Release notes for Vaucanson

This document describes major updates to the Vaucanson project.

Contact: vaucanson@Irde.epita.fr

Vaucanson 1.4.1, July 14th, 2012

New TAF-Kit commands:

- coquotient
alphabet

partial-erase
- guil
Bug fixes:

— never create O-labeled transitions in proper.

— fix support of transitions that are linear combinations of pairs in FMP trans-
ducers

A new TAF-Kit option ——1ist—-all-commands—json outputs the list of all
command in a format (json) that may be parsed by third-party tools to interface
with TAF-Kit.

Vaucanson 1.4, September 28th, 2011

Add a new, rewritten documentation for TAF-Kit and all the algorithms and ex-
ample automata available via TAF-Kit. (113 pages)

Add several new example automata.
New TAF-Kit commands:

- w—image

- w—domain

— support

— universal

— intersection

Fix bugs in: image, domain, proper (for Q), evaluation (for FMP),
chain, star—-alphabet, edit.

Improve the command menu of TAF-Kit’s editor.


http://vaucanson.lrde.epita.fr
http://vaucanson.lrde.epita.fr
mailto:vaucanson@lrde.epita.fr

Vaucanson 1.3.9, July 8th, 2011

This is an intermediate release before 1.4. It features new semirings, new algorithms,
a lot of renaming.

e Two new semirings (that are actually fields) have been implemented:

— Q for rational numbers represented by a pair of 64bit integers
- F2 (a.k.a. Z/2Z) to implement xor automata

e Many TAF-Kit commands have been renamed and reorganized. Use option -1
to list them. Some suffixes are used to distinguish commands that work on (-E)
rational expressions, (=S) series, and (-R) relations. The suffixes —S/-R are used
when a command has two flavors: one efficient with strict preconditions, and one
less efficient without prereconditions: for instance eval evaluates a word on a
realtime automaton while eval-S evaluates a word on an automaton that is not
necessarily realtime.

o New TAF-Kit commands:

— star—-alphabet

infiltration, shuffle

characteristic

— chain

prefix, suffix, factor

- is-trim

— left-mult, right-mult

— are-equivalent (for automata with weights in fields)

— are—equivalent-E (for rational expressions with weights in fields)
— enumerate, shortest

— normalize, is—-normalized
e New TAF-Kit option:

— Use —o FPEXP to print a fully-parenthesized expression.
— The --1ist-automata option replace the old list-automata command.

e Important bug-fixes

— eps_removal () hasbeen fixed to deal with non-positive semirings when
possible, and detect when not.
— reduce () has been mostly rewritten

— The parser for rational expressions no longer parses a+b (a) as (a+b) (a).
e aut-to-exp will work on FMP transducers.

e TAF-Kit will warn when reading an empty file (usually the result for running
something like command file > file), andthe edit command will warn
when creating automata without initial or final states.

e Automata factories are now installed, prividing commands such as divkbaseb-char-b,
ladybird-char-b, etc.

e {0} weights are displayed in Zmin and Zmax contexts.



Vaucanson 1.3.2, September 22th, 2009

This release contains minor adjustments to the build infrastructure, and a couple of bug
fixes for TAF-Kit.

e The build infrastructure has been updated to newer Autotools (Autoconf 1.64,
Automake 1.11, Libtool 2.2.6). This simplified our test-suite, and speeded-up
configure.

e We removed the ——with[out]-xerces and ——with[out]-boost op-
tions from configure. These libraries are always needed, and if you have
them installed in a non-standard location, you should specify CPPFLAGS and
LDFLAGS as explained in the README file.

e Makefiles are compatibles with BSD Make.

e The demos of cbs/ are no longer built by default because some of them require
profiling libraries which are not always installed.

e Two bugs have been corrected in TAF-Kit:

— the default VCSN_DATA_PATH is now correctly derived from the ——prefix
option passed to configure.

— looking up automata from the automata library will now work even if TAF-
Kit is called using an absolute path.

Vaucanson 1.3.1, July 8th, 2009

e VaucanSWIG has been deleted.

gnulib has been updated.

The Vaucanson library

— Two new contexts have been added int—int—-z and char—-char-=z.

Method pair_to_fmp () is available in FMP contexts.

— minimization_hopcroft () has been optimized.

listg has been restaured as the default graph implementation for being faster
than bmig.

