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Abstract

Digitization of the real world using real sensors has many drawbacks; in
particular, we loose “well-composedness” in the sense that two digitized ob-
jects can be connected or not depending on the connectivity we choose in
the digital image, leading then to ambiguities. Furthermore, digitized im-
ages are arrays of numerical values, and then do not own any topology by
nature, contrary to our usual modeling of the real world in mathematics
and in physics. Loosing all these properties makes difficult the development
of algorithms which are “topologically correct” in image processing: e.g.,
the computation of the tree of shapes needs the representation of a given
image to be continuous and well-composed; in the contrary case, we can
obtain abnormalities in the final result. Some well-composed continuous rep-
resentations already exist, but they are not in the same time n-dimensional
and self-dual. n-dimensionality is crucial since usual signals are more and
more 3-dimensional (like 2D videos) or 4-dimensional (like 4D Computerized
Tomography-scans), and self-duality is necessary when a same image can
contain different objects with different contrasts. We developed then a new
way to make images well-composed by interpolation in a self-dual way and
in n-D; followed with a span-based immersion, this interpolation becomes a
self-dual continuous well-composed representation of the initial n-D signal.
This representation benefits from many strong topological properties: it ver-
ifies the intermediate value theorem, the boundaries of any threshold set of
the representation are disjoint union of discrete surfaces, and so on.

Keywords: well-composed, discrete surfaces, digital topology, tree of
shapes, mathematical morphology
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List of Annotations

o AWC: Well-Composed in the sense of Alexandrov,
e CC: Critical Configuration,

e CWC: Continuous Well-Composedness,

e DWC: Digital Well-Composedness,

e EWC: Well-Composed based on the Equivalence of connectivities,
e FPA: Front-Propagation Algorithm,

e [VM: Interval-Valued Map,

e MC: Marching Cubes,

e MM: Mathematical Morphology,

e PL: Piecewise Linear,

e ToS: Tree of Shapes,

e WC: Well-Composed.

13



List of Symbols

e basics:

— n is the dimension of the space,
— s > 1 is the (domain) subdivision factor,
— B = {e',...,e"} is the canonical basis of Z",
— x; is the i"* coordinate, i € [1,n], of x € R",
— # denotes the cardinal operator,

e single-valued images:
— 7", (%)n, (Z/s)™ are the sets/images spaces,
— D C (Z/s)™ is the domain of a given image,
— V is the value space of a given image,
— Upi, Tepresents a binary image,

— Im(A, D, V) is the space of all possible images whose space is A,
whose domain is D and whose value space is V,

e interval-valued images:

— [U] is the upper bound of the interval-valued image U,

— U] is the lower bound of the interval-valued map U,
e threshold sets:

— A € R is a threshold value belonging to R,
— [u > )] is the large upper threshold set of u for a threshold A € R,
— [u < )] is the large lower threshold set of u for a threshold A € R,
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u > A is the strict upper threshold set of u for a threshold A € R,
u < M| is the strict lower threshold set of u for a threshold A € R,
U > )] is the large upper threshold set of U for a threshold A € R,
U <] is the large lower threshold set of U for a threshold A € R,
U> ]| is the strict upper threshold set of U for a threshold A € R,

<1 A] is the strict lower threshold set of U for a threshold A € R,

e neighborhoods and connectivity:

— Na,(p, A) is the 2n-neighborhood of p in A,
— N5, (p, A) is the 2n-neighborhood of p minus p in A,
— N3n_1(p, A) is the (3™ — 1)-neighborhood of p in A,
an_1(p, A) is the (3" — 1)-neighborhood of p minus p in A,
— CCx_ 4 is the set of connected components of X C A in A,

e blocks and antagonism:

— B(A) is the set of blocks in the space A,

= (fY,...,f*) C B is the family of vectors associated to a
block,

— Ss(z,F) is the block associated to z and to the family F into
(Z/s)",

— S € B(A) is a block in A,

— k is the dimension of a block S associated to F = (f!,..., f%),

— antagg(p) is the antagonist in the block S to p € S,

e interval values:

— intvl(a, b) is the interval value [min(a,b), max(a,b)] of the values
a,beR,

Span(V) is the span of the (finite) set of values V C R,

— [a, b] is the discrete interval [a, b|NZ with a,b € Z such that a < b,

ConvHull(A) is the convex hull of the set A C R",

e interpolations:
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— 7 denotes an interpolation method,

— Z,p denotes an interpolation method based on an operator op,
— Zin is the min-based n-D interpolation,

— ZLnax 18 the max-based n-D interpolation,

— Teq is the median-based n-D interpolation,

— Zgspan 1s the span-based interval-valued n-D interpolation,
e continuous analogs and boundaries in R™:

— CA(z2) is the continuous analog of z € Z" (a cube or radius

1
2
centered at z),

— CA(X) is the union of the continuous analogs of the points of
X cz,

— bdCA(X) is the topological boundary of the continuous analog of
X czr,

— Int(A) is the topological interior of A C R",
— J(A) is the topological boundary of A C R",

e mathematical morphology:

— se is a structuring element,

— ¢ is the morphological erosion operator,

— 0 is the morphological dilation operator,

— L is the morphological Laplacian operator,

— 0Geod 1s the (morphological) geodesic dilation,
e the front-propagation algorithm steb-by-step:

— w is a single-valued image,
— U is a set-valued /interval-valued image,

— U, is the interval-valued interpolation with an added border at
gOO?

— «” is the output image of our n-D self-dual interpolation method
before we remove the border,
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— upwec is the output image of our n-D self-dual interpolation method,
— 3P denotes the output of the front-propagation algorithm,

— (4 is the median value of the inner border of the input image in
the §P algorithm,

— Pwo is the point corresponding to the exterior in the $P algorithm,
— @ is an (hierarchical or not) queue,

— @[] is the queue at the level ¢ in the P algorithm,

— [ is the current level in the § algorithm,

— {(z) is the value of £ when we enqueue z into the hierarchical queue
Q,
— 1(z) is the enqueuing time of the point z in the FP algorithm,

e remarkable sets of Section 4.1

— (P) is a set of properties that “usual” well-composed interpola-
tions have to verify,

— Ip(u/, z) corresponds to the set of values that u/(z) can take en-
suring in-betweeness of «’ in G(z) using an usual interpolation
method,

— Iwe (W, 2) corresponds to the set of values that w/(z) can take en-
suring well-composedness of v/ in G(z) using an usual interpolation
method,

— Lig(u',2) = Iy(v,z) N Iwe(v, z) using an usual interpolation
method,

e (£)" as a poset:

— Subd(A) is the hierarchical subdivision of a bounded hyperrect-
angle A C 7™,

- %(z) is the set of indices of the coordinates of z that are not

integers,

— [E; is the set of points in (%)n of hierarchical order i € [0, n],

— 0(2) is the hierarchical order of z € (%)n,

— P(z) are the hierarchical parents of z € (%)n,
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— G(2) is the hierarchical group of z € (£)",

— A(z) are the hierarchical ancesters of z € ()",

— opp(z) is the set of couples of opposites relatively to z € (%)n,

— 1 (z) is the set of integral coordinates of x € (Z/2)
3 (@)

(z) is the set of half coordinates of x € (Z/2)",

n
b
e ordered sets:

— R is a binary relation,

— O represents a set or arbitrary elements,

|O] = (O, ap) is the set O supplied with its order relation oo,
— « is the topological closure operator,
— aP(z) = a(z) \ {z}, Vz € O,
—axy=aNX x X,
= a(X) = Upex ale),
— [ is the topological opening operator, the inverse of «,
- (z) = B(x) \ {z}, Yz € O,
- Bx=pFNXxX,
~ B(X) = Uyex Blo).
— 0 = aN [ is the neighborhood,
— 09(z) = 0(x) \ {z}, Vz € O,
—O0x=0NX x X,
= 0(X) = Uyex 0(2),
e from (Z/2)" to Khalimsky grids:

— H" denotes the Khalimsky grids of dimension n,

— Hy, k € [0,n], denotes the elements of H" of dimension £,

— Z : H' — (Z/2) is the topological isomorphism between H' and
(Z/2),

— Z, :H" — (Z/2)" is the topological isomorphism between H" and
(Z/2)",
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— H is the inverse of the topological isomorphism Z,

— H,, is the inverse of the topological isomorphism Z,,

— U is the topology of H!,

— Uz)9) is the topology associated to (Z/2) as an isomorph of H',
— Upyn is the topology of H",,

— Uz is the topology associated to (Z/2)" as an isomorph of H"

e Khalimsky grids:

— a ANb=sup(a(a) Na(b)) is the infimum between a and b,
— aVb=1inf(fB(a) N B(b)) is the supremum between a and b,
— dim(f) is the dimension of the face f € H",

e Chapter D:

— X C Z" is a subset of Z"

— Y =7"\ X is a subset of Z"

— X = H,(X) C H” is the isomorph of X into the Khalimsky grids,
— Y =H,(Y) C H” is the isomorph of Y into the Khalimsky grids,
— IMM(X) = Int(a(H,(X))) is the immersion of X into H"

— N is the topological boundary of ZMM(X) into H"

— CC(M) are the connected components of N,

— 2" = H,(p) N Ho(p) is a critical point when X N S(p,p') is a
primary/secondary critical configuration,

— (Py)={Vz2e NNH!_,, |fR(2)] isa (n—2— dim(z)) — surface} .,
— (P) = {VzeMnH!_,, |B5(2)|is connected} .,

— T is the family of indices s.t. {F;},.; = CC(|65(2)]),

— {F;},or are the connected components of |35(z)],

— S(2) = Z,(B(2) NHY) is the block centered at z € H",

— T (u) is the set of (dim(z) + 1)-faces included into a(u) N B7(2),

— T(F;) is the set of (dim(z) + 1)-faces of Fj,
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—a= \/ tand b = \/ t. (characteristical points)
teT (F1) teT (F2)

e Combinatorial and Piecewise Linear topologies:

— (' is a simplicial complex,

— A¢ is the support of the simplicial (sub)complex C,

— C¥ is the chain complex of the order | X]|,

— |Ck/k| is the frontier order of K into Ac relatively to C'

— N(K,C) is the simplicial neighborhood of K into C,

— A(K, C) is the border of the derived neighborhood of K into C,
— K' or [K]' is the chain complex of K,

— NY(K,C) is the derived neighborhood of the subcomplex K into
C,

K™ or [K]" is the n'" derived subdivision of K,

Char(|X|) the set of characteristical faces of the order | X|,
— 0X is the border of the order | X|,

— Int(|X]) is the interior of | X|,

— €€ is a (simplicial) cell complex,

— {S"}iez is a family of cells of €€”

— {P'};ez is a partition of the set of n-cells of €€",
— € is the set of n-faces of €€,
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Chapter 1

Introduction

As told by Rosenfeld in 1979 in [141], “digital pictures are rectangular arrays
of non-negative numbers”. Effectively, these pictures, which are yet today
very common, are simply sets of pixels, that is structures with a position and
a value. However, no notion of neighborhood or of continuity are defined on
these sets by nature at the contrary to the world we are living in, and which
they are assumed to be able to capture.

To give back as much as possible the topology of the plane to these
arrays, Rosenfeld considered that two points are neighbours depending on
their relative positions in these arrays [138]: roughly speaking, they should
be neighbors iff they are “close enough”. However, on arrays, there are more
than one possible manner to define that two pixels are neighbors: they can
be 4-neighbors if their L' distance is lower than or equal to one, and they
are 8-neighbors if their L> distance is lower than or equal to one (and they
are not the only possible connectivities on Z?).

As we can see, two main drawbacks appear when using this notion: (1)
the distance between two different pixels cannot be as small as we want,
contrary to the continuous world like Euclidian spaces where the distance
between two points can tend toward zero, (2) ambiguities are possible since
two pixels can be 8-neighbors but not 4-neighbors.

In Euclidian spaces, a set is said connected iff it is not the disjoint union
of two open non-empty sets. However, Z? is not supplied with a topology
by nature, and then connectedness is not possible in that sense. Using se-
quences of close pixels, Rosenfeld defined then connectivity-by-path in digital
spaces, which is very useful in practice, but it is not the same definition as
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connectivity in the topological sense.

Even the Jordan curve theorem does not usually hold on these “digital
spaces” (see the connectivity paradox), that is, a simple closed curve does
not always separate the plane into two components. To obviate this problem,
we can use well-composed digital curves, in the sense that they contain no
couple of points which are 8-neighbors but not 4-neighbors, and then they
satisfy the Jordan curve theorem. However, they can be difficult to obtain
in practice.

For all these reasons, we were looking for a new representation for
digital images. In fact, we think that continuity is crucial for an image, for
both its domain and its value domain: we need to be able to define usual
concepts as open sets, neighborhoods, closed sets on the domain of the image,
and we need to be able to define a distance between two values (or two subsets
of) R™ in the value domain. More precisely, we believe that set-valued maps
defined on an Alexandrov space and whose domain value is either R, or Z, or
even H' (the Khalimsky line), can be very useful in practice.

Such functions, in particular the plain maps, verify many classical the-
orems, like the intermediate value theorem, and have many nice topological
properties: the “inverse image” of a set preserves the topology of the set, the
direct image of a connected set is a connected set, and under some conditions
on the domain, the set of shapes of this image is a tree (the tree of shapes is
then well-defined), and so on.

Another point was fundamental to us: we need to be n-dimensional.
Effectively, common signals are 2D images, but also 2D videos (which are
in fact 3D signals), 3D images like Magnetic Resonance images, or even 3D
videos like Computed Tomography scans (which are 4D signals).

Also, we wanted our representation to be well-composed in the sense
that the boundaries of its threshold sets are discrete surfaces; in this case,
these boundaries will verify some separation properties; in particular, their
triangulations using the chain complexes will be (at least) combinatorial
(pseudo)manifolds, which separate the space into two components, an ex-
terior which is unbounded and an interior which is bounded (which is a
digital version of the Jordan-Brouwer separation theorem).

Finally, we wanted our interpolation to be self-dual, that is, it must treat
in a same way dark components over a bright background or bright compo-
nents over a dark background; since we do not always know in advance the
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contrast of the objects we have to treat, or since we can have several objects
of different contrasts to treat at the same time in a same signal, it is salutary
to have such a representation.

Our goal was then to find a self-dual (digital) continuous well-composed
representation of n-D signals. So our plan in the following.

In the next chapter, we proceed to a state-of-the-art in matter of well-
composedness on cubical grids, on Khalimsky grids, and on arbitrary grids,
and then in matter of topological reparations and of well-composed interpo-
lations.

After a renaming of the different kinds of well-composednesses on cubical
grids, we will present our first main contribution: the generalization of two
definitions of well-composednesses, EWCness and DWChness, to dimension
n > 2, their characterizations, and the proof that DWCness implies EWC-
ness in n-D. We will also recall briefly how these 4 definitions (EWCness,
DWCness, CWChness and AWCness) are known to be related in 2D and 3D
in the community of digital topology, and we will summarize their relations
in n-D (on cubical grids).

Then, we will present our secund main contribution: the proof that no
self-dual local interpolation makes images DWC in n-D under usual con-
traints. In the continuity of this statement, we will propose our third main
contribution: a new (non-local) self-dual local interpolation which makes im-
ages DWC on cubical grids in n-D. This theoretical result comes from the
fact that applying our front-propagation algorithm on any DWC interval-
valued map results in a DWC single-valued map. The proof is provided in
this thesis.

