — black states — or in B×Ĉ (or the state is initial) — white states; the outgoing
transitions are duplicated on split states. This is transducer U ′.
(c) Apply the preceeding algorithm [steps (i), (ii) and (iii’)] to T ′ and U ′ in order to build
T ′ �� U ′.
(d) Delete the black-black states (every state in T ′ �� U ′ is a pair of states).

(e) Trim and eliminate the transitions with label (1, 1) by classical closure.

Figure C.2 shows the construction applied to T1 and U1.

1 |y

1 |y

1 |x
b |1

b |1

a |1

x |1

y |1

y |1

1 |u1 |v

1 |v

1 |v

1 |v

b |1

b |1

a |1
1 |u

a |1

a |1

1 |u
1 |u

Figure C.2: A composition that preserves multiplicity
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eval-S, 58

evaluation, 74
evaluation-S, 75
exp-to-aut, 18, 21, 52, 70
expand, 33, 52
expression

reduced, 28, 37

factor, 66
field, 60
first-projection, 76
fst, 23

Graphviz, 37

--help, 25

-i, 37
image, 73
W-image, 73
infiltration, 59

intersection, 67
inverse, 71
is-empty, 25, 43
is-ltl, 72
is-unambiguous, 55
is-useless, 44

left-mult, 47
letter-to-letter transducer, 72
letterize, 54
--list-automata, 16
ltl-to-pair, 72

minimize, 65

-o, 37

pair-to-fmp, 76
--parser, 33
partial-identity, 56
predefined alphabets, 20
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prefix, 65
product, 58, 59
product-S, 50
proper, 44
is-proper, 44
proper, 45

quotient, 20, 56

radix ordering, 66
rational

expression, 27
operator, 27

is-realtime, 55
realtime, 55
reduce, 60
reduced expression, see expression
--report-time, 25
right-mult, 47

second-projection, 76
shortest, 67
shuffle, 59
SPACE, 35
spontaneous transition, 44
is-standard, 45
standard, 58
standardize, 45
star, 47
star-S, 50
state elimination method, 50, 95
subnormalize, 72
is-subnormalized, 71
suffix, 65
sum, 46
sum-S, 50

-T, 25, 26
terminal state, 65
TIMES, 34
transducer, 70
transpose, 55
is-trim, 43
trim, 43
trivial identities, 28

union, 46

--verbose, 25

Vgi, 37

writing data, 32

-X, 26
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