TAF-Kit

— New command: pair—-to-fmp.
e Benchmarks
— CBS (C++ Benchmarking Suite) has been added into Vaucanson to mea-
sure its performances.
— Algorithms have been equiped with CBS.

— Benchmarks can be launched with make bench generating callgraphs in
dot format and text files.



Vaucanson 1.3, May 26th, 2009

e Support recent versions of Boost Multi-Index (1.36 to 1.38).

e Support G++ 4.4.0.

Vaucanson 1.2.96, May 4th, 2009

e Out-of-date documentation has been trashed away. What remains is an over-
hauled documentation for TAF-Kit, but still partial and under ongoing writing.
It can be read in doc/manual /taf-kit-manual.pdf.

e Vaucanson library
— Thehas_succ_comp () function has been renamedto is_useless (),
and its result reversed.
— Rational expression can be exported into XML.
— standard_of () and thompson_of have been improved to build the
automaton in place.
e TAF-Kit
— The has-succ—comp command has been replaced by the i s—useless
command, following the change in the library.
— The co-accessible command is now spelled coaccessible.

— Commands that output rational expression will output XML files if given
the —o xml option, and will read XML files if given the -1 xm1 option.

— Two new instances: vcsn—-char—-zmin and vesn—-char-zmax.

— A couple of unusual commands have been removed from the output of
——1list-commands and are now only shown by thenew —-1ist-all-commands
option.

Vaucanson 1.2.95, January 22th, 2009

e Enable choosing default implementation by using the option ——with-default—-graph—-impl
at configure time.

e The Vaucanson library

— The following iterator interfaces have been removed: deltac, rdeltac,
delta_state_iterator, rdelta_state_iterator.

— New interface parse_letter to check whether a character string repre-
sents a single letter of an alphabet or not.

— Add an implementation of the reduce algorithm for automata with weights
in a division ring.

e Automaton library

— New program quotkbaseb.



o XML
— Support of Xerces 3.0.
e TAF-Kit

— SVCSN_DATA_PATH now supports colons.

— New instance: vcsn—char—r for automata on a free monoid of char and
with weights in R (implemented as floats).

— New command: realtime—-exp.
e Demo

— New Demo ORR_iterate.

Many bug fixes.

Vaucanson 1.2.94, November 17th, 2008

e The Vaucanson library

— Add pair_to_fmp algorithm.

— Redesign the representation system off algebra.
e XML

— Add support for the new representation system.
e TAF-Kit

— Add command is-1t1.
— Options —o and —1 no longer request uppercase arguments.
— Command define-automaton has been merged into edit-automaton.

— Command dot —dump has been removed: any command can produce DOT
output using the —o dot option. The effect of dot —dump can be achieved
using identity -o dot.

— Command dump has been removed. Instead, any command will search the
file corresponding to their automata arguments into the current directory
first, then into the directory specified by SVCSN_DATA_PATH. The effect
of dump al.xml can therefore be achieved using identity al.xml
provided no al.xml exist in the current directory.

Vaucanson 1.2.93, October 10th, 2008

e Mostly bug fixes.
e The Vaucanson library
— Support for ascii alphabet in XML.

e Demos



— Remove function_library.
— Add hulden demo.

e TAF-Kit

— Remove the vesn-int-char-b instance.
— Add Itl-to-pair and identity-exp.

— Revive transpose on transducers.

Vaucanson 1.2.92, September 10th, 2008
e TAF-Kit
— New instances that handles letters that are pairs (of char or int): vcesn—char-char-Db,
vesn—int-int-b, vesn—-char—-int-b, and vcsn—-int—-char-b
Vaucanson 1.2.91, August 23rd, 2008

e TAF-Kit

— Rename vcsn-tdc to vesn—char—-fmp-b.

— New instances: vcsn—char—-fmp-z, vesn—-int-fmp-b, and vesn—-int-fmp-z.

Vaucanson 1.2.90, August 1st, 2008

e The Vaucanson library

New delta functions to iterate over states and transitions.

New rational expression parser, with customizable token representations.
New XML input/output system based on the new FSMXML version.

Overhaul letters to ease adding automaton contexts.

New automaton contexts based on int letters.

e Algorithms

— Remove backward_realtime () and forward_realtime () func-
tions factorized in realtime () function.