The next section presents some consequences of our works in this thesis:
(1) a span-based immersion in the Khalimsky grids applied to our self-dual
DWC interpolation results in an AWC self-dual representation of n-D sig-
nals (at least in 2D and 3D), (2) our self-dual interpolation leads to “pure”
self-duality for self-dual operators and to underlying graph structure which
do not depend on the values of the new (DWC) representation, (3) a con-
jecture relating the Marching-Cubes-like algorithms in n-D and DWCness,
(4) promising segmentations based on the tree of shapes of the sign of the
self-dual DWC interpolation of the morphological Laplacian.

Some embryonic promising researches are also detailed in the perspec-
tives: first we expose that we think that CWCness and AWCness are equiv-
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alent on cubical grids, secund we show that well-composedness has been ob-
served to be preserved using monotone plannings, geodesic dilation/erosion,
and grain filters, and third we expose a new way to characterize AWCness of
images defined on polyhedral complexes.

In the appendices, we provide a proof of the well-known DWCness of
the n-D min and mazx interpolations. After that, we propose the first n-
D method able to topologically repair gray-level images defined on cubical
grids. Also, after a recall of the mathematical background necessary for
the sequel, we propose a sketch of the proof of the equivalence between
AWCness and DWCness on cubical grids in n-D. Then, we propose two new
interpolations methods starting from a gray-level image defined on the n-faces
of a polyhedral complex and resulting in an image, defined on a simplicial
cell complex, that we conjecture to be AWC. The first method is based on
derived neigborhoods but does not preserve the geometry of the initial cells,
and the second uses a new subdivision method that we introduce in this
thesis (called hierarchical subdivision), which minimizes the deformation of
the geometry of the cells. A definition of bordered discrete surface is also
introduced and seems very promising.
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Chapter 2

State-of-the-Art

In this chapter, we will begin with some recalls about digital topology [141,
87]: we will show how the existence of the connectivity paradozes in the digi-
tal plane led to use a dual pair of connectivities to restore the properties of the
(topological) plane in the continuous world (like the Jordan Separation The-
orem), how Latecki get rid of this paradox by introducing “well-composed”
sets in 2D in [96], and how he extended this concept to 3D in [98]. We will
continue with some complements about 2D /3D well-composedness that Late-
cki brought in [95] when generalizing well-composedness to n-D, n > 2. The
first definition of well-composed 2D gray-level images will also be described.
Then we will how Wang and Battacharya [175] extendend 2D well-compo-
sedness to arbitrary grids, how Stelldinger [160] extended well-composedness
to n-D cellular complexes, and how Najman and Géraud [124] extended n-D
well-composedness to Alexandrov spaces.

2.1 Mathematical Basics

In this section, we recall the well-known concepts of digital topology, followed
with the connectivity paradoxes and the presentation of the dual pair of
adjacencies usually used to get rid of these paradoxes.

2.1.1 Digital topology in Z?

Here are the basic definitions of digital topology [141, 87] when we work in
the digital plane Z>.
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Figure 2.1: Neighborhoods of a point p € Z2.

Let S be a subset of the digital plane, the points in S will be termed
foreground points, while those of its complement in the digital plane, S¢ =
72\ S, will be termed the background points. Note that the background points
(respectively the foreground points) will be depicted using white points or
black depending on the context.

The 4-neighbors or direct neighbors of a point (x,y) € Z* are its four
horizontal and vertical neighbours (z+1,y), (z—1,y), (z,y+1) and (z,y—1).
The 8-neighbors of a point (x,y) € Z? are its four 4-neighbours together with
its four diagonal neighbors (x + 1L,y + 1), (x + 1,y — 1), (x — 1,y + 1) and
(x—1,y—1).

For n = 4 or 8, the n-neighborhood of a point P = (x,y) € Z? is the
set M, (P) consisting of P and its n-neighbors. N(P) is the set of all n-
neighbors of P without P itself: N}(P) = N, (P) \ {P}. Figure 2.1 depicts
on the left the 4-neighborhood and on the right the 8-neighborhood of a point
p e 72

Let P, Q be two points of Z?. We say that that a sequence of points (P =
Py,...,P,=Q) of Z* is a n-path, n € {4,8}, from P to Q iff P, € N*(P,_)
for i € [2,n], and it is a path if it is a n-path for some n € {4, 8}.

A set X C Z? is said n-connected iff for every pair of points P,Q € X,
there exists a n-path in X from P to @), and connected if it is connected for
some n € {4, 8}.

A n-component of a set S C Z2 is a greatest n-connected subset of
S. Depending on whether 4— or 8—connectedness is used, we mean 4—
or 8—components.

A set C C Z? is called a simple closed curve of Jordan curve if it is
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Figure 2.2: Square grid using 4-adjacency
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Figure 2.3: Square grid using 8-adjacency

connected and each of its points has exactly two neighbors in C'. Depending
on wheter we use 4— or 8—neighborhoods, we call C' a j-curve or a §-curve.

Note that to avoid pathological situations [141], we require that a 4-curve
contains at least 8 points and that a 8-curve contains at least 4 points.

2.1.2 The connectivity paradox

Let V be equal to the set Z2, and £ C V x V be the irreflexive symmetrical
binary relation such that any two points p,q € V' verify (p,q) € E iff p and
q are n-adjacent. We call the points of V' the vertices and the elements of
E the edges. We obtain this way a graph structure G = (V, ) based on the
n-adjacency. These structures representing the digital plane supplied with
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Figure 2.4: The connectivity paradox using 4-adjacency
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Figure 2.5: The connectivity paradox using 8-adjacency

the n-adjacency can be observed on Figure 2.2 for n = 4 and Figure 2.3 for
n=_8.

Now, assuming that we have a set of foreground points S C Z? that is
given and which depicts a 4- or a 8-curve in Z?2, we could hope that the Jordan
Separation Theorem (seen in the introduction) holds as in the continuous
world. However, when we draw a 4-curve in the digital plane supplied with
the 4-adjacency as shown on Figure 2.4, this curve separates the digital plane
into 3 components, two of them are bounded and the third is unbounded. In
a certain manner, we have two “interiors”. The Jordan Separation Theorem
does not hold in discrete spaces using 4-adjacency.

We can also draw an 8-curve in the digital plane, as shown on Figure 2.5,
and we obtain that the complement of the 8-curve is an only connected
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Figure 2.6: Different square grids based on 6-adjacency
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Figure 2.7: A 6-curve does not always separates the digital plane even if we
use 6-adjacency.

component. The “interior” and the “exterior” are the same component.
Then the Jordan Separation Theorem fails with the 8-adjacency too.

Rosenfeld called these phenomena the connectivity paradoxes [147, 87, 96]
and explained that this failure follows from the fact that we use the same
adjacency for the foreground and the background.

Effectively, we can remark that when we use 6-adjacency such as depicted
on Figure 2.6, a 6-curve does not always satisfy the Jordan Separation The-
orem (see Figure 2.7): it works using the first grid but not the others. Fur-
thermore, even if these grids are regular, they are not invariant by translation
or rotation. For these reasons, we will not use 6-adjacency in this thesis.

2.1.3 Dual pair of adjacencies

Using a dual pair of adjacencies, as recommended in [46] for the first time,
can be salutary. The (8,4)-adjacency, meaning that we use 8-adjacency for
the foreground and 4-adjacency for the background, or the (4,8)-ajacency,
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Figure 2.8: (4, 8)-adjacency on the left and (8, 4)-adjacency on the right.

meaning that we use 4-adjacency for the foreground and 8-adjacency for the
background, make the Jordan Separation Theorem true. This is depicted on
Figure 2.8: on the left, the 4-curve separates the plane into two 8-components,
and on the right, the 8-curve separates the plane into two 4-components.

However, using a dual pair of connectivities is efficient but has a main
drawback: the result depends on the chosen couple of adjacencies. In other
words, we have to choose, depending on the application, one couple of adja-
cencies or its dual, and we are not always able to know a prior: which couple
is the most adapted to our needs and will give the expected results. Effec-
tively, a set of connected components of a given set clearly depends on the
chosen couple of adjacencies, and then the consequences can be dramatical
in some applications as in object counting [87].

Another consequence of dual adjacencies is that we cannot attribute ad-
jacencies to more than two colors: even if this method can be effective using
binary images, we could be stuck using multilabel images. It seems then
natural to look for another manner to make true the JST.

2.2 Well-composed Sets and Images

Let us now recall the seminal definitions of well-composednesses.

2.2.1 Well-composedness on Z>

In 1995, Latecki et al. introduced in [96] a class of subsets of Z? which are free
from topological paradoxes like the connectivity paradoxes developed above,
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Figure 2.9: A set which is weakly well-composed but not well-composed [96].

® ¢ ¢ O O O O ® ¢ 8 O O O O ® ¢ ¢ O O O Oo

® ¢ ¢ O O O O ® ¢ ¢ O O O O ® ¢ ¢ O O O O

® ¢ ¢ O O O O ® ¢ ¢ O O O O ® ¢ ¢ O O O O

O O O O e o o O O O e o o o O O e e ¢ o o

O O O O o o o O O O O e o o O O O O e o o

O O O O o o o O O O O e o o O O O O e o o
(a) (b) (c)

Figure 2.10: The (black) sets are well-composed in (a) and (c¢), but the
(black) set in (b) is neither well-composed nor weakly well-composed [96].

and which allow to obtain the same results whatever the chosen connectivities
for the foregound and for the background.

Furthermore, these sets have many nice topological properties [96]: the
Jordan Separation Theorem holds for them, their Euler characteristic are
locally computable (by a counting process of local patterns), the problems of
irreducible thick disappear, and so on.

So, let us begin with the seminal definitions of well-composed sets in the
digital plane Z2.

Definition 1 (Weakly Well-composed sets [96]). Let S be a subset of Z*. S
1s said weakly well-composed iff any 8-component is a 4-component.

For example, as shown on Figure 2.9 [96], this set is weakly well-composed,
since it is made of one 8-component (in black) which is also a 4-component.
Since this definition is not self-dual, that is, S weakly well-composed does
not imply that its complementary is well-composed, Latecki strenghtened
this definition in the following manner [96]:
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Figure 2.11: Forbidden patterns into well-composed sets [96].

Definition 2 (Well-composed sets [96]). Let S be a subset of Z*. S is
said well-composed iff S and its complement S¢ in Z* are both weakly well-
composed.

As shown on Figure 2.10, the (black) set S on Subfigure (a) is made of two
8-components which are also 4-components. The set on Subfigure (c) is made
of one only 8-component which is also a 4-component. At the contrary, the
set on Subfigure (b) is made of one only 8-component which is made of two
4-components, and then is neither weakly well-composed nor well-composed.

Then Latecki reformulated the notion of well-composedness using local
4-connectivity.

Definition 3 (Local 4-connectivity [96]). A set S C Z?* is said locally 4-
connected iff the points of S in the 8-neighborhood of any point of S are
4-connected, i.e., SN Ng(P) is 4-connected for every point P in S.

Notice that this notion is self-dual, even if the definition relies on S and
not on both S and S°.

Proposition 1 (Self-duality of local 4-connectivity [96]). Let S be a subset
of Z*. If S is locally 4-connected, then S is locally 4-connected.

Then we come to the theorem linking local 4-connectivity to well-compo-
sedness.

Theorem 1 (Local 4-connectivity [96]). A set S C Z? is well-composed iff
it 18 locally 4-connected.

Using Theorem 1, it is clear that the patterns, called “critical config-
urations”, depicted on Figure 2.11 and representing two points which are
8-adjacent but not 4-adjacent, cannot occur in a well-composed set.

Now we can come to an essential proposition stating that, in well-composed
sets, “the connectivities are equivalent”.
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Proposition 2 (Equivalence of connectivities [96]). Let S be a well-composed
subset of Z%. Then S is 4-connected iff it is 8-connected.

Since a set is not always connected, Latecki generalized this proposition
to any well-composed set in the digital plane.

Proposition 3 (Equivalence of connectivities [96]). Let S be a well-composed
subset of Z*. Then every 4-component of S is a 8-component of S and vice
versa.

A remarkable property should be noticed: the local criteria of Proposi-
tion 7 is equivalent to the global criteria of Proposition 3.

Obviously, considering a digital set X C Z2? or a binary digital image
(Z?, X), such that it is the characteristical function of X is rigorously equiv-
alent, which means that all the theory relative to well-composed sets holds
for binary images.

2.2.2 Well-composedness on 73

As we have seen just before, a 2D well-composed set is a set such that its 8-
components and its 4-components are the same. Therefore we could imagine
that it is also the case for 3D sets: a subset of Z3 whould be well-composed
iff its components are the same whatever the chosen connectivity. However it
is not the case: the equivalence of connectivities in 3D is not strong enough
to obtain the same nice topological properties as in the 2D case.

Let us recall what is well-composedness for 3D sets according to Late-
cki [98].

A three-dimensional digital set is a finite subset of Z3. Then, the contin-
uous analog CA(p) of a point p € Z3 is the closed unit cube centered at this
point with faces parallel to the coordinate planes:

CA(p) ={qeR’; [Ip—qll < 1/2}

where for any (z,y,z) € R?, [[(2,y, 2) ]| = max{|z], [y, |2]}.

This operator is fundamental since it allows to go from the discrete space
73 to the continuous (Euclidian) space R?.
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The continuous analog CA(X) of a (digital) set X C Z? is the union of
the continuous analogs of the points belonging to the set X:

CA(X) = | CA(p).

peX

Note that the function CA : P(Z3) — P(R?) admits an inverse which is
the (subset) digitization operator Dig. : P(R?) — P(Z3) defined such that
for any set Y C R? Dig (V) = {p € Z* ; p € Y}. Effectively, for any
X C 73,

Dig.(CA(X)) = X.

However the inverse is not always true: CA(Digc(Y)) =Y iff Y is an union
of unit cubes centered at points of Z3.

Then we will denote bdCA (X)) the topological boundary of CA(X):
bdCA(X) = CA(X) \ Int(CA(X)),

where Int(.) is the interior operator.

Latecki noticed in [98] that the topological boundary is rigorously equal
to the face boundary defined as the union of the set of closed faces, that
is, the unit closed squares in R? which are parallel to one of the coordinate
planes, each of which is the common face of a cube in CA(X) and a cube not
in CA(X). For the interested reader, some additionnal equivalent definitions
can be found in [98].

Summarily, as developed in [98, 9, 78, 146], a point of a 3D digital set
can be interpreted as a unit cube in R?, a digital object can be interpreted
as a connected set of cubes in R?, and the surface of an object in R? is the
set of faces of the cubes that separate the object from its complement.

Definition 4 (3D well-composed sets [98]). Let X be a subset of Z3. We
say that X is a 3D well-composed set iff the boundary of its continuous
analog bdCA(X) is a 2-manifold, that is, if for any point p € X, the (open)
neighborhood of p in bdCA(X) is homeomorphic to R.

Note that this definition is self-dual: for any X C Z3?, bdCA(X) =
bdCA(X¢) and then X is well-composed iff X¢ is well-composed.
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Figure 2.12: The first critical pattern forbidden in 3D well-composed sets
and their complement.

Figure 2.13: The secund critical pattern forbidden in 3D well-composed sets
and their complement.

Like for the 2D case, well-composedness can be characterized using local
patterns based on adjacencies. Two points p,q € Z3 are said to be face-
adjacent iff their continuous analogs CA(p) and CA(q) share a face, that is,
a unit closed square which is parallel to one of the coordinate planes, which is
equivalent to say that p and ¢ have all their coordinates equal but one which
differ from one. Two points p,q € Z3 are said to be edge-adjacent iff their
continuous analogs CA(p) and CA(q) share an edge, that is, a line segment
parallel to one of the coordinate axes, but not a face, which is equivalent to
say that one their coordinate is equal and the two others differ from one. Two
points p,q € Z3 are said to be corner-adjacent iff their continuous analogs
CA(p) and CA(q) share a point (but not an edge), which is equivalent to say
that their three coordinates differ from one.