— Fix rw_composition ().
e Demos

— Improve One Rule Rewriting.
e TAF-Kit

— New option ——parser to change token representation on rational expres-
sion.
— Rename vcsn-b/-z/-tdc to vesn—char-b/-z/-fmp-b.

— New instances: vcsn—int-b and vesn—-int—z.



Vaucanson 1.2, March 19th, 2008

e The Vaucanson library

— New graph data structure based on boost multi index: bmig.

— It is now possible to choose between bmig and the old implementation
which is now called listg.

e Algorithms

— Rename fmp_to_realtime () as fmt_to_rw ().
— Rename realtime_to_fmp () as rw_to_fmp ().

— Rename realtime_composition () as rw_composition ().
e TAF-Kit

— Rename sum as union.
— is_emptyisnow is_void.

— New is_empty.
e Dependencies

— GNU C++ Compiler (GCC) version 4 or higher.

— Boost C++ version 1.34 or higher.

Vaucanson 1.1.1, December 14th, 2007

e Mostly bug fixes.
e Algorithms

— are_equivalent: compare the languages of two boolean automata

Vaucanson 1.1, July 29th, 2007

e XML

— New XML Parser (SAX implementation) With New XSD.

— Parser doesn’t omit transitions with bad label anymore instead of failing
e Algorithms

— eps_removal_sp (a); Various optimizations.
e TAF-Kit

— Timer has been improved.

— Intern pipe cannow be used: . /vcsn-b identity ab.xml \| product
b.xml —isequivalentto ./vcsn-b identity ab.xml | ./vcsn-b
product b.xml -



Vaucanson 1.0a, June 13th, 2007

e Documentation

— The Doxygen documentation is now installed expanded, rather than com-
pressed.

e Algorithms
— eps_removal_sp (a); New generic epsilon_removal algorithm based
on shortest_path.
— minimize (a); Various optimizations.
— transpose (a) ; Transition labels are now transposed too.

— image (a, b) anddomain (a, b); theyreplace output_projection
and input_projection. These algorithms work for both FMP trans-
ducers and RW transducers.

e XML

— Bug fixes.

— I/O optimizations.
o Utilities
— Lib VCSN Provides C++ libraries for the main automaton types.

— SWIG Fix compilation issues.
e TAF-Kit

— The option ——bench relies on iterations of ——report—time to bench-
mark the algorithms.

Vaucanson 1.0, July 28th, 2006

o XML.
— Many bug fixes, for instance, the alphabet is no longer filled with the default
range if it is said to be empty.

— Nodes like <label_type> are renamed to <labelType>, so as to con-
form to XSD coding style.

— VCSN_XSD_PATH is no longer used. The environment variable VCSN_DATA_PATH
should point to the Vaucanson data directory, containing, among oth-
ers, the vaucanson. xsd file.

— vaucanson. xsd is no longer looked for in the current directory.
— transcode (s); Overloaded function. Convert a std::string (respectively a
char) into XML.
e TAF-kit.

— The new binaries vesn—z and vesn—tdc are toolkit to work with Z au-
tomata and FMP transducers.



Many commands (algorithms) have been added in vcsn—-b.

e Algorithms.

is_ambiguous (a) ; Testif a is ambiguous.
trim_here (a); Trim the automaton a.
sub_normalize_here (a); Sub-normalized the automaton a.

invert (t); Return the inverse of the RW transducer ¢, i.e. the trans-
ducer that performs the invert rational relation.

u_compose (a) : Composition for boolean transducers that keeps the
same number of paths.

e Renaming and minor additions.

Support: :operator* simplifies the writing for one-letter supports.
Instead of xe . supp () .begin (), write xe . supp ().

The closure functions were renamed as eps_removal, since that’s
what they actually do.

The macros for_each are now called for_all.
normalized_composition functions are now called compose.

The automaton library is installed with make install.

e Layout.

The layout of the sources was changed to match the layout of Vaucanson when
installed.

vaucanson.xsd is now is the data/ directory.

The automaton library is now split by type. See data/b and data/z.
The generators used there are nice demo programs.

VaucanSWIG is at the top level.

demos/utilities/* has been moved into demos/.

e This release was made and coordinated by:

Akim Demaille
Florent Terrones
Guillaume Lazzara
Guillaume Leroi
Jacques Sakarovitch
Matthieu Varin
Michaél Cadilhac
Robert Bigaignon
Sylvain Lombardy



Vaucanson (.8 May 15, 2006

TAF-Kit.

The Typed Automata Function Kit of Vaucanson (TAF-Kit). This is a packaging
through binary programs of the main algorithms of Vaucanson. In this release,
only the Boolean semiring is supported. See the related documentation for help.
Documentation.

A first user’s manual for TAF-Kit has been introduced.

The Doxygen documentation has been reworked.

XML system.

The XSD file has been extended to express transitions as XML trees.

The XML proposal has been completly reworked.

The XSD file path can now be set by either the environment variable or the
CPP macro VCSN_XSD_PATH. It is also automatically checked in the share
directory where this file would be installed on make install.

Renaming.

The following renaming have been made:

— edgeisnow transition,

— new_ * functions are now make_ x,

— origin_of and src_of arenow aim_of and dst_of,

— for_each loops have been changed to for_all, for consistency with

STL for_each that uses functor.

Delta functions.
Delta functions, used to extract the successor states or edges of a state, can now
take functor with the deltaf methods of an automaton. If the operator ()
of the functor returns Booleans and an application of the functor returns false,
the loop over all successors is stopped.
Benchmarks.
Some Vaucanson benchmarks were added to the distribution. Feel free to make
your bench results and please send us them!
Bug fixes.
Many bugs have been fixed in the core library and some algorithms have been
cleaned.

This release was made and coordinated by

— Akim Demaille

Florent Terrones

Guillaume Lazzara

Guillaume Leroi

10


http://www.stack.nl/~dimitri/doxygen/

Jacques Sakarovitch
Matthieu Varin
Michael Cadilhac
Robert Bigaignon

Sylvain Lombardy

Vaucanson 0.7.2 November 9, 2005
e Vaucanson works with GNU C++ 3.3, 3.4, 4.0 and ICC 9.0.

e Compliance with GCC 4.0 and ICC 9.0.

Vaucanson is compliant with the latest version of GCC and ICC, and was suc-
cessfully tested on Linux and MacOs.

e Bug fixes.

Some bugs were fixed in the core library, and in the XML system.

e XML system.

The system now handles geometric attributes in Vaucanson automata. See prod-
uct algorithm for a sample use.

Vaucanson 0.7.1 June 25, 2005

e More algorithms on transducers seen as automata over a direct product of free
monoid are available: evaluation, composition covering, composition co-covering,
intersection.

e A Broken Derived Term automaton algorithm has been added.
e Two heuristics for state elimination method algorithm have been added.

e src/demos directory has been rearranged:

algorithms : Contains demos of small algorithms.

— automaton_library : Contains binaries that generate XML samples of vari-
ous automata.

— function_library : Contains binaries that call common algorithms available
in the library for most of the available predefined types (B, Z, R, (Z, min,
+), (Z, max, +), transducers, realtime transducers).

— transducers - one_rule_rewriting : Fibonnaci and One Rule Rewriting demon-
stration.

— utilities - vgrep : grep demonstration.

e Some bugs were fixed to ensure library stability. Mainly, algorithms Moore min-
imization, sub-normalized composition, realtime and projection were fixed.

e Context headers now include by default all standard algorithms.

11


http://gcc.gnu.org
http://www.intel.com/software/products/compilers/

e All deprecated documentation has been removed.

e XML proposal has been changed, and some documentation added. As an exam-
ple, Boolean automaton that recognize “a+b” is described as follows:

<automaton>

~~<content>

~~~~<states>

~~~~~~ <state~name="s0"/>

~~~~< [/states>

~~~~<transitions>

~~~~~~ <transition~src="s0"~dst="s0"~label="a"/>
~~~~~~ <transition~src="s0"~dst="s0"~label="b"/>
~~~~~~ <initial~state="s0"/>

~~~~~~ <final~state="s0"/>

</automaton>

Note that now <initial> and <final> are children of <transitions>, and the <ini-
tials> and <finals> tag are removed. From now on, all files compliant with the
previous XML proposal are not compliant with the new proposal.

e This version of Vaucanson is released under the GNU General Public Licence.