This way, Latecki [98] defined the local pattern corresponding to a set of
two points that are edge-adjacent as the first type of critical configuration

1 . .
( 0 (1) ) (see Figure 2.12) and the local pattern corresponding to a set of
two points that are corner-adjacent as the secund type of critical configuration

1 0{0 O
0 0j]0 1

) (see Figure 2.13). This leads to the (local) characterization
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Figure 2.14: The six possible configurations at a corner point in a 3D well-
composed set.

of 3D well-composedness:

Proposition 4 (Characterization of 3D WC sets [98]). Let S be a digital set
in Z3. S is well-composed iff there is no occurence neither of the first nor of
the second critical configurations in S or its complement in 73 (modulo 90
degrees rotations and translations).

The complete proof is in [98] (pp. 166-167). Summarily, it relies on the
fact that any set containing one of these critical configurations contains a
“pinch” such that at these critical locations, no point of the boundary owns
an open neighborhood homeomorphic to an open disk, and then to R2. Con-
versely, if the set S does not contain any critical configuration of any type,
then at each point belonging to the interior of a face, any neighborhood
which is small enough will be homeomorphic to an open disk, at any point
belonging to the interior of the union of two adjacent faces of the bound-
ary sharing an edge, the neighborhood of this point is homeomorphic to an
open disk (whatever if the two faces are parallel or perpendicular), and at
the corners of the faces included in the boundary, only 6 configurations are
possible (see Figure 2.14). In the six cases the corner admits a neighborhood
homeomorphic to an open disk, which concludes the proof of Latecki.
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However we can denote that this study has been processed case-by-case
and then seems difficult to extend in higher dimensions.

Reformulated using closed surfaces, it can be said that a digital set X C
72 is well-composed iff each connected component of the boundary of its
continuous analog is a simple closed surface, which means that each connected
component of the boundary of the continuous analog of a 3D well-composed
set satisfies the Jordan-Brouwer Separation Theorem, stating that a simple
closed surface in R? separates the 3D space into two components: the interior
which is bounded and the exterior which is unbounded.

Another direct consequence is that the continuous analog of any (finite)
3D well-composed set is a bordered 3-manifold, that is, a set such that any
point belonging to its interior has a neighborhood homeomorphic to a rela-
tively open subset of a closed half-space in R3.

Latecki also introduced a characterization of 3D well-composed sets us-
ing m-adjacencies. Two points are said 6-adjacent (6-neighbors) iff their
continuous analog share a face, 18-adjacent (18-neighbors) iff their continu-
ous analogs share a face or an edge, and 26-adjacent (26-neighbors) iff their
continuous analogs share a face, an edge, or a corner (of a unit cube centered
at a point of Z3). For any p € Z3, Nig(p) and Nag(p) correspond obviously
to the set of the 18-neighbors or p and to the set of the 26-neighbors of p
respectively.

Using these definitions, the following proposition holds:

Proposition 5 (3D WCness and adjacencies [98]). Let X be a digital subset
of Z3. Assume now that X, = X and Xo = X¢. Then, X is well-composed
iff the two following conditions hold for k € {0, 1}:

o for every two 18-adjacent points x and y in X,, there exists a 6-path
joining = to y into Nig(z) N Nis(y) N X,

e for every two 26-adjacent points x and y in X, there exists a 6-path
joining x to y into Nag(x) N Nag(y) N X

Using this proposition, we clearly understand that local 18/26-connec-
tivities in well-composed sets imply 6-connectivity. Let us recall that for
m € {6,18,26}, a m-component of a set X is a greater connected subset of
X based on the m-connectivity (by path).
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Figure 2.15: The equivalence of connectivities of a set and its complement
does not imply it is well-composed in 3D (p. 171 [98]).

Proposition 6 (3D WCness and 6-connectivity [98]). Let X be a digital
subset of 73 and assume we use the notation of the proposition presented
before. Then each 26-component of X, is a 6-component of X,, and each
18-component of X, is a 6-component of X.

In other words, 3D well-composed sets (and their complement in Z?3) have
their connectivities equivalent. However, it is important to notice that the
converse is not always true: there exist non-well-composed 3D sets such that
the set of their 26-components is the same as the set of their 6-components
and such that the set of the 26-components of their complementary is the
same as the set of the 6-components of the complementary. For that, see the

0 11 1 : .
set ( 1 ol1 1 ) depicted on Figure 2.15.
Like for 2D sets, considering a digital set X C Z3 or a binary digital

image (Z3, X) such that it is the characteristical function of X is rigorously
equivalent.

2.2.3 Well-composedness on Z"

In [95], Latecki generalized the notion of well-composedness to digital sets is
discrete spaces Z" of dimension n, with n a integer greater than or equal to
2.

The continuous analog of a point p = (p1,...,p,) € Z™ is the cartesian
product:

CA((p1s--- o)) =1 — 1/2,p1 +1/2] x -+ X [pn, — 1/2,p, + 1/2],
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which can also be reformulated in this equivalent manner:

CA(p) ={q e R’; [|p— gl < 1/2}.

Then it follows that as before the continuous analog CA(X) of a set X C Z"
is the union of the continuous analogs of the points of the set X, and the
topological boundary of this set in R” is called for short bdCA(X).

Now let us recall some basis about topology in Euclidian spaces: we call
n-dimensional bordered manifold a subset of R™ such that each point in it
admits a neighborhood which is homeomorphic to a relatively open subset of
a closed half-space in R, and such that this set is not a n-manifold without
boundary. Each connected component of a n-dimensional bordered manifold
is called a n-dimensional surface.

Then Latecki defined in [95] (p. 99) well-composedness for sets in n-D
spaces using the notion of bordererd manifolds as well:

Definition 5 (n-D WCness [95]). Let X C Z" be a digital set. X is said to
be well-composed iff CA(X) is a n-dimensional bordered manifold.

For this reason, well-composed sets are sometimes called digital bordered
manifolds [95].

This can be reformulated with an equivalent definition using only the
boundary of the continuous analog:

Definition 6 (n-D WCness [95]). Let X C Z™ be a digital set. X is said
to be well-composed iff bdCA(X) is a (n — 1)-dimensional manifold (without
boundary).

The equivalence of these two definitions follows from the fact that a set
which is an union of n-dimensional cubes is an n-dimensional bordered man-
ifold iff its boundary is a (n — 1)-manifold.

Let us notice that a manifold has not to be connected, contrary to sur-
faces, and then a well-composed set has not to be connected.

Even if Latecki defined well-composedness for n-D, its main works about
well-composedness [96, 98, 95, 48, 72, 97, 99, 100, 153, 154, 162, 163] focus
on 2D and 3D sets (on regular cubical grids).
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Figure 2.16: The two forbidden critical configurations in the continous analog
of 2D well-composed sets.

2.2.4 Well-composed segmented digital images

We can mention the existence of segmented digital images [95] which are a
(k + 2)-uple (Z™, X, X1,...,X) such that X; N X; =0 for 0 <i<j <k
and each X; C Z" is finite or its complement X is finite for ¢ € [0, ¥]. Then
a segmented digital image is said well-composed iff each set X; for i € [0, k]
is well-composed.

For example, an usual binary image (Z", X) is a particular case of seg-
mented digital image, where Z" is partitioned into only two components, the
foreground and the background.

Let us recall that the union of two different sets extracted from a well-
composed segmented digital image is generally not well-composed, because
the well-composedness is not preserved by the union operator.

2.2.5 Complementing the framework in 2D and in 3D
In [96], Latecki asserted that a 2D digital set which is well-composed cannot

contain neither the pattern nor its 90 degrees rotation because a

10
01
well-composed set is locally 4-connected. But it was not clear that a set
which does not contain any of these patterns was well-composed. In 2000,

he finally confirmed this intuition using Theorem 1 (p.101 of [95]):

Proposition 7. Let S C Z? be a digital set. X is well-composed (in the
sense of Definition 6) iff its continuous analog CA(X) does not contain the
critical configurations depicted on Figure 2.16.

In other words, this set is well-composed iff the (local) patterns < ? (1) )

and < (1) (1) ) do not occur in S.
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Thanks to the self-duality of these local patterns, this definition is self-
dual.

Then Latecki asserted that, in 2D, Definition 6 and Definition 2 of well-
composed sets are equivalent:

Proposition 8 (Equivalence of connectivities of 2D WC sets [95]). A set
X C Z? is well-composed (in the sense of Definition 6) iff every 8-component
of X s a 4-component of X and every 8-component of X is a 4-component

of X¢.
All these definitions of 2D well-composedness are then equivalent.

In the 3D case, as stated by the Proposition 5 in [95] (p.105), a digital
set X C Z3 is well-composed in the sense of Definition 6 iff the critical
configurations of type one or two do not occur in neither CA(X) not CA(X°).

Some propositions in [95] have to be noticed since they rely on the equiv-
alence of connectivities at a local level.

Proposition 9. A digital set X C Z? is well-composed iff for every two
points x,y € X such that they are 8-adjacent, there exists z € X such that z
18 4-adjacent to both x and y.

Thanks to the topology of the plane, it is equivalent to say that for every
two points x,y € X¢ such that they are 8-adjacent, there exists z € X¢ such
that z is 4-adjacent to both z and y, which simplifies Proposition 9. However,
in 3D, Latecki observed that:

Proposition 10. A digital set X C Z3 is well-composed iff the following
conditions hold for k € {0,1} (we recall that Xo = X¢ and that X; = X ):

e for every two 18-adjacent points but not 6-adjacent x,y € X, there
exists a point z in X, that is 6-adjacent to x and vy,

e for every two 26-adjacent points but not 18-adjacent x,y € X, there
exists a G-path in X, joining x and y into Nag(x) N Nag(y) N Xs.

In this case, the property has to be true in both cases, that is, for X and
Xe.
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2.2.6 Well-composed gray-level images in 2D

As we have seen before, a 2D digital (binary) image [95] (p.102) is a 4-uple
(Z?, X, k,1) where X is a subset of Z? such that either X or X¢ is finite.
X corresponds to the foreground and is associated to the k-adjacency, and
X¢ = Z2*\ X the background of the image and is associated to the [-adjacency.
To avoid the connectivity paradox, the couple (k, 1) is generally a dual pair of
adjacencies. Equivalenty, this image can be interpreted as the characteristical
function of the set X in Z2, that is, a mapping I from Z? to {0, 1} such that
Ip)=1lifpe X and I(p) =01if p € X

A 2D gray-level image is then a couple I = (Z?,u) where u : Z* — [0, 255]
is a mapping from Z? to [0,255]. This image I is generally identified with
its mapping u since these two concepts are rigorously equivalent.

Then we can apply a very straightforward operation called binarization of
a gray-level image relatively to a given threshold. Given a gray-level image
u : Z* — [0,255] and a threshold A\ € Z, the resulting binarization of u
relatively to A is equal to the binary image u;y, : Z* — {0, 1} defined for any
p € Z? such that up,(p) = 1 if u(p) > X and upin(p) = 0 if u(p) < .

Now that we have defined what is a binarization of a gray-level image,
we can recall the seminal definition of well-composed 2D gray-level images of
Latecki [95]:

Definition 7. A gray-level image is said well-composed iff for every thresh-
old a binarization of the gray values results in a binary well-composed image.

Latecki introduced also a characterization of 2D well-composed gray-level
images, which shows how much the different binarizations are intercorrelated:

Proposition 11 ([95]). A gray-level image I = (Z?,u) is well-composed iff

_ b .
for any restriction of u to a 2 X 2 square, denoted by 4 ) the diagonal

intervals have a non-empty intersection:
[min(a, d), max(a, d)] N [min(b, c), max(b, c)] # 0.
We will see later how much this characterization is powerfull, useful, and
how it can be extended to n-D gray-level images.

Note that this notion of binarization by a given threshold comes from
cross-section topology [118, 21, 17, 18] and is also much used in mathemati-
cal morphology [25, 148, 76, 77, 137], because this interpretation of an image
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Figure 2.17: The flat extension of the dilation operator (p.869 [25]).

gives access to many powerful operators on gray-level images that can be
obtained using a very simple procedure as depicted on Figure 2.17: starting
from a set operator ¢, we decompose the image by computing its binariza-
tions, we apply on each binarization the operator ¢, and then we use a stack-
ing procedure to obtain the resulting image ¢’ (u). This way, an operator on
gray-level images has been computed/defined.

2.2.7 Well-composedness on arbitrary grids in 2D

According to Wang and Battacharya [175], we can extend the definition of
well-composedness coming from the rectangular grids to arbitrary grids in 2D
in the following manner. We assume that we have a (locally finite) arbitrary
grid system of (closed) pixels paving the topological space R? such that the
boundary of each pixel is a Jordan curve, as depicted on Figure 2.18.

A set X of pixel in then said well-composed iff for any point p belonging to
the boundary of X, the set of pixels of X adjacent to pis edge-connected [175],
which means that for any two pixels in this set, there exists a sequence of
pixels of this set going from the first to the second such that two consecutive
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Figure 2.18: Definition of 2D well-composedness on 2D arbitrary grids.

elements share an edge. Figure 2.18 depicts a well-composed set in dark gray:
at each boundary point p of X, the set made of the pixels containing p in X
is edge-connected (the edge shared by the two pixels is in blue).

Effectively, in the case of rectangular pixels, we obtain that a set X is well-
composed in the sense of Latecki [96] iff 8-connectivity (vertex-connectedness)
implies 4-connectivity (edge-connectedness).

A particular grid system is the hexagonal grid where every set of pixels is
well-composed [175], which is obviously not the case of the rectangular grid.

Serra and Kiran [151] worked on this last topic: R™ is partitioned into a
set of regular open sets, called a tessellation, and the complement in R" of
its union, called the net. In this framework [151], they recall an observation
of Fedorov [55] which states that the only possible tessellations (inherited
from a Voronol grid system) such that its elements are identical (up to a
translation) are in 2D the square and the hexagonal grid systems, and in
3D the cube, the hexagonal prism, the truncated octahedron®, and the two
elongated and rhombic dodecahedra.

Among them, only the hexagonal grid system and the truncated octahe-
dron verify that any two elements of the tessellation such that their adherence
are adjacent share a face of dimension (n — 1), i.e. an edge in 2D and a (2D)
face in 3D. In other words, any (finite) set of elements of these tessellations

!The Voronoi polyhedron of a body-centered cubic grid, also called BCC' grid [164] is
well-known for its guarantees in matter of topology preservation.
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is strongly adjacent: there exists a small open disk/ball in 2D /3D such that
any intersection of adherences of two adjacent elements of X contains this
disk /ball.

Then the link between the works of Wang and Battacharya [175] and
Serra and Kiran [151] is straightforward: the strong adjacency is similar to
well-composedness on arbitrary grids but the difference relies on the fact
that strong adjacency is based on open sets and that well-composedness on
arbitrary grids is based on closed sets.

Furthermore, if we consider a tessellation and an arbitrary grid sys-
tem which are isomorphic in the sense that they have the same topologi-
cal structure up to a closure/opening, every subset of this tessellation which
is strongly adjacent has its isomorph in the arbitrary grid system which
is well-composed, and conversely. For this reason, these definitions seem
“equivalent”.