Vaucanson 0.7 May 17, 2005
e Vaucanson works with GNU C++ 3.2, 3.3, 3.4 and ICC 8.1.

e Transducers seen as automata over a free monoid product are now available.

Until now, transducers in Vaucanson could only be seen as automata with multi-
plicity in a series. It is now possible to manipulate transducers seen as automata
over a free monoid product.

— Two context headers have been written: fmp_transducerand z_fmp_ransducer
(fmp stands for Free Monoid Product), which can be used in the same way
as previous context headers.

On top of the classical types defined in all context headers, they define
several types needed when manipulating this type of transducers:

ALGEBRAIC ELEMENTS OF | LOW LEVEL IM-
SETS SET PLEMENTATIONS

first_alphabet_t
second_alphabet_t

first_monoid_t first_monoid_elt_t first_monoid_elt_value_[

second_monoid_t second_monoid_elt_t second_monoid_elt_vahge_t

In addition to that, the contexts provide the user with the following func-
tions:

//~Create~an~empty~automaton.
automaton_t~new_automaton (first_alphabet_t, ~second_alphabet_t);

12


http://gcc.gnu.org
http://www.intel.com/software/products/compilers/

//~Create~a~couple~of~words~that~can~directly~be~given~to

//~add_series_edge () ~for~instance.
series_set_elt_t~make_couple (first_alphabet_t, ~second_alphabet_t,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ std::string, ~std::string);

— Some new algorithms have also been added:

* fmp_to_realtimeand realtime_to_fmp: Enables the user to
switch from one view of transducers to another.

* normalized_composition: Enables the composition of normal-
ized and sub-normalized transducers seen as automata over a free monoid
product. (edges with labels of types (a,b), (1,a) and (a,1)).

e New XML I/O system.

The former XML system based on a DTD grammar was replaced by a system

based on XSD schema specification. The new system is backward-compatible

with old XML documents, just change namespace referenceto http://vaucanson.lrde.epita.fr
and remove DTD node.

This new specification comes with full transducer support, and a set of default
types for both automata and transducer. To declare a transducer on free monoid
product, do as the following:

~<transducer~xmlns="'‘http://vaucanson.lrde.epita.fr''>
~~~<content>

~~~~~ <states>

~~~~~~~ <state~name="‘s0‘‘/>

~~~~~ </states>

~~~~~ <transitions>

~~~~~~~ <transition~src='‘'s0'‘~dst=''s0 ‘'~in='‘a‘~out='‘b />
~~~~~ </transitions>