We could easily extend the definition of well-composedness of Wang and
Battacharya on a (locally finite) arbitrary grid in n-D such that boundaries
of the vozels covering R" are connected (n— 1)-manifolds (see [71, 109, 90, 3]
for complements about the Jordan-Brouwer theorem in n-D). Then, we could
say that any set X of voxels is well-composed on an arbitrary grid in R™ iff
for any face f of dimension k € [0,n — 1] belonging to the boundary of X,
the set Y of voxels of X containing f (respectively the set Y’ of voxels not
in X and containing f) are face-connected, which means that for any two
voxels in this set Y (respectively Y”), there exists a sequence of voxels of
this same set going from the first to the second such that two consecutive
elements share a face of dimension (n — 1).

Note that self-duality in the n-dimensional case is ensured because of
the double condition, the first relative to X and the second relative to the
complement of X (see Figure 2.19).

This way, we obtain that, in the grid system made of truncated octahedra
(see Figure 2.20) covering R3, every set of voxels is well-composed. Effec-
tively, as stated by L. Mazo in his thesis [115], two voxels in such a grid
system share either a face of dimension 2 or nothing. This means that two
voxels which belong to a set X and which are connected in this set X are
face-connected in this same set X, and that the converse is true for X¢. This
way, every set in such a space is well-composed.
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Figure 2.19: A set X where the set of voxels in X (in red) containing the
boundary point p (at the center of the cylinder) is face-connected and such
that the set of voxels in the complement of X (in blue) is not face-connected.

Figure 2.20: A truncated octahedra (p. 13 [115])

This adjacency is known as 2(2" — 1) adjacency in n-D (6-adjacency in
2D, 14-adjacency in 3D, and so on), but shows a strong anisotropy on the
graph of the covered domain [115].

2.2.8 Well-composedness on cell complexes in R"

As defined in Stelldinger’s book [160], a cell complez in R™ is a set of convex
polyhedra in R™, called cells, such that every face of each cell belongs to this
complex, and such that for any two faces of the complex, their intersection
is a common face of both these two faces.

The dimension of a cell is the maximum number of contained independent
vectors after translating the cell so that it covers the origin, and a cell of
dimension m > 0 is called a m-cell. The dimension of a cell complex is the
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Figure 2.21: A cell complex which would not be well-composed according to
Stelldinger [160]

maximal dimension of its cells.

Two cells of a complex are said m-ajdacent if their intersection is a m/-
cell with m’ > m. Two cells are adjacent iff they are adjacent for some m.
They are incident iff they are adjacent and of different dimensions (then one
cell is subset of the other). A complete cell complez of dimension m is a cell
complex where each cell of dimension m’ < m is incident to at least one cell
with dimension m.

A cell complex is called well-composed if it is complete, of dimension n,
and if any two adjacent n-cells are (n — 1)-adjacent. A set in R™ is said well-
composed iff there exists a well-composed cell complex such that the union
of its cells is equal to this set.

According to Stelldinger [160], this definition extends the ones of Late-
cki [98, 95] and Wang and Bhattacharya [175] for arbitrary cell complexes in
any dimension.

However, it seems that the cell complex such as depicted o Figure 2.21
made of three edge-connected unit squares depicting a “L”, plus their faces,
depicts a cell complex which would be well-composed according to Latecki,
since the boundary of the complex is a simple closed curve. However it
would not be well-composed according to Stelldinger, since this set contains
two squares p and p’ which share a vertex ¢, and then are adjacent, but which
do not share any edge. The definition of Latecki and Stelldinger seems then
not to be equivalent.
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2.2.9 Well-composedness in Alexandrov spaces in n-D

Well-composedness exists also in Alexandrov spaces, that is, topological spaces
that verify the T0 separation axiom and that are discrete spaces (these no-
tions are detailed is Chapter C).

Effectively, let X be a finite subset of an Alexandrov space A, then this set
is said to be well-composed iff its topological boundary 9 = a(X)Na(A\X),
where « is the closure operator, is a disjoint union of discrete surfaces [89, 52].

To extend this notion to set-valued maps defined on Alexandrov spaces,
we have to recall what are threshold sets of such functions; let U : A ~~ R
be a set-valued map, then for any A € R, the following sets:

U)X ={z€A|FveU(z),v>A},
U)X ={z€A|VveU(z),v> A},
UM ={zeA|VvelU(z), v< A},
U)X ={z€A|TveU(z), v <A}

are called threshold sets of the set-valued map U.

This notion of well-composedness has also been extended to plain maps,
a particular subclass of set-valued maps: a plain map is said well-composed
iff its threshold sets are well-composed.

As we will see later, we renamed this definition into “well-composedness
in the sense of Alexandrov” or “AWCness”, to differentiate it from well-
composedness on Z" when the used Alexandrov space correspond to the
Khalimsky grids.

2.3 Topological Reparations and Well-composed
Interpolations

Two main approaches exist to make a set or an image well-composed on a
cubical grid: topological reparations and well-composed interpolations.

The first one is often called topological reparation, because we consider
that we give back to the objects in the image the topological properties they
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had before the digitization process; mainly, digitized objects should have a
boundary which is a (n — 1)-manifold.

The second approach correspond to interpolations, since their restriction
to the initial domain is then assumed to be exactly the initial image. How-
ever, without constraints, there is no guarantee that the interpolation has
the same topology as the initial image. For example, the 1D image o e rep-
resents two connected pixels, valued at 1. One non-constrained interpolation
can then be e o e, where o denotes a pixel valued at 0. The two black
points are then disconnected. For this reason, we will consider only what we
call in-between interpolations, that is, interpolations such that the secondary
pixels have values that are between the values of the primary pixels. They
have the property not to create new extrema in the image when the interpo-
lation is done. This way, in-between interpolations preserve the topology of
the initial image.

2.3.1 Topological repairing on cubical grids

Digital images resulting from a convenient digitization should be well-com-
posed, assuming that the digitization procedure preserves the topology of the
initial object. Effectively, real objects, or the most of us, have a boundary
which is a (topological) manifold.

However, it is well-known that it is not always the case in image process-
ing: the choice of digitization is not always adapted, the resolution of the
digitization can be too large, and so on. Moreover, it has been shown that
even using the digitization by intersection, which results in well-composed im-
ages in 2D for a sufficient resolution, does not provide bordered 3-manifolds
by reconstruction using cubical voxels, whatever the chosen resolution.

It seems then useful to know how to make digital images well-composed
in n-D if we want to give back to the objects the property such that their
boundary is a manifold. Latecki [99, 95] called this procedure ”topological
repairing”, and introduced the first method in 2D able to do it. As usual, the
ones correspond to the object/foreground and the zeros to the background.
Its method proceeds then by changing the zeros where critical configura-
tions occur into the binary initial image into ones. Also, depending on the
neighborhood surrounding the critical configuration and the possible propa-
gation of the critical configuration, a different method is chosen to eliminate
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Figure 2.22: The equivalent in 2D of the repairing method of Gonzalez-Diaz
et al..

the critical configurations in this neighborhood. This method is translation-
invariant and 90 degrees rotation invariant, and guarantees that the number
of modifications is minimal.

Then, Siqueira et al. [153, 154] proposed a 3D randomized method which
makes any 3D binary image well-composed in the sense that the boundary
of the continuous analog of the resulting object (made with cubical voxels)
will be a 2-manifold. Since no assumption is made on the topology of the
initial object, no topological equivalence is ensured, but a theoretical bound
ensures that the maximal number of new critical configurations which will
appear during the elimination of the m initial configurations is inferior than
or equal to m/2.

Siqueira et al. [153, 154] also developed an algorithm able to make 3D
multilabel images well-composed following this same principle of ”topological
repairing” .

Topological repairing of cubical complexes Gonzalez-Diaz et al. [64]
introduced in 2011 a method able to topologically repair a cubical complex
associated to a 3D binary digital image into a polyhedral complex which
is homotopy equivalent and well-composed, that is, whose boundary is a 2-
manifold. The polyhedron of the geometric realization of the boundary of
this interpolation is then made of simple closed surfaces in R?, on which
cohomological information [68, 69, 62, 63, 67] is computable. The proposed
(local) method is homotopy preserving, such that the resulting cohomological
informations can be used to recognition or characterization tasks.

Their method would be this way in 2D: on a 2D cubical complex, as
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Figure 2.23: Repairing of a complex containing a critical edge [64].
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Figure 2.24: Repairing of a complex containing a critical vertex [64].

shown on Figure 2.22, the aera of the surface of each “critical point” would
be “increased” such that there is no more pinch into the boundary of the
complex (in dark gray), which would lead to a 2D well-composed polyhedral
complex (in dark grey too) whose boundary (in red) is made of simple closed
curves.

In 3D, the critical faces in the complex, that is, the faces in the combina-
torial structure corresponding to the pinch in to the geometrical realization,
are "stretched” such that the pinch disappears: Figure 2.23 shows how a
critical edge shared by two edge-adjacent cubes w; and w, is replaced by a
face of dimension 2 plus two bordering edges, and Figure 2.24 shows how a
critical vertex, shared by to vertex-adjacent cubes s; and sy, is replaced by
a combinatorial structure made of one 2-face, two bordering edges, and their
common vertices. More complicated structures are used to repair the other
problematic configurations (see Figure 2.25). Note that this method is not
self-dual.

An efficient coding of this family of polyhedral complexes, called ECM
representation [65, 66] and using 3D images has been developed to store this
family of repaired and well-composed complexes into images.
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Figure 2.25: Repairing of more complex forbidden configurations [64].

2.3.2 Well-composed Interpolations

In 1998, Rosenfeld, Kong and Nakamura [145] developed the first well-compo-
sed 2D interpolation, that is a method able to compute an image on a bigger
domain than the one of the initial image, such that its restriction to the initial
domain equals the original image and such that the resulting interpolation
is well-composed.

This method can be decomposed in two steps . First an image mag-
nification [145], which is equivalent to replacing each pixel of the original
image by a set of (k+ 1) * (k4 1) pixels (where k > 1 is given) of the same
value and which replaces the original pixel. Secondly, a modification step
removes the critical configurations of the magnified image by changing one
of the values of the 4 (simple) points of the critical configuration (from 0 to
1 or the converse). Since the magnification process and the modifications
are simple deformations [145], they preserve the topology (in the sense that
the two images have the same adjacency tree), and then the final image is a
well-composed image topologically equivalent.

Then in 2000, Latecki [95] developed an alternative method to make a
2D binary image well-composed. This new method is based on the image
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Figure 2.26: Differents configurations using Majority Interpolation [162]

expansion of Kéthe [91], and consists in doubling the resolution of the square
grid of the initial image by adding new pixels (the so-called “secondary”
pixels) between the original pixels (the “primary” pixels). A secondary pixel
added between two edge-connected pixels will take the value of these primary
pixels iff they have the same value. In the contrary case, they will be labeled
as "boundary points”. A secondary pixel added at the center of a square of
4 vertex-connected pixels will take the value of these pixels iff they all have
the same value. In the converse case, they will be labeled boundary points.
Finally, we obtain 3 sets, a set of zeros, a set of ones, and a set of boundary
points, each of them being well-composed.

We can denote the difference between these two first algorithms: the one
of Rosenfeld et al. is based on simple deformations so it ensures topological
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equivalence, but the one of Latecki is based on a ”counting process”, which
ensures well-composedness but no topological equivalence.

Then in 2006, Stelldinger proposed a method called Majority Interpola-
tion [162], shown on Figure 2.26, which can be seen as a slightly modified 3D
extension of the method of Latecki [95], since it is also based on the counting
of primary /secondary voxels that are set at the value one to decide the values
at the secondary voxels of the subdivided cubical grid. The resulting binary
image is always well-composed in the sense that the resulting boundary in
the interpolated image is a 2-manifold, but this method is not self-dual.

In 2000, Latecki [95] developed the first gray level well-composed inter-
polation method in 2D. Starting with the same image expansion as the one
used for the binary interpolation, the new pixels are valued based on bilinear
interpolation: a pixel added between 2 primary pixels is valued at the mean
of these two pixels, and at the center of a square of primary pixel, the new
pixel is set a the mean of the values of these 4 pixels if the restriction of the
image to these four pixels was well-composed, and at the median of these
same values either.

This last method has been slightly modified by Géraud [59] in 2015 where
the new pixels added at the center of a square of 4 pixels is always the median
of these four primary pixels, since the median is always the good solution
in 2D to make an image well-composed. This method does not create any
extrema.

We can notice that these gray-level interpolation methods are self-dual
in the sense that they do not overemphasize bright components of the dark
ones, nor the converse. The counterpart of this powerful property is that the
initial images having a integer-based value space, the value space of the new
images is Z /4 for the method of Latecki and Z/2 for the method of Géraud.

As noticed by the author [26], extending 2D well-composed interpolations
to n-D is not so easy when we want to ensure self-duality using a local inter-
polation with usual constraints. Effectively, Mazo [116] developed a method
able to interpolated any image in n-D into a well-composed one, based on the
connectivity function where ¢ = 1 correspond to the maz interpolation and
€ = 1 corresponds to the min interpolation. Even if this method is initially
for binary images defined on Khalimsky grids, its extension to Z" and to gray
level images is well-known and frequently used. However this method is not
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self-dual, contrary to the one we are going to present in this thesis in a next
chapter.

2.4 Topics related to well-composedness

Now let us see the numerous topics in image processing and mathematics
that are related to well-composedness.

2.4.1 About digitization of regular images

In image analysis, many real objects are assumed to be smooth. More exactly,
they are assumed to be closed in R?/R3, to have a compact boundary, and
such that at each point of their boundary, their tangent line/plane are well-
defined [72]. This way, these subsets of R?/R?® are r-reqular, that is, there
exists a value r > 0 such that, at each point of their boundary, they admit an
inside (respectively an outside) open osculating disk/ball of radius superior
than or equal to r lying entirely in this set (respectively its complementary).
This class of sets has been introduced in 1982 [134, 150] and then used by
Latecki et al. [100, 99, 96] and by Tajine and Ronse [167].

Then, by digitization, some topological properties may be preserved de-
pending on the chosen digitalization (as the subset digitization [99], the Gauss
digitization, the intersection digitization, the threshold-based digitizations,
and so on). This also depends on the chosen reconstruction method following
the digitization process used to reproduce the shape of the original object as
good as possible thanks to continuous analogs like Voronoi cells, cubes, or
balls (centered at the voxels of the digitization and tessellating R™).

Then the real object and its reconstruction can be homeomorphic (in the
sense of the topological equivalence of Pavlidis [134]), or homotopy equivalent,
or they can have the same homotopy tree, they can bee strongly r-similar
(that is their morphing distance [161] is inferior or equal to ), and so on.

Well-composedness for a set X means that its reconstruction using unit
cubic voxels has a boundary which is made of a 1-manifold if the 2D case and
is made of a 2-manifold if the 3D case. In other words, manifoldness of the
boundary of a real-object is preserved iff its digitization is well-composed,
assuming that we used unit centered cubes for the reconstruction step.
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Figure 2.27: A reconstruction based on cubical grids in 3D leads to critical
configurations [163].

Figure 2.28: Even the digitization of a smooth bordered 3-manifold can con-
tain a 2D critical configuration [163].

In 2D, according to Gross and Latecki [72], if the initial object is r-regular,
then its digitization by intersection that is, if the space is tessellated with
squares and the squared pixels whose interior intersect the initial set are set
at 1 and the others at 0, is a well-composed 2D set when using a square grid
of diameter r, and then manifoldness of the initial object has been preserved.

In 3D, it has been shown by Stelldinger et al. in [163, 161] that using
cubical grids, whatever the regularity of the initial object and the resolution
of the cubical grid, we cannot ensure that the reconstructed object is well-
composed (see Figure 2.27).

Effectively, even digitizations of very regular objects can contain some
particular configurations, the famous “critical configurations” of Latecki,
which result in pinches in the reconstruction using cubic centered voxels
(see Figure 2.27).
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Figure 2.29: A r-regular object and its reconstrucions [163]: (a) the r-regular
object, (b) its reconstruction using a cubic g-grid, (c) ball union, (d) trilin-
ear interpolation, (e) Majority Interpolation, (f) MMC (modified marching
cubes).

The same reasoning can be extended to greater dimensions.

Since r-regularity is a very strong constraint, we could imagine that some
other kinds of geometric/topological constraints could allow to obtain well-
composedness, however it has been shown than r-regularity is a very good
assumption to model real objets, since it is a necessary and sufficient condi-
tion for many topology preserving theorems [161].

The only possibility seems then to be to change either the grid where the
digitization is realized (1), or the digitization itself (2), or the reconstruction
procedure (3). In the first case, we can refer to the works of Stelldinger and
Strand [164] which show that any digitization on a body-centered-cubic (BCC)
orface-centered-cubic (FCC) grid ensure topology preservation if the digiti-
zation is dense enough, and then that the boundary of the reconstruction is
a 2-manifold. In the second case, only the 2D digitization by intersection
seems promising yet to ensure well-composedness but the other digitizations
do not give any guarantees. In the third case, many very efficient techniques
exist and ensure that the resulting boundary is a manifold whatever the
given input (see Figure 2.29: majority interpolation [162], ball union [163],
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Figure 2.30: An image and its rigid transformation [131].

the Marching Cubes algorithm [110] (under some constraints), the trilinear
interpolation [163], the smooth surface representation [163]. Note that this
list may be not exhaustive.

2.4.2 Rigid transformations and preservation of well-
composedness

In the continuous world, topological properties are preserved by rigid trans-
formations, that is, compositions of a translation and a rotation. They are
much used in remote sensing [157], medical imaging [135], image registra-
tion [12], and image warping [54]. This is not anymore the case in the discrete
world [129, 130]: starting from a binary image defined on a square grid, it is
often mandatory to discretize the result of a continuous rigid transformation
of this image since its domain must behave to Z?* (see Figure 2.30).

This results in the loss of digital topological properties, especially based
on connectivities, like the well-composedness or the adjacency tree [140] (a
tree-based representation of the nested relationship between the connected
components in the image), which is no longer isomorphic to the one of the
original image. This way, the two images cannot be topologically equiva-
lent [145].

Fortunately, Ngo et al. [131, 132] proved that if the initial image is regu-
lar (a criterion based on some forbidden patterns described on Figure 2.31)
including the usual critical configurations of Latecki [96]), then the result-
ing rigid transformation is well-composed and the adjacency trees of the two
images are isomorphic. In that sense, they are “topologically equivalent”.
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Figure 2.31: Forbidden pattern in regular images [131].
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Figure 2.32: Patterns that are completely destructured by the rigid transfor-
mation [132].

Making regular any image is then straightforward, using for example a super-
resolution strategy [131] able to make any well-composed image regular. Fig-
ure 2.32 shows letters whose topology is lost under rigid transformation due
to the local critical patterns depicted in red: 4-connected components are de-
composed into several other 4-connected components, and the 8-components
corresponding to the holes are merged with the background. Figure 2.33
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Figure 2.33: Modified patterns whose topology is preserved under the rigid
transformation [132].

shows the same letters, modified such that no critical pattern happens, the
rigid transformation preserves well-composedness and adjacency tree. Nowa-
days, no result about the 3D case has been published.

2.4.3 Front propagation and well-composed segmenta-
tions

Among the family of topology constrained front propagation methods [33,
6, 166, 101, 75, 149], [75] and [149] rely on simple points [14, 87, 15], that
is, points such that their add or remove to the component will not change
the topology of the image. They start from initial seeds distributed in the
areas of interest in the space of the image, and then modify these (connected)
components by adding/removing simple points. It can also be interesting to
use multisimple points [149], that is points such that their add/remove do
not create/delete handles in the image.
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Figure 2.35: Glamorous glue applied to regions results in a well-composed
region.

Tustison proposed then in [169] a new method based on two simultaneous
criteria: the preservation of the topology, but also the preservation of the
well-composedness [96, 98, 99] of the seeds. This procedure is based on the
identification using topological numbers [19] of points, which preserves the
well-composedness and the topology of the image: these topological well-
composed points are then the only points allowed to be added to the front
to make it evolve. This results in a set of connected components and in an
interface which are well-composed (see Figure 2.34): the adjacency relations
are then (4,4) in 2D and (6,6) in 3D.

Since the interface between two near components will satisfy the Digital
Jordan Separation Theorem [127, 99] (DJST) thanks to their well-composedness,
these components can be iteratively glued together by adding elegantly the
part of the Jordan surface separating them to constitute a final segmentation
which is well-composed (see Figure 2.35). Then, they can be visualized us-
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Figure 2.36: The irreducible thick configuration [8].

ing the MC algorithm [110]: the use of the CCMC (Connectivity-Consistent
Marching Cubes) algorithm [74] generally used to resolve the ambiguous cases
is not required anymore.

2.4.4 Thin topological maps thanks to well-composedness

A discrete image can be seen as the digitization of a piecewise continuous
function. This way, we can represent the underlying piecewise continuous
function of a discrete image using a topological map where faces correspond
to the smooth regions and where the contours made of edges and vertices
correspond to the discontinuities of this underlying function. Note that this
representation using faces, edges and vertices is not new [56, 92]. However,
consistency problems, like the ”irreducible thick configuration” of [8] on
Figure 2.36 or [18, 87|, are encountered when we work on cubical grids in
this context: there is then no guarantee that the extracted crest network is
thin.

To obviate this problem, Marchadier et al. [113] propose to use well-
composedness [96, 17, 95| to avoid the connectivity problem and to obtain
a coherent topological map where the resulting crest network is thin. The
proposed method is the following. Starting from a given 2D grayscale im-
age, they compute the gradient that they make well-composed using some
topological repairing method [113]. Then they apply a leveling method of
Bertrand [18] which combines the well-composed-preserving thinning of Late-
cki [96] and deletion of the peaks, to obtain finally an irreducible well-composed
gray level image (see Figure 2.37).
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Figure 2.37: An irreducible gray-level well-composed image and its crest
network [113].
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Figure 2.38: Extraction of the crest network from the irreducible well-
composed configurations [113].

In fact, we can see see this resulting image as a watershed transform [20,
123, 125, 136] of the gradient of the initial image. Effectively, the quasi-
minima of this image represent the catchment bassins. Then, by a configuration-
base study, a thin crest network is computed on the complement of these
quasi-minima using a linking method [118, 44], with no ambiguities since
this image is well-composed (see Figure 2.38). This way, Marchadier ob-
tains a coherent topological map [29, 57] (see Figure 2.39) representing the
underlying piecewise continuous function of the given discrete image.
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Figure 2.39: The initial image, the image after the reduced image, and the
resulting watershed [113].

2.4.5 Locally computable Euler characteristic thanks
to well-composedness

The Euler number/characteristic [87] or genus is a topological invariant used

in many applications [111, 176]: computer graphics, image analysis, object

counting, visual inspection [158, 180], License Plates Characters and Numbers

Regnition tasks [1], real-time thresholding [155].

A subset X of the plane or of the 3D space is said to be polyhedral iff it
is expressible as a finite union of vertices (0-faces), edges (1-faces), triangles
(2-faces), and tetrahedra (3-faces). We also say that C' is the simplicial
decomposition of X. The FEuler characteristic is defined by the following
axioms:

e £(0) =0,

e £(S)=1if S is non-empty and convex,

e for any polyhedral sets S, 52, £(STUS?) = £(SY) +£(S5?%) —£(ST N S?),
and does not depend on the triangulation C' of X.

According to [168, 87|, the (face) Euler number of the polyhedral set S
can be formulated such that:

6(8) :no—n1+n2 — ng,

where ng, k € [[0,3], denotes the number of k-faces in the simplicial decom-
position. Note that the value of the face Euler number depends on the chosen
connectivity [168].
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Figure 2.40: Polyhedral set of a (4,8) digital picture. Its Euler characteristic
is equal to 1.

By the FEuler-Poincaré Formula, we obtain the formula of the volume

FEuler number:
€ =by — by + b,

where b is the k-dimensional Betti number. More exactly, by equals the
number of 1-components, b; equals the number of holes in all 1-components,
and by equals the number of cavities in all 1-components. For a given binary
image F', the sum of the volume Euler numbers of all connected components
in F' is called the volume Fuler number of the image F'.

In fact, in the case of a planar polyhedral set, the Euler characteristic is
equal to the number of connected components minus the number of holes,
which permits to define easily the Euler characteristic of a 2D image where
the continuous analog of the ones is represented by its corresponding planar
polyhedral set, which is always possible on a rectangular grid for a digital,
and then finite, set (which is detailed hereafter).

Assume that any 2D binary digital (m, n)-image P, where (m,n) belongs
to {(4,8), (8,4)}, is given, and that we define, as in [87], Cj as the black point
set in the image, C; as the union of the black segments whose endpoints are
m-adjacent black points. If (m,n) = (4,8) (respectively if (m,n) = (8,4)),
we define C, as the union of the unit squares (respectively the (1,1,/2)
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Figure 2.41: Polyhedral set of a (8, 4) digital picture. Its Euler characteristic
is equal to 0.

triangles) whose sides are contained in Cj. Then we obtain C(P) = Cy U
C7 Uy, that is, the polyhedral set of the image P. The Euler characteristic
of P is then obtained by computing the number of connected components of
C(P) minus the number of holes in C'(P).

Figure 2.40 and Figure 2.41 depict two binary images with the same set
of points. Figure 2.40 depicts an image whose Euler characteristic is equal to
one, when Figure 2.41 depicts an image whose Euler characteristic is equal to
zero. Effectively, the Euler characteristic depends on the chosen connectivity.
For this reason, if the given digital picture is well-composed, the choice of
the adjacencies does not import, and the Euler characterisitic is unique.

Furthermore, it has been observed that using dual adjacencies on arbi-
trary binary digital image, this characteristic can be computed locally [133,
88] by an enumeration of some local patterns (see also [70, 159] for different
approaches). Since using any pair of dual adjacencies on a well-composed
image leads to the same result, Latecki deduced then in [96] that the Euler
characteristic is also locally computable on well-composed sets. This results
in much faster algorithms, which shows one more time powerfulness of well-
composedness.

The 3D case is obviously also important and hade been treated in [34,
45, 35, 173, 47, 22, 103]. In particular, in [102], the used method is local.
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Figure 2.42: A simple closed curve in R? is a Jordan curve.
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Figure 2.43: 8-curves and 4-curves are not always Jordan curves in Z2.

Benefits of well-composedness come mainly from the fact that the number
of possible configurations is reduced, and then the calculus are simplified and
the computations are faster.

2.4.6 Well-composed Jordan curves separate the plane

The Jordan Separation Theorem [128] (JST) states that a simple closed curve
S in the continuous plane R? separates it into two components, a bounded
part that we call the "interior” and a unbounded part that we call the ”ex-
terior”, and that this curve is the common boundary of these two parts (see
Figure 2.42). In this case, S is said to be a Jordan curve. However it is
well-known that when we work into the discrete analog of the plane, like
on rectangular grids, we loose some topological properties of the continuous
world.

For example, a simple closed curve based on digital connectivity [70, 81,
121, 122, 140, 142, 143, 144, 182], does not always separate the space into
two components anymore: Figure 2.43 shows on the left a curve based on the
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Figure 2.44: A well-composed curve is always a Jordan curve in Z2.

8-connectivity and on the right a curve based on the 4-connectivity; none of
them separates the digital plane Z2.

In fact, it is related to the connectivity paradox of Rosenfeld [147], de-
veloped in Subsection 2.1.2, which can happen when we choose the same
connectivity in Z" for a set and its complement. To obviate this problem,
we can use dual pair of connectivities, and then we obtain the Digital Jor-
dan Separation Theorem [165, 141, 139, 138] which states that a digital 4-
connected simple closed curve (whose each point has two 4-neighbors in the
curve) separates the plane into two 8-connected components. Conversely a
digital 8-connected simple closed curve (whose each point has two 8-neighbors
in the curve) separates the plane into two 4-components.

Another way to obviate the connectivity paradox is to use well-composed
simple closed curves, for which 4-connectivity and 8-connectivity are equiv-
alent: in this manner no ambiguity is possible and the connectivity paradox
cannot occur anymore. Figure 2.44 shows an example of well-composed sim-
ple closed curve, which is then a Jordan curve in the sense that it separates
the digital plane into two components.

Note that another way to preserve the separation property proper to the
plane is to work in Khalimsky Grids [73] (see Figure 2.45), where simple
closed curves, also called 1-surfaces [89, 52], separate the Khalimsky grid
H2. However in this case, the neighborhood of a point in H? depends on
its coordinates, and then the grid structure of H? is different from the usual
ones of Z2.

On arbitrary grids, Wang and Battacharya [175] proposed an interest-
ing generalization of the DJST, considering that two pixels are direct edge-
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Figure 2.45: A simple closed curve in H? is a Jordan curve.

Figure 2.46: Different kinds of simple closed curves according to Wang and
Battacharya.

connected if they share an edge, direct vertex-connected if they share a ver-
tex, and direct miz-connected if they share an edge or a vertex. This way,
their equivalent of the Jordan Separation Theorem on arbitrary grids is
the following: a finite edge-connected simple closed curve (of pixels) sepa-
rates the plane into two mix-connected (respectively edge-connected) com-
ponents. Furthermore, a well-composed simple closed curve (of pixels) in the
sense of [175], that is, such that (direct) vertez-connectedness implies (direct)
edge-connectedness, separates R? into two edge-connected components. Fig-
ure 2.46 shows on the left a mix-connected simple closed curve, separating
the plane into two edge-connected parts, the curve in the middle is an edge-
connected simple closed curve separating the plane into two mix-connected
components, and on the right, we can see a well-composed simple closed
curve which separates the plane into two components, whatever the chosen
connectivity. Well-composedness is then used here to give back to the JST
the "natural” topological property verified in the continuous plane.
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Figure 2.47: The continuous analog of a not well-composed set.

2.4.7 Jordan separation theorem and well-composedness

Well-composedness is deeply related to Jordan curves and Jordan surfaces.

We recall that the Jordan curve theorem [82, 13, 170, 23] (resp. the
Jordan-Brouwer Separation theorem [3, 71, 109, 90]) states that a simple
closed curve (resp. a simple closed surface) in the continuous plane R? (resp.
in the continuous space R?) separates the plane (resp. the space) into two
components, one which is bounded, called the interior, and one which is
unbounded, called the exterior, and that their common boundary is this
curve (resp. this surface). In the first case, we call it a Jordan curve, and in
the second case, we call it a Jordan surface.

Effectively, as stated in [95], it is equivalent to say that a 2D subset
X of Z? is well-composed or to say that the boundary of its continuous
analog is a 1-manifold, which means that it is made of disjoint simple closed
curves. Figure 2.47 shows a set which is not well-composed, since one of
the connected components of its boundary is not a simple closed curve, and
Figure 2.48 shows a well-composed set, since each connected component of
its boundary is a simple closed curve.

Take care not to amalgamate the fact that a simple closed curve is well-
composed and the fact that the boundary of a 2D set is a simple closed curve.
The first concept is a property of well-composed curves as a set (in this case,
the whole set is a Jordan curve), when the second one is the property of any
boundary of any 2D well-composed set (in this case, the Jordan curves are
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Figure 2.48: The continuous analog of a well-composed set.

w 'y

Figure 2.49: Non-Jordan Surfaces.