~~~~~ <initials/>

~~~~~ <finals/>

~</transducer>

To~load~an~automaton~ (for~example~on~Z~semiring) ~from~a~stream
(containing~the~XML~document) , ~do~as~the~following::
#include~<vaucanson/xml/XML.hh>
#include~<vaucanson/z_automaton.hh>

using~namespace~vcsn;

using~namespace~vcsn: :z_automaton;

using~namespace~vcsn: :xml;
automaton_t~a~=~new_automaton (alphabet_t ());
std::cin~>>~automaton_loader (a,~io::string_out (), ~xml::XML());

To~dump~automaton~as~an~XML~document, ~do::

13



#include~<vaucanson/tools/xml_dump.hh>
tools::xml_dump (std::cout, ~a, ~"A~name") ;

Or~use~the~automaton_saver () ~function.

e Big cleaning in the graph implementation.
A lot of superfluous operations were done in the former implementation. Clean-
ing the code provided huge performance improvement. The actual implementa-
tion has the same interface than the former one.

e Update context headers.
More granularity has been added to context headers. To create one, you need to
include desired files from the include/vaucanson/contexts directory in a specific
order. Please refer to the sources for more details.

e A long-standing bug in the core of the library was corrected.

Until now, some compiler optimisation that was believed to happen did not hap-
pen. Because of this, all Element instances had an overhead of at least a few
bytes in their memory footprint, while in most cases it was not necessary. The
code was rewritten to allow for this expected optimisation.

e This version of Vaucanson is released under the GNU Lesser General Public
Licence.

Vaucanson 0.6.1 October 26, 2004
e Vaucanson works with GNU C++ 3.2, 3.3, 3.4 and ICC 8.1.

e Vaucanswig is no longer enabled by default.

To enable the compilation of Vaucanswig, run:
./configure~-—-enable-vaucanswig
Be warned: this compilation takes several hours on a modern computer.

e The demos in src/demos/xml were updated.
The demo formerly named algorithms is now compiled for various semirings
under the following names:
b: Boolean semiring.
z: usual semiring on Z.
r: usual semiring on R.
z_max_plus: tropical semiring with (max, +) on Z.

z_min_plus: tropical semiring with (min, +) on Z.

14


http://gcc.gnu.org
http://www.intel.com/software/products/compilers/

Furthermore, additional algorithms may be called from this demo: transpose
and eval. A list of states may be provided to the aut_to_exp algorithm, thus
allowing the elimination of states to be performed in a specified order.

An additional src/demo/xml/samples directory was created, with some
XML samples, and some programs that can generate XML samples.
e expand () definitively replaces verbalize ().

The verbalize () function does not exist anymore. Itis replaced by expand (),
which was introduced in Vaucanson 0.6. A short description of expand () can
be found below, in the description of Vaucanson 0.6.

e This version of Vaucanson is released under the GNU Lesser General Public
Licence.

Vaucanson 0.6 July 18, 2004

e Big cleanings in Vaucanson XML.

A big work was done around Vaucanson XML, which should be fairly more us-
able now. To save an automaton in a XML representation, just include vaucanson/xml/static.
and do:

stream~<<~vcsn::automaton_saver (auto,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ vcsn::io::string_out~ (),
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ vesn: :xml::xml_loader~());

To reload the automaton, you may do the opposite operation:

stream~>>~vcsn: :automaton_loader (auto,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ vcsn::io::string_out~ (),
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ vesn: :xml::xml_loader~());

Of course, if you want to get rid of vcsn: : 10, vesn: : xml, etc. you may do:
using namespace vesn::xml; using namespace vesn::io;

Many more examples and utilities can be found in the directory src/demos/xml.
Just browse the sources!
e Few more examples.

A few programs were written for the CIAA 2004 conference. It is not an ex-
traordinary or complex code, but it demonstrates how quick and easy it may be
to use Vaucanson for assembling some algorithms and building simple automata.
It may also be a good introduction to learn Vaucanson by practice.

These examples are in src/demos/ciaa.

e New features in context headers.

A new context header for automata over the tropical semiring with the “min”
and “+” operators was added. Furthermore, some new functions and typedefs
are declared in each header.

If you want to use the context “foo”, then include vaucanson/foo.hh. You
will get the following types in the namespace vcsn: : foo:

15



ALGEBRAIC ELEMENTS OF | LOW LEVEL IMPLE-
SETS SET MENTATIONS
alphabet_t letter_t

monoid_t monoid_elt_t monoid_elt_value_t
semiring_t semiring_elt_t semiring_elt_value_t
series_set_t series_set_elt_t series_set_elt_value_t
automata_set_t automaton_t automaton_impl_t
series_set_t rat_exp_t rat_exp_impl_t

As the user, you will probably only be interested in alphabet_t,automaton_t
and rat_exp_t, respectively for alphabets, automata and rational expressions.

For transducers, you will get the following extra types:

ALGEBRAIC ELEMENTS OF | LOW LEVEL IMPLE-
SETS SET MENTATIONS

output_semiring_t output_semiring_elt_t | output_semiring_elt_value_t
output_series_set_t output_series_set_elt_t | output_series_set_elt_value_t

In addition to that, a context provides the user with the following functions:

automaton_t~new_automaton (alphabet_t);~//~Create~an~empty~automaton.

rat_exp_t~~~new_rat_exp (alphabet_t);~//~Create~an~empty~rational~expres
rat_exp_t~~~new_rat_exp (alphabet_t,~std::string);~//~Create~a~rational
~~~~~~~~~~~~~~~~ //~expression~and~initialize~it.~Ex:~new_rat_exp(a,~"a+
automaton_t~standard_of (rat_exp_t);~//~Build~the~standard~automaton~of~
automaton_t~thompson_of (rat_exp_t);~//~Build~the~thompson~automaton~of~
rat_exp_t~~~aut_to_exp (automaton_t);~//~Build~an~exp~from~an~automaton.

If you want more algorithms, just browse the vaucanson/algorithms di-
rectory, or look in the HTML documentation.

Currently, the following contexts are available:

— boolean_automaton
— z_automaton

— r_automaton

z_max_plus
— z_min_plus

— boolean_transducer

e Many bug fixes.