QARG

Figure 2.50: Jordan Surfaces.

the boundaries).

Also, a digital 3D set X C Z? said well-composed [98, 95] iff the boundary
of its continuous analog is a 2-manifold, that is, is made of disjoint simple
closed surfaces, which strongly relates the Jordan-Brouwer separation theo-
rem to well-composedness. Figure 2.49 shows the boundaries of continuous
analogs which are not Jordan surfaces, and Figure 2.50 shows at the con-
trary boundaries of continuous analogs of well-composed sets which are then
2-manifolds.
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Chapter 3

Generalization of
Well-composedness to
Dimension n

In this chapter, we expose our contributions in matter of well-composedness.
In particular, we explain how we renamed the different kinds of well-compo-
sednesses: since they are not always equivalent, this justifies the terminology
we introduced to differentiate them. Also we will study how they are related,
and how we propose to extend these definitions to gray-level /real-valued im-
ages. We will also show how we propose to characterize real-valued digitally
well-composed images in n-D, extending the 2D characterization of Latecki
in [95]. We will end with the computation of the complexity of this verifi-
cation process, able to check if an image is digitally well-composed or not.
Note that the dimension n € N* of the space we are working in is assumed
to be greater than or equal to 2 and finite.

3.1 The different flavours of n-D WCnesses
in brief

As we have seen in Section 2.2, Latecki introduced in 2D well-composedness
for sets such that a set is well-composed iff its connectivities are equivalent,
that is to say that we have the same sets of components whatever the chosen
connectivity for this set and its complement in Z2. However, in 3D, the
definition of well-composedness is not the natural extension of the 2D one:
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a 3D set is said well-composed iff the boundary of the continuous analog
is a 2-manifold. This is a stronger condition since it implies that a 3D
set and its complement in Z" have their connectivities equivalent, but the
converse is not true (see Figure 2.15). Furthermore, alternative definitions
of well-composednesses appeared in 1997 in 2D arbitrary grids [175], in 2008
in [160] in the cellular complexes, and in 2013 in [124] in Alexandrov spaces
(like the Khalimsky grids). Since in our case, we were mainly interested in
cubical grids, we renamed these definitions and properties in the following
manner:

o A (digital) set X C Z" is said EWC or well-composed based on the
equivalence of its connectivities iff any (3" — 1) component of X (re-
spectively of X¢) is a 2n-component and vice versa.

o A (digital) set X C Z" is said CWC or well-composed in the continuous
sense iff the (topological) boundary of its continuous analog is a (n—1)-
manifold.

o A (digital) set X C Z" is said DWC' or well-composed in the digital
sense iff it does not contain any k-D critical configuration, with k €

[2,n].

o A (digital) set X C Z" is said AWC or well-composed in the Alezandrov
sense iff the connected components of the topological boundary of its
immersion ZMM(X) in the Khalimsky grids H" are discrete (n — 1)-
surfaces (see Chapter D for more details). By identification, we will
say equivalently that ZMM (X)) is AWC or that X is AWC.

Notice that we did not take into account well-composedness on arbitrary
grids or arbitrary cellular complexes, since we are mainly intrested in cubical
grids. Also, we generalized these notions to n-D, since we focus on n-D
signals, n > 2. Considering that digital well-composedness makes sense on
Z", but also on a subdivided version of Z" like (2)" or more generally (Z/s)"
with s € N*, we will define our generalizations of well-composedness into
(Z/s)™. Effectively, an interpolation on a cubical grid starts usually from an
image whose domain is in Z" and outputs an image whose domain is in (%)n,
as we will see in the next chapter.
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3.2 Mathematical Basics

Let n > 2 be a (finite) integer called the dimension and s > 1 be an integer
called the subdivision factor.

Now, let B = {¢!,...,€e"} be the (orthonormal) canonical basis of (Z/s)".
We use the notation z;, where i belongs to [1,n], to determine the i'* coor-
dinate of the vector € Z". We recall that the L!'-norm of a point x € Z"
is denoted by ||.|[1 and is equal to 37, .y |2 where || is the absolute value.
Also, the L*-norm is denoted by |||« and is equal to max;cpi nj |2]-

For a given point x € (Z/s)", the set of the 2n-neighborhood in (Z/s)"
is noted Ny, (z,(Z/s)") and is equal to {y € (Z/s)" ; ||z —y|1 < 1/s}. In
other words,

1 1 en en

" e e
Now(2,(Z/)s)") = {z} U{x DL ERTE A ;}
An element of the 2n-neighborhood of = € (Z/s)™ is called a 2n-neighbor of x
in (Z/s)". The starred 2n-neighborhood of x € (Z/s)™ is noted N5, (x, (Z/s)")
and is equal to No,(z,(Z/s)") \ {z}. Two points x,y € (Z/s)™ such that
x € N (y,(Z/s)") or equivalently y € N5 (x,(Z/s)") are said to be 2n-
adjacent in (Z/s)".

Then, for a given point « € (Z/s)", the set of the (3" — 1)-neighborhood
in (Z/s)™ is noted Nsn_y(z, (Z/s)") and is equal to {y € (Z/s)" ; ||z —ylec <
1/s}. In other words,

Nyoi(z, (Z)s)") =S o+ > Ne'; N € {—1/5,0,1/s},Vi € [1,1]

i€1,n]

An element of the (3" — 1)-neighborhood of x € (Z/s)™ in (Z/s)" is called a
(3™ — 1)-neighbor of x in (Z/s)". The starred (3™ — 1)-neighborhood of x €
(Z/s)™ in (Z/s)™ is noted Nn_;(x, (Z/s)™) and is equal to N3n_1(z, (Z/s)™)\
{z}. Two points z,y € (Z/s)" such that x € N3._,(y, (Z/s)™) or equivalently
y € Nw_1(x,(Z/s)") are said to be (3" — 1)-adjacent in (Z/s)".

Let x,y be two points in (Z/s)" and X be a subset of (Z/s)". A (finite)
2n-path (respectively a (finite) (3" — 1)-path) joining x to y into X as a
subset of (Z/s)" is a sequence (p° = z,pt,...,p" 1, p* = y) such that for
any ¢ € [0, %], p’ belongs to X and such that for any i € [0,k — 1], p'™ €
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= (0", (Z)s)™) (respectively p"™ € Ni._,(p’,(Z/s)™)). Such paths are said
to be of length k.

A subset X of (Z/s)™ such that its cardinal Card(X) is finite is said to be
a digital set. A (digital) set X C (Z/s)" is said 2n-connected (respectively
(3™ — 1)-connected) into (Z/s)™ iff for any couple of points =,y € X, there
exists a 2n-path (respectively a (3" —1)-path) joining them into X as a subset
of (Z/s)™. A subset C' of X which is 2n-connected (respectively (3" — 1)-
connected) into (Z/s)™ and which is mazimal in the inclusion sense, that is,
there is no subset of X which is greater than C' and which is connected into
(Z/s)", is said to be a 2n-component (respectively a (3" — 1)-component) of
X in (Z/s)™.

A point x € (Z/s)" is said to be 2n-connected (respectively (3" — 1)-
connected) to a set Y C (Z/s)" into (Z/s)™ iff there exists a point y € Y
such that z and y are 2n-neighbors (respectively (3" —1)-neighbors) in (Z/s)".
Two sets X, Y C (Z/s)™ are said to be 2n-connected (respectively (3" — 1)-
connected) in (Z/s)" iff there exists * € X such that z and Y are 2n-
connected (respectively (3" — 1)-connected) in (Z/s)".

The set of connected components in (Z/s)™ of a set X C (Z/s)" based
on the &-connectivity, £ € {2n,3" — 1}, is denoted by CC¢(X, (Z/s)"). As-
suming that a point = € (Z/s)" belongs to a set X C (Z/s)", the connected
component of X in (Z/s)™ based on the {-connectivity, £ € {2n,3" — 1}, is
denoted by CC¢(X, z, (Z/s)™); in the contrary case, CC¢(X, x,(Z/s)") = 0.

3.3 n-D EWCness and n-D DWCness

In this section, we extend naturally the seminal definition of EWCness to n-
D, we define DWCness in n-D and we show how we can characterize a DWC

set using 2n-connectivity, and we study the correlation between EWCness
and DWCness.

3.3.1 n-D EWCness

Now that we have defined the basics in matter of connectivity in digital
topology, we can define well-composedness based on the equivalence of con-
nectivities.
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Definition 8. Let X be (digital) set in (Z/s)". X is said to be EWC or well-
composed based on the equivalence of its connectivities iff the two following
conditions hold:

e any of its 2n-component in (Z/s)" is also one of its (3" —1)-components
in (Z/s)" and vice versa.

e any 2n-component of X in (Z/s)" is also a (3" — 1)-component of X°¢
in (Z/s)" and vice versa.

We can underline that this definition is clearly self-dual, and since the
connectivity does not matter for this class of sets, we will sometimes say
that their connectivities (and the ones of their complement in (Z/s)"™) are
equivalent. Also, this definition is the “natural” extension of the one of
Latecki in [96] for 2D sets.

3.3.2 n-D DWCness

In this subsection, we introduce a notion of digital well-composedness for
sets in Z", that we call in this way because it is based on patterns called
“k-dimensional critical configurations”, k € [2,n], and these patterns can
only occur in subsets of Z". So let us introduce the basic mathematical
background which will allow us to generalize the notion of well-composed-
ness based on critical configurations to dimension n > 2.

Like usual, B = {e!, ..., e"} is the canonical basis of Z".

Definition 9. Given a point z € (Z/s)" and a family of vector F = (f*, ..., f*) C
B, we define the block of (Z/s)" associated to the couple (z, F) in this way:

Sz, F)={z+ > Nf | N €{0,1/s},Vi € [1,4]

1€][1,K]

Let us denote that a set which is a 2D block in Z?2 is not a 2D block in
(Z/2)?, as depicted on Figure 3.1.

A subset S C (Z/s)™ is called a block of (Z/s)™ iff there exists a couple
(2, F) € (Z/s)" x P(B) such that S = Ss(z, F). Note that a block of (Z/s)"
which is associated to a family F € P(B) of cardinal k € [0,n] is said to be
of dimension k, what will be denoted by dim(S) = k. Figure 3.2 shows 2D,

76



Figure 3.1: The notion of block depends on the space the set lies in.

Figure 3.2: 2D, 3D and 4D blocks.

Figure 3.3: In the raster scan order: the white points are l-antagonists,
2-antagonists, 3-antagonists, and 4-antagonists.

3D and 4D blocks. We can remark that their dimension does not depend on
the space they lie in. We will denote the set of blocks of (Z/s)™ by B((Z/s)™).
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Using this notion of blocks, we can define antagonism. Two points p, q
belonging to a block S € B((Z/s)") are said to be antagonist in S iff their
distance equals the maximal distance using the L' norm between two points

into S. In other words, two points p and ¢ in (Z/s)"™ are antagonist in
S e B((Z/s)") iff p,q € S such that:

lp — qlli = max{||z — y|[, ; =,y € S},

and in this case we write that ¢ = antagg(p) or equivalently p = antagg(q).
The antagonist of a point p in a block S € B((Z/s)™) containing p exists and
is unique. Sometimes we will use the notation Ss(p,q) where p,q € (Z/s)"
are (3" — 1)-neighbors into (Z/s)™ to indicate the block in B((Z/s)™) such
that p and ¢ are antagonist in this block.

Also, two points which are antagonist in a block of (Z/s)"™ of dimension
k € [0,n] are said k-antagonist. In this case, k of their coordinates differ,
and they differ from a value 1/s, the other coordinates being equal. Two
points which are 0-antagonist are equal, two points which are 1-antagonist
in a block of (Z/s)" are 2n-neighbours in (Z/s)", and two points which are
n-antagonist in a block S € B((Z/s)") are (3" — 1)-neighbors in (Z/s)™.
See Figure 3.3 for different possible couple of antagonists (in white) in a 4D
space.

Now we are able to define critical configurations of dimension k € [2,n]
in a n-D space:

Definition 10. A set of two points {p,q} € (Z/s)"™ such that p and q are
antagonist in a block S € B((Z/s)") of dimension k € [2,n] is called a
primary critical configuration in (Z/s)" of dimension k. Any set equal to
a block S € B((Z/s)") of dimension k € [2,n] minus two points which are
antagonist into S is called a secundary critical configuration in (Z/s)" of
dimension k. More generally, a critical configuration (of dimension k €
[2,n]) in (Z/s)™ is either a primary or a secondary critical configuration (of
dimension k) in (Z/s)".

In other words, the set of primary critical configurations can be written
as following:

{{p, antags(p)} ; S € B((Z/s)"), p € S, dim(5) = 2},
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Figure 3.4: The white points on the left draw a 2D primary critical con-
figuration, and the white points on the right draw a secundary 2D critical
configuration.

Figure 3.5: The white points on the left draw a 3D primary critical con-
figuration, and the white points on the right draw a secundary 3D critical
configuration.

and the set of the secondary critical configurations can be written in this
way:

{S\ {p,antags(p)} ; S € B((Z/s)"), p € 5, dim(5) = 2}.
Figures 3.4, 3.5 and 3.6 depict 2D, 3D, and 4D critical configurations.
There comes our definition of digitally well-composed sets:
Definition 11. A (digital) set X C (Z/s)™ is said digitally well-composed or

DWC iff it does not contain any critical configurations, that is, for any block
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Figure 3.6: The white points on the left draw a 4D primary critical con-
figuration, and the white points on the right draw a secundary 4D critical
configuration.

S € B((Z/s)™), the restriction X NS is neither a primary nor a secundary
critical configuration in (Z/s)".

Obviously, this definition is self-dual, since a set X C (Z/s)" contains
a primary (respectively a secondary) critical configuration in the block S €
B((Z/s)") iff its complement X° contains a secondary (respectively a pri-
mary) critical configuration in this same block S.

Note that this definition is based on local patterns, at the contrary of
well-composedness based on the equivalence of connectivities which is based
on connected components, and then is global.

Also, Latecki remarked that in 2D and 3D, we can express well-compo-
sedness using 2n-paths in restricted areas. Effectively, we can reformulate
digital well-composedness based on 2n-paths in dimension 2, 3, but also in
dimension n > 4 as showed by our n-D theorem:

Theorem 2. A set X C (Z/s)" is digitally well-composed iff, for any block
S € B((Z/s)") and for any couple of points (p, antagg(p)) such that they
belong to X NS (resp. S\ X ), p and antagg(p) are 2n-connected in X N S
(resp. in S\ X ) as subsets of (Z/s)".

Proof: Let us begin by the converse implication. If X is not digitally well-
composed, there exists some block S C (Z/s)" such as X NS is a primary or
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Figure 3.7: Step-by-step construction of the 2n-path joining the two (red)
antagonists into X N S into (Z/s)".

a secondary critical configuration in (Z/s)". In the primary case, Card(X N
S) = 2, what contradicts that Card(X NS) > k + 1 due to the fact that
every couple of antagonists (p,p’) in this block is connected by a 2n-path
in (Z/s)". In the secondary case, Card(X° N S) = 2, what contradicts that
Card(X°NS) > k + 1 for the same reason.

81



Concerning the direct implication, let us prove firstly that for two antag-
onists p and p’ in some block S € B((Z/s)™) of dimension k € [1,n] such
that p,p’ € X, there exists a 2n-path in X N .S joining them as a subset of
(Z/s)™ when X is digitally well-composed.

Initialization (k = 1) : the 2n-path joining p and p’ into X NS as a subset
of (Z/s)™ is simply m = (p,p’).