As usual many bugs were fixed. Especially the quotient should be correct now.

There were also some fixes in the standard_of algorithm, and derived_term_automaton
now works with expressions that have right weights. The closure was rewritten

and should be faster now.

16



Beside from the algorithms a big bug was fixed in the algebra core of Vaucanson,
which used to cause some problems when one wanted to use different alphabets
in different automata in the same program.

Also, rational expressions which weights are implemented as floats or doubles
now work correctly.
verbalize () is deprecated, use expand () !

A new expand () function was created. It performs a simple expansion of a
rational expression. For example:

expand (a(atb) ) ~~~~~v=~vvvvvan aatab
expand (a (atbx) ) ~~~~~ S~ aata.bx
expand (a (a+ (atbx)) ) ~=~~~~~~~ aata. (at+b) *
expand (at (a(atb) ) x) ~=~~~~~~~ at (aatab) *

To use this function, include vaucanson/algorithms/krat_exp_expand.hh
andcallthe vesn: :expand () functiononanElement< Series, rat::exp<M,
W> > (orarat_exp_t if you are using a context).

While this function behave exactly as verbalize on series which have a finite
support, the latter is deprecated. It will probably be removed in next releases.

krat_exp_print () does not exist anymore.

The file vaucanson/algorithms/krat_exp_print.hh was removed.
To print a rational expression with no extra parenthesis, just use the << operator
onto a C++ stream:

std::cout~<<~exp~<<~std::endl;

To make this operator behave as in previous versions, send the right format onto
the stream:

std::cout~<<~setpm~ (MODE_ALL) ~<<~exp~<<~std::endl;

(setpm and MODE_ALL are in the vcsn: : rat namespace). To have an ex-
haustive list of the different manipulators and print modes, you may look in
vaucanson/algebra/implementation/series/rat/dump_visitor.hh.

tools/usual.hh was removed.

A system of context headers is used since vaucanson 0.4.2, and therefore usual . hh
became useless. Furthermore it was a bad idea to use it since it has many includes
and may slow a lot a compilation.

This include has been removed from the distribution. if you were using some of
its definitions (e.g. usual_automaton_t) you now need to use the context
headers (e.g. include boolean_automaton.hh and use automaton_t in
namespace vcsn: :boolean_automaton). You will also find all the macros
that may be needed in tools/usual_macros.hh.

This version of Vaucanson is released under the GNU Lesser General Public
Licence.

17



Vaucanson (0.5 March 24, 2004

e New XML Input/Output system.

An XML Input/Output system have been added to Vaucanson. To use it, you will
need the Apache Xerces C++ library version 2.3.*. To enable the test suite on
the XML I/O system, you need to use the configure option ——enable-xml.

doc/xml/: You can find a minimal documentation here.
xml/: DTD and XSL files and some scripts.

include/vaucanson/xml/: Header files.

src/test/xml/: Test files. Can be used as examples.

e Better documentation.

An effort has been made to make the Doxygen documentation look better. The
documentation is still incomplete, and some errors probably remain, but it should
be far more usable now.

Especially, the “Algorithm” section of the documentation should now be exhaus-
tive.

e Instantiation of Element which set is dynamic may fail when you do not specify
the set.

To get more safety at runtime, trying to instantiate an Element which set is dy-
namic without initializing the set will fail at compile time. This ensures every
Element you will manipulate has its corresponding set associated. This has two
consequences:

— Using Element : : set () should provoke no more segmentation faults or
similar undesired behavior.

— The bound () method has no sense anymore and therefore has been re-
moved. If you make calls to this method in your programs, just consider it
returns true every time now and remove the call.

e Many renamings.

To get a more consistent interface, a few methods have changed. Consequently,
your old code designed for Vaucanson 0.4 may not work properly with Vaucan-
son 0.5. However, converting it to the new nomenclature should be straightfor-
ward:

— All names containing the word “serie” are now written with “series”
instead. For example, serie_get () isnow series_get ().

— All serie_t typedefs are now series_elt_t.

— The method value_get () forthe elements of series is now called get ().

— The method value_set () forthe elements of series is now called assoc ().