Induction (k € [2,n — 1]): let us assume that this property is true for
every | € [1,k]. Now, let us assume that there exists a couple of points
p and p’ of X such as they are antagonist in a block S € B((Z/s)") of
dimension (k+1). We know that X is digitally well-composed and then does
not contain any primary critical configuration. Consequently, there exists
one point ¢ € X NS such as ¢ # p and ¢ # p’. That means that p and
q are antagonist in some block S" € B((Z/s)™) of dimension [ strictly lower
than k 4 1, and then they are connected by a 2n-path m,, = (p,...,q) in
XNS C XNS as as subset of (Z/s)". For the same reason, ¢ and p’ are
connected by a 2n-path gy = (q,...,p') € X NS in (Z/s)". Consequently,
by joining the two paths m,, and m, we obtain a 2n-path m,, in X NS
joining p and p’ into (Z/s)".

A similar reasoning will prove that the non existence of secondary critical
configurations in X (and then the non existence of primary critical configura-
tions in X¢) implies that for any couple of points (p, p) of X¢ and antagonist
in some block S € B((Z/s)"), there exists some 2n-path joining them in
XenS§s. O

This proof is illustrated on Figure 3.7 (here we have s = 1): two an-
tagonists, depicted in red in the block S (the tesseract), are assumed to
belong to a digitally well-composed set X C Z", which is shown on Subfigure
(A). Since the two red points (0,0,0,0) and (1,1,1,1) belong to X and are
4-antagonist in .9, there exists at least one more point in the block .S belong-
ing to X (in the contrary case, X contains a critical configuration, which
is impossible by hypothesis). A first possibility is shown on Subfigure (B),
and a second possiblity is shown on Subfigure (C'), where the green point
depicts this additional point. Let us treat first the case corresponding to
Subfigure (B): since the points (0,0,1,0) and (1,1,1,1) are 3-antagonist in
the 3D block C' depicted in yellow, there must be at least one more point
in this block which belongs to X (for the same reason as before), and then
we obtain that the blue point (1,0,1,1) belongs to X, which is shown on
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Subfigure (D). Applying recursively the reasoning until X does not contain
any critical configuration, we obtain that the point (1,0, 1,0) also belongs to
X, which is shown in purple on Subfigure (F'). Finally, we obtain a 2n-path
joining the two red points (0,0,0,0) to (1,1,1,1) into X N S. Let us now
treat the case corresponding to Subfigure (C): if (0,0,0,0) and (0,0,1,1),
which are 2-antagonist, are the only points of X in the block A, X N A is a
critical configuration, then there exists an additional point among (0,0, 1,0)
and (0,0,0,1) which belongs to X. The same thing happens in the block B
where at least (0,0,1,1) and (1,1,1,1) belongs to X: at least (0,1,1,1) or
(1,0,1,1) must belong to X. Let us assume that (0,0,0,1) and (0,1,1,1)
belong to X, we obtain Subfigure (E) where a 2n-path joins the two red
points (0,0,0,0) to (1,1,1,1) in X N S. Obvioulsy, the reasoning is similar
when (0,0,0,0) and (1,1,1,1) belong to X¢. In this case, we obtain that
a 2n-path joins these two points in X¢ N S, thanks to self-duality of digital
well-composedness.

3.3.3 Link between EWCness and DWCness

Let us recall that EWCness in a global phenomenon, since it is based on
connected components, and that DWCness is based on local properties, that
is, there is no critical configurations. That shows that the link between
DWCness and EWCness is not so obvious. Before proving that DWCness
implies EWCness in any (finite) dimension n, n > 2, let us announce some
lemmas.

Lemma 1. Let X C (Z/s)" be a digitally well-composed set in (Z/s)™. Then
the (3™ — 1)-components of X in (Z/s)", respectively of X¢ in (Z/s)", are
digitally well-composed in (Z/s)".

Proof: We need first to prove that any element of CC3n_1(X, (Z/s)") is
DWC. Let C' be an element of CC3n_1(X,(Z/s)™). Assume that C' is not
digitally well-composed, that means that there exists a block S € B((Z/s)")
of dimension k£ > 2 such that C'N S is either a primary critical configuration
or a secundary critical configuration. Let us begin with the primary case:
there exists p € S such that C' NS = {p, antagg(p)}. Then we remark that
any point different from p or antagg(p) belonging in S is a (3" — 1)-neighbour
of both p and p’. In other words, if there exists ¢ € S, g & {p, antagg(p),
belonging to X, it belongs also to C' since this is a (3" — 1)-component of
X. Then X NS = C NS, and this way X contains a critical configuration
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in (Z/s)", which is impossible. The reasoning is the same for the secondary
case. We have proven that the (3" — 1)-connected components of a DWC set
are DWC. Now we need to prove that any element of CCsn_1(X¢, (Z/s)") is
DWC. Since X digitally well-composed in (Z/s)"™ implies that X¢ is digitally
well-composed in (Z/s)", the proof is done. O

Lemma 2. Let p,p’ € (Z/s)" be two points in a digitally well-composed
set X C (Z/s)". If p and p' are (3" — 1)-connected into X, they are also
2n-connected into X.

Proof: Let p,p’ be two points in X C (Z/s)™ which is digitally well-
composed in (Z/s)". Assuming that p and p’ are (3" —1)-connected into X as
a subset of (Z/s)", there exists a (3" —1)-path 7 = (¢° = p,q¢%,...,¢" 1, ¢* =
p') of length & > 0 joining them into X as a subset of (Z/s)". For any
i € [0,k—1], ¢" and ¢"*! are (3"—1)-adjacent into (Z/s)", and then antagonist
in a block S,(q’,¢"*'). Since X is digitally well-composed in (Z/s)" and ¢’
and ¢'™! belong to X, by Theorem 2, there exists a 2n-path joining ¢* and
¢ into X N S(¢',¢"™) as a subset of (Z/s)", such that these two points are
2n-connected into X as a subset of (Z/s)". By transitivity, p and p’ are then
2n-connected into X as a subset of (Z/s)". O

Note that the converse is true, as stated by the following proposition.

Proposition 12. Let X C (Z/s)" be a digital set. Let us assume that each
connected component of X in (Z/s)", that is, any element of CC3n_1(X, (Z/s)"),
and each connected component of X¢ in (Z/s)", that is, any element of
CC3n_1(X(Z)s)"), are digitally well-composed in (Z/s)". Then, X is digi-
tally well-composed in (Z/s)".

Proof: Let us assume that X is not digitally well-composed in (Z/s)".
There exists some block S € B((Z/s)") of dimension k € [2,n] such that
X NS is a critical configuration of dimension &k in (Z/s)". Let us treat
first the primary case. If X NS = {p,p'} with p’ = antagg(p), obviously
p and p" are (3" — 1)-neighbors in (Z/s)" since ||p — p'||oc < 1/s (they are
antagonist), and then the connected component Cx = CCsn_1(X,p, (Z/$)")
contains also p’. This way, Cx NS 2 {p,p'}, and since Cx C X, Cx NS =
{p,p'}, which contradicts that Cy is digitally well-composed into (Z/s)™.
Now let us proceed to the secondary case. If X contains a secondary critical
configuration in S as a subset of (Z/s)", it means that X°N.S = {p,p'} with
p’ = antagg(p). One more time, p and p’ are (3" — 1)-neighbors into (Z/s)",

84



and then the connected component Cxc = CCsn_1(X€, p,(Z/s)") contains
also p’. Then, Cx. NS D {p,p'}, and since Cx. C X°¢ Cx. NS = {p,p'},
which contradicts that Cx. is digitally well-composed in (Z/s)". O

(a) In a digitally well-composed set, (b) In a digitally well-composed set,
a 2n-component is also a (3" — 1)- a (3" — 1)-component is also a 2n-
component. component.

Figure 3.8: DWCness implies EWCness.

Theorem 3 (DWC = EWC). Let X C (Z/s)™ be a digitally well-composed
set in (Z/s)". Then, X and X¢ are well-composed based on the equivalence
of connectivities (EWC) in (Z/s)".

Proof: Let us prove in a first time that each 2n-component in (Z/s)" of
aset X C (Z/s)™ wich is digitally well-composed in (Z/s)™ is also a (3" — 1)-
component of X in (Z/s)" (see Figure 3.8a). Let A be any (non-empty) 2n-
component of a set X C (Z/s)™ which is digitally well-composed in (Z/s)".
It is obvious that A is (3" — 1)-connected in (Z/s)", the 2n-connectivity
implying the (3" — 1)-connectivity. Let us prove now that A is maximal for
the (3™ — 1)-connectivity by reductio ad absurdum: if A is not maximal for
the (3" — 1)-connectivity into (Z/s)™, there exists A’ € CCsn_1(X, (Z/s)")
such that A € A’. Then there exists p,p’ € (Z/s)™ such that p € A and
p' € A”\ A. These points belong both to A" and then are (3" — 1)-connected
in A as a subset of (Z/s)". Also, A" is digitally well-composed in (Z/s)"
because it is a (3" — 1)-component of a set which is digitally well-composed
in (Z/s)" (see Lemma 1). By Lemma 2, p and p’ are 2n-connected into A’ as
a subset of (Z/s)", and then p’ belongs to A, which leads to a contradiction.
Then A is also a (3" — 1)-component in (Z/s)".
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Let us now proceed to the converse implication. Let B be a (3" — 1)-
component of X as a subset of (Z/s)" (see Figure 3.8b). We need to prove
that B is a 2n-component of X as a subset of (Z/s)", i.e., B is 2n-connected
in (Z/s)™ and maximal for the 2n-connectivity in the inclusion sense. Let us
first prove that B is 2n-connected into (Z/s)". B is a (3" — 1) component of
a set which is digitally well-composed into (Z/s)", and then is digitally well-
composed into (Z/s)" by Lemma 1. Let ¢,q' € (Z/s)™ be two points of B,
then they are (3" — 1)-connected into B as a subset of (Z/s)", and then they
are also 2n-connected by Lemma 2 into B as as subset of (Z/s)". B is then
2n-connected into (Z/s)™. Let us now assume that B is not maximal for the
2n-connectivity. Then there exists some point p € X which is 2n-connected
to B in (Z/s)" and which does not belong to B. Since the 2n-connectivity
implies the (3™ — 1)-connectivity, this point belongs then to B. We have a
contradiction. Then B is maximal for the 2n-connectivity.

The fact that X¢ is well-composed based on the equivalence of connectivi-
ties follows from the fact that X digitally well-composed implies X ¢ digitally
well-composed and then X¢ is well-composed based on the equivalence of
connectivities. O

Now that we know that each (3" — 1)-component in (Z/s)™ of a set which
is digitally well-composed into (Z/s)™ is also one of its 2n-component in
(Z/s)™ and conversely, we can deduce easily the following corollary.

Corollary 1. Let X C (Z/s)" be a digitally well-composed set in (Z/s)".
Then we have:

CCQn(X7 (Z/S>n) = CC3"71<X7 (Z/S)n)a

and

CCon(XC, (Z/5)") = CCon_1(XC, (Z/5)").

Recall that the converse of Theorem 3 is not true in 3D (and in higher
dimensions) (see Figure 3.9): a 3D subset of (Z/s)" can be EWC in (Z/s)"
whithout being DWC in (Z/s)", since the (3" — 1)-components in(Z/s)"™ and
the 2n-components in (Z/s)" of this set are equal, but it contains a 2D critical
configuration at the top and then is not DWC (the reasoning holds for any
n > 3).
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Figure 3.9: EWCness does not imply DWCness in n-D (n > 3).

Lemma 3. Let X C (Z/s)" be a digitally well-composed set in (Z/s)". Then
the 2n-components of X, respectively of X¢, in (Z/s)" are digitally well-
composed.

Proof: Since X is digitally well-composed in (Z/s)", its (3™ — 1) com-
ponents in (Z/s)™ and the ones of its complement X¢ in (Z/s)" are digitally
well-composed in (Z/s)™ by Lemma 1. Then, by Corollary 1, each (2n)-
component of X or X¢ is digitally well-composed in (Z/s)"™. This concludes
the proof. n

Finally, for sets which are digitally well-composed in (Z/s)", it does not
care if we consider either the (3" — 1)-components or the 2n-components of
this set (respectively of its complement) since they are the same. Further-
more, these components are digitally well-composed in (Z/s)".

3.3.4 Well-composed gray-level n-D images

In [95], Latecki told explicitely that a (digital) binary image (Z?*, X) is such
that the set X C Z2 is finite or its complement is finite. Then it is obvious
that we can store this kind of set in a matrix on a computer, this matrix
representing the smallest rectangle [Zmin, Tmax] X [YUmin, Ymax] containing at
least all the elements of X is the set of ones is finite, or containing at least
all the elements of X is the set of zeros is finite. The resulting matrix con-
tains then zeros and ones is finite number and represent rigorously the set
X. However in the case of a gray-level image, there is no explicit assump-
tion about which value (or group of value) is in finite number. To obviate
ambiguities, we propose the definition below (see Definition 12), which is as
general as possible: it allows to define images using real values, since today
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we do not work anymore with quantificated images such that their values
are in [0,255] (they can be floating points, or negative, and so on). This
definition also handles the different kinds of well-composednesses, since they
are not equivalent in n-D, n > 2. But let us come back to some basics.

Let us assume that the integers n > 2 and s > 1 exist. From now on, we
will say that a 4-uple (A, D, V,u), representing the mapping u : D C A — V|,
is an image defined on D C A. In this case, A is called the space of the
image, D C A is called the domain of the image, and V C R is the value
space of the image. Note that (A, D,V,u) will be generally identified to w.
Also, u will be said to be a digital image iff its space is equal to (Z/s)" for
some s and if its domain D C (Z/s)" is finite. Moreover, (A, D, V,u) will be
called a (digital) gray-level image if it is a digital image and if V = N.

Also we will use the following notation where A denotes any space and V
denotes any value space:

Im(A,D,V)={u:DCA— V},

and:
Im(A,V)={u:DCA—-V; DCA}.

Now let us recall the definition of threshold sets, coming from the cross-
section topology [118, 21, 17, 18]. Let u € Im((Z/s)", D,R) be an image and
let be A € R a given threshold, a large upper threshold set is defined as:

>N ={zeD; ulz) > A,
a strict upper threshold set is defined as:

[u>A={ze€D; ulx) >},
a large lower threshold set is defined as:

W<\ ={zeD; ulz) <A,
and a strict lower threshold set is defined as:

[u<A={ze€D; ulxr) <A}
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Also, an hyperrectangle in (Z/s)" is defined as the cartesian product in
(Z/s)", denoted by [], of the discrete intervals [m;, M;] N £ for all i € [1,n]

denoted by:
IT s M0 %,
i€[1,n]
where m € (Z/s)", its lower bound, and M € (Z/s)", its upper bound, are
given and such that Vi € [1,n], m; < M;. A bounded hyperrectangle in (Z/s)"
is an hyperrectangle such that the n coordinates of its lower bounds and of
its upper bounds are finite.

Definition 12 (Well-composedness(es) of n-D images). A digital image u :
D C(Z/s)" — R is said X-WC, where X belongs to {E,D,C, A}, in (Z/s)"
iff for every threshold A € R, all the threshold sets of u are X-WC' sets in
(Z/s)". This same image is said X-WC, where X belongs to {E,D,C, A},
on a domain D" C D iff for every threshold \ € R, all the threshold sets of u
restricted to the domain D' are X-WC sets in (Z/s)".

Note that we will not treat the case where the domain of a given image
u is infinite because we want to ensure the property that the cardinal of the
inverse image of any value taken in the value space of the image is finite.
Moreover, 2D images defined on cubical grids are generally defined on rect-
angular domains, 3D images on rectangular parallelepipeds, and so on. This
justifies our restriction to bounded hyperrectangles for images defined on a
cubical grid.