— The convenience files vaucanson_* .hhinthe include/vaucanson
directory have been stripped from their leading “vaucanson_”

— hopcroft_minimization.hhisnownamedminimization_hopcroft.hh
to be consistent with minimization_moore.hh.

18



e New implementation for numerical semirings.

It is now possible to use rational numbers as an implementation in numerical
semirings. In order to do so, the header <vaucanson/algebra/concrete/semiring/rational_nun
must be included. All you need to do then, is to declare a variable as follows:

vecsn: :Element<semiring_t, ~vcsn::algebra::RationalNumber>~q (num, ~denom) ;

semiring_t can be any numerical semiring.

The usual operators have been overloaded, and you can get the integer or double
value of the fraction by using to_int () or to_double (). You can also
access the numerator with num () and denominator with denom ().

e Many more tests.

The test suite has been extended and improved. Generic tests are now instantiated
on many more types. Also, existing tests have been enriched with extra checks
and non-existing tests have been written. Some bugs have been discovered, fixed,
and now have their corresponding regression test.

As a result, running “make check” should take more time than before, but
now trusting a successful check sequence is less hazardous. Note that it is still
possible to disable some tests by removing the test directory and running the
configure script again.

Tests have shown that using some rational expressions which weight are imple-
mented with double can be potentially dangerous. This requires more checks
before we can fix it. For the moment try to avoid doing that.

e Rewriting of the minimization_moore () algorithm.
The minimization algorithm named minimization_moore () hasbeen rewrit-

ten. It should be more readable and more reliable now.

e This version of Vaucanson is released under the GNU Lesser General Public
Licence.

Vaucanson 0.4 October 29, 2003

Addition of an automata I/O subsystem.

Nearly-complete SWIG bindings for algorithms in Vaucanswig.

Preliminary documentation for Vaucanswig.

Addition of a Bitset class which behave almost like a std: : set<int>.

Addition of a Window class to permit easy text manipulation.

Addition of a generic search algorithm able to skip characters in the input stream.

This version of Vaucanson is released under the GNU Lesser General Public
Licence.

19



Vaucanson 0.3 July 11, 2003

More documentation.
Addition of SWIG modules (Vaucanswig).

Noticeable performance boost thanks to a working unification of references to
structural elements.

This version of Vaucanson is released under the GNU Lesser General Public
Licence.

Vaucanson 0.2 July 02, 2003

First public release.

Rewrite of the fundamental module.

New graph structure to replace the old, legacy ManyLinks implementation.
Rewrite of most algorithms.

Implementation of algorithms on rational expressions.

Initial Doxygen documentation efforts.

This version of Vaucanson is released under the GNU Lesser General Public
Licence.

Vaucanson 0.1 January, 2002

Initial release.

This version of Vaucanson is released under the GNU Lesser General Public
Licence.

20



	Vaucanson 1.4.1, July 14th, 2012
	Vaucanson 1.4, September 28th, 2011
	Vaucanson 1.3.9, July 8th, 2011
	Vaucanson 1.3.2, September 22th, 2009
	Vaucanson 1.3.1, July 8th, 2009
	Vaucanson 1.3, May 26th, 2009
	Vaucanson 1.2.96, May 4th, 2009
	Vaucanson 1.2.95, January 22th, 2009
	Vaucanson 1.2.94, November 17th, 2008
	Vaucanson 1.2.93, October 10th, 2008
	Vaucanson 1.2.92, September 10th, 2008
	Vaucanson 1.2.91, August 23rd, 2008
	Vaucanson 1.2.90, August 1st, 2008
	Vaucanson 1.2, March 19th, 2008
	Vaucanson 1.1.1, December 14th, 2007
	Vaucanson 1.1, July 29th, 2007
	Vaucanson 1.0a, June 13th, 2007
	Vaucanson 1.0, July 28th, 2006
	Vaucanson 0.8 May 15, 2006
	Vaucanson 0.7.2 November 9, 2005
	Vaucanson 0.7.1 June 25, 2005
	Vaucanson 0.7 May 17, 2005
	Vaucanson 0.6.1 October 26, 2004
	Vaucanson 0.6 July 18, 2004
	Vaucanson 0.5 March 24, 2004
	Vaucanson 0.4 October 29, 2003
	Vaucanson 0.3 July 11, 2003
	Vaucanson 0.2 July 02, 2003
	Vaucanson 0.1 January, 2002