3.3.5 Characterizing DWC real-valued n-D images

Now let us remark that in the case of a real-valued image defined on a
bounded hyperrectangle, we are able to detect the digital well-composedness
of this image only using the upper (respectively lower) threshold sets, as
proved using the following Lemmas.

Lemma 4. Letu € Im((Z/s)", D,R) be a gray-level image such that Card(D)
+o0o. Then u is digitally well-composed on D iff for any X € R, [u < A and
[u > A are both digitally well-composed (or equivalently iff [u > A and
[u < A] are both digitally well-composed).

Proof: The direct implication is obvious. For the converse implication,
let us proceed in two parts. Let us define V(u) = {u(z) | z € D} and:

e =min{|u(p) — u(q)| | p.q € D, u(p) # u(q)}.
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Firstly, we can observe that for any A € R, every threshold set [u < )]
can be rewritten [u < f(A)] with f: R — R defined such that:

fA=¢/2 it XeV(u),
F) = { A either.

That means that every threshold set [u < A] is equal to [u < X] for some
N eR.

Secundly, we can observe that every threshold set [u > A] can be rewritten
[w > f(A)] using this same function f. That means that every threshold set
[u > A] is equal to [u > X] for some X € R.

Finally, all the threshold sets [u < A] and [u > A] are digitally well-
composed, then u is digitally well-composed. The reasoning is dual for the
proposition in brackets. O]

We have previously defined blocks in (Z/s)". The extension to blocks of
a domain D C (Z/s)" is straightforward. For a given domain D C (Z/s)",
the set of blocks in D is denoted B(D, (Z/s)") and is such that:

B(D,(z/s)") = {S € B((Z/s)") ; S < D}.

Lemma 5. Let n > 2 and s > 1 be two integers and H be a bounded
hyperrectangle in (Z/s)". Let X andY be two sets of (Z/s)" such as: XNY =
) and X UY = H (i.e., (X,Y) is a partition of H). Then, X is digitally
well-composed in (Z/s)" iff Y is digitally well-composed in (Z/s)"™. In other
words, hyperrectangles preserve self-duality of digital well-composedness by
avoiding side effects.

Proof: Let us assume that X contains a primary critical configuration
in (Z/s)". It means that there exists some block S € B(H,(Z/s)") such
that X NS = {p,p'} with p and p’ antagonist in S. Because X and Y are
complementary in H, X NS and Y NS are complementary in S C H. The
consequence is that Y NS = S\ {p,p'}, i.e., Y contains a secondary critical
configuration in S as a subset of (Z/s)".

So, we have proven that X contains a primary critical configuration iff Y’
contains a secondary critical configuration, and by a symetrical reasoning, we
can prove that X contains a secondary critical configuration iff Y contains
a primary critical configuration. That finally means that X is digitally well-
composed in (Z/s)™ iff Y is digitally well-composed in (Z/s)". O
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Lemma 6. Let n > 2 and s > 1 be two integers and H be a bounded
hyperrectangle in (Z/s)"*. Let u : D — R be a gray-level image. Then, u is
digitally well-composed iff for any A € R the threshold set [u < | is digitally
well-composed in (Z/s)™ (or equivalently iff for any A € R the threshold set
[u > M\ is digitally well-composed in (Z/s)™).

Proof: Using Lemma 4 and because the cardinal of H is finite, we know
that u is digitally well-composed in (Z/s)™ iff for any A € R, [u < A] and
[u > A] are digitally well-composed in (Z/s)". Furthermore, using Lemma 5,
and because [u < A\JNfu> A =0and [u < AN UJu> A = H (with H an
hyperrectangle), we know that [u < )| is digitally well-composed in (Z/s)"
iff [u > )] is digitally well-composed in (Z/s)™. We can conclude that u is
digitally well-composed in (Z/s)™ iff [u < A] is digitally well-composed in
(Z)s)™. O

Like exposed in [27], there exists a characterization for gray-level digitally
well-composed images defined on bounded hyperrectangles. It is the natural
extension of the characterization of Latecki for 2D images in [95].

Proposition 13. Letn > 2 and s > 1 be two integers and H be a bounded hy-
perrectangle in (Z/s)". A real-valued image v : D C 7" — R is digitally well-
composed in (Z/s)" iff for any block S € B(D,(Z/s)") such that dim(S) > 2
and for any couple of points (p,p') € S x S such that p' = antagg(p), the
following relation is true:

intvl(u(p), u(p’)) N Span{u(®”) | p” € S\ {p, p'}} # 0.

Proof: Effectively, let us assume that there exists a block S € B(D, (Z/s)")
and a couple of points (p,p’) € S x S such that this intersection is empty,
then either:

max{u(p”) | p” € S\ {p, p'} } < min(u(p), u(p')),

and in this case [u > min(u(p), u(p’))] N S is equal to {p,p'} which is a
primary critical configuration, or:

max(u(p), u(p')) < min{u(p”) | p” € S\ {p, P’} },

and:

[u>min{u(p”) | p" € S\{p, P} }INS =5\ {p, p'},
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which is a secundary critical configuration. In both cases, u is obviously
not digitally well-composed. Conversely, if there exists a value A € R such
that [u > A] contains a critical configuration in a block S € B(D), either
[u > A]N S is a primary critical configuration (1), or it is a secundary critical
configuration (2). In case (1), there exists p,p’ € S such that p’ = antagg(p)
and [u > A NS = {p,p'}, which means that min{u(p),u(p’)} > A, and in
parallel we have [u < A\JNS = S\ {p, p'}, which means that max{ u(p") ‘ P’ e
S\ {p, P'}} < A, and then the intersection we are looking for is empty. In
case (2), there exists p,p’ € S such that p’ = antagg(p) and [u > AJN S =
S\{p, p'}, which means that min{ u(p”) } P’ € S\{p, p'}} > A, and in parallel
we have [u < A\] NS = {p,p'}, which means that max{u(p),u(p’)} < A, and
then the intersection we are looking for is still empty. This concludes the
proof. O]

Practically, this characterization means that for a given and finite dimen-
sion n > 2, we can check if an image defined on a domain D is digitally
well-composed or not in (Z/s)" by a very simple algorithm by checking at
each block S € B(D) if the image is digitally well-composed. Furthermore,
the complexity of this algorithm is for a fixed dimension in linear time rela-
tively to the number of blocks in the domain D, which means that it is very
fast, in particular for small dimensions.

We propose Algorithm 1 which works in n-D and verifies that a given
image does not contain any critical configurations.

For sake of simplicity, let us compute the complexity of this algorithm
assuming that the subdivision factor is equal to 1.

Let us begin with the 2D case: if we assume that we have a real-valued
image u defined on a rectangular domain D = [0, s;] x [0, so] C Z?, we have
a total number of s; x s 2D blocks in D. In each block, we have a total of
Card(S) possible points p. Then, for each p, we compute in constant time
its antagonist p’ in the block. The computation of m, mg, My, M, are each
one in O(Card(S)). The comparison (M; < mas) || (M2 < my) is in constant
time. Finally, we obtain a complexity in O(s; x sy X Card(S)?) = O(s; X s3)
since the size of the block is a constant in this context.

Now, let us consider that the dimension is a parameter that we have to
take into account for the computation of the complexity. Assuming that
the given image wu if of dimension n > 2, then its domain can be written
D = [[;,[0,s;] where s; is a non-nul integer for any i € [1,n]. Then we
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Algorithm 1: An algorithm able to check the digital well-composed-
ness of a n-D image.

Checklmage (n,u, D) : isDWC;
begin
for S € B(D) s.t. dim(S) > 2 do
for p € S do
p' < antagg(p);
my < min(u(p), u(p’));
My <= max(u(p), u(p'));
my  min{u(p’) | p” € S\ {p,p'} };
My + max{u(p”) | p” € S\ {p,p'} };
if (M; < my) || (My < my) then
L return false;

return true;

have a total number of C* families of k vectors among n (with k € [2,n]).
For each family of dimension k € [2,n], we have a total number of associated
blocks (of dimension k) which is lower than [}, (s; 4+ 1). For each block, we
have a total number of 2=! couples of antagonists, and for each couple, we
have to compute m; and M;, which can be computed simultaneously with
only one comparison, and msy and Ms,, which need each 2% — 3 comparisons.
Also, the comparisons M; < mo and M, < m; constitute 2 operations. We
obtain that we need less than 2¥*! comparisons for each couple of antagonists,
which means less than 4% comparisons for each block, and then less than
[T (s; + 1) x 4% for each family. We obtain then a total complexity equal
to:

T(n,{s;}) < H“i +1) x Y Crak,

Using the binomial formula Y,  C*¥z* = (1 + 2)™, we obtain finally:

T(n,{s;}) <5" x H(Sl +1).

=1
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Figure 3.10: From single-valued functions to set-valued/interval-valued func-
tions (continuous and discrete cases).

3.3.6 DWZCness for interval-valued maps

We have seen what means digital well-composedness for single-valued maps,
that is, maps such that for a point p belonging to their domain D, the value
at p is a real value belonging to R. However, as seen in the book of Aubin [10]
which introduces set-valued analysis, we can define set-valued maps, that is,
maps such that for a point p belonging to their domain D, the value at p is
a subset of R. We will be particularily interested in interval-valued maps, a
class of set-valued maps such that the value at each point of the domain is
an interval [a,b] C R.

These set-valued maps can be interpreted in the following manner: let
us imagine we have a single-valued function f : D — R. By stretch-
ing/thickening the function as depicted on top of Figure 3.10, we obtain
a new function F' : D — 2% (also written F' : D ~ R), that is, a function
such that at each point p € D, F(p) is a set and then has potentially a
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thickness not equal to zero. For this reason, F' is said to be a set-valued
function. We can easily extend this thickening to discrete images, as shown
on the bottom of Figure 3.10, to obtain discrete set-valued images.

Effectively, these functions will be very useful to define a new kind of dig-
ital well-composedness and will be used as intermediary maps to prove that
the final real-valued interpolation we present in Section 4.2 is digitally well-
composed: when an interval-valued map is digitally well-composed (see the
definition hereafter), the output of our front-propagation algorithm applied
on this map is a digitally well-composed single-valued image. In other words,
if we interpolate a given image u into an interval-valued image U which is
digitally well-composed, we know that the output image upwc (with U as
input) is also digitally well-composed. The fact that upwc interpolates the
original image w is detailed later.

Let us now introduce the definition of digital well-composedness for interval-
valued images [27] defined on discrete spaces as (Z/s)", where n > 2 is the
dimension and s > 1 is the subdivision factor. Note that we drew from the
definition of well-composed interval-valued maps of Najman and Géraud [124]
in Alexandrov spaces.

Definition 13. A set-valued map U : D C X ~» Y is a function from
a topological space X to a topological space Y such that for any p € X,
p € D< Ulp) # 0 (D is called the domain of U) and such that Vp €
D,U(p)CY.

Definition 14. An interval-valued map U : D C X ~» Y s a set-valued
map such that for any p € D, U(p) is an interval of the topological space
Y C R", that is, U(p) can be written [a,b] NY for some a,b € R such that
a <b.

Now that we have defined interval-valued maps, we can define their thresh-
old sets (see Figures 3.11 and 3.12).

Definition 15. For a given interval-valued map U : D C (Z/s)" ~ R, we
define for any A € R respectively the large upper, the strict upper, the strict
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Figure 3.11: A family of (large upper) threshold sets {[U™>\]}, of an interval-
valued image U. We can remark the straightforward inclusion relationship
U N C[UBAX—¢| for any A € R and £ > 0.

lower, the large lower threshold sets as well:

U)X ={zeD|IvelU(z), v>A},
U)X ={zeD|VveU(z),v>A},
WU<aN ={zeD|Vvel(z), v <A},
U)X ={zeD|IvelU(z), v <A}

z

Using the threshold sets like in [124], we can define digital well-compo-
sedness on (Z/s)™:

Definition 16. An n-D interval-valued map U : D C (Z/s)" — Ir, where
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Figure 3.12: A family of (strict upper) threshold sets {[Ut> ]}, of an interval-
valued image U. We can remark the straightforward inclusion relationship
U\ C[U>A—¢| for any A € R and £ > 0.

Ig is the set of intervals of R, is said digitally well-composed on (Z/s)" iff
all its threshold sets are digitally well-composed on (Z/s)™.

Now, let us define the upper/lower bounds of an interval-valued map.
They will be useful to characterize interval-valued digitally well-composed
maps.

Definition 17. For an nD interval-valued map U : D C (Z/s)* — I, the
upper bound [U] and the lower bound |U]| are defined such that for any

p €D, [Ul(p) = max(U(p)) and [U](p) = min(U(p)).
Then a simple characterization follows.

Proposition 14. An nD interval-valued map U : D C (Z/s)" — Ir defined
on a bounded hyperrectangle D is digitally well-composed in (Z/s)"™ iff both
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Figure 3.13: Possible configurations in 2D.

(U] : D — R and |[U] : D — R are nD images which are digitally well-
composed in (Z]s)".

Proof: Effectively, for any A € R, we have the remarkable equalities:

U A =[U] >A], (1)
(U <A =[[U] <Al (2)
(U A =[[U] =2, (3)
[USA=[U] <Al (4)

This way, if U is digitally well-composed in (Z/s)", then for any A\ € R,
[U > A] and [U < A] are digitally well-composed in (Z/s)", and then by (3)
and (4), [U] and |U| are digitally well-composed in (Z/s)". Conversely, if
both [U] and |U] are digitally well-composed in (Z/s)", then for any A € R,
(LU > AL [[U] < Al [[U] > A], and [[U] < A] are digitally well-composed
in (Z/s)™ and then by (1) to (4), U is digitally well-composed in (Z/s)". O

3.4 Relations between AWCness, DWCness,
and CWCness on cubical grids

Note that in this section, we talk about subsets in Z", but these properties
hold for subsets of (Z/s)".

The proof of the equivalence between EWCness, CWCness, and DWCness
in 2D being already in [96, 95], let us expose briefly why AWCness and
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DWChness are equivalent (a study of the equivalence between AWCness and
DWChness in n-D, n > 2, is provided in Chapter D).

On Figure 3.13, the middle of the subfigure represents the restriction of
a set to a 2D block in Z? (the white points correspond to the foreground),
the left of the subfigures represents the representation in Khalimsky Grids
of this same set up to an isomorphism (the foreground is depicted by the
green squares and the boundary is depicted by the yellow edges and the red
point), and the right of the subfigures represents the continuous analog of
the restriction of this set in R? (the foreground is in white and the boundary
in red).

In the raster scan order, we observe then the following possibilities by
comparing the two first columns of the subfigures:

1. if the restriction of the set is made of four black points, that is, no
point of X belongs to the block, and then there is no boundary in this
part of the Khalimsky grid, we have then nothing to prove,

2. if the restriction of the set is made of only one point, we can observe
that the red point belonging to the discrete boundary has only two
neighbors into the boundary: the two yellow edges,

3. if this resctriction is made of two 4-adjacent white points, the red point
belonging to the discrete boundary has one more time two yellow edges
as neighbors into the boundary,

4. if this restriction is made of two white points which are 8-adjacent but
not 4-adjacent, that is, when we have a critical configuration, then we
obtain that the red point has four neighbors, the four yellow edges.

Then the red points of the boundary of the representation of the set
in Khalimsky grids admit only two neighbors iff the set is digitally well-
composed. Since the yellow edges admits always two neighbors, because a
boundary is closed (and thein contains its vertices in the Khalimsky grid)
by construction, we obtain finally that every set which is AWC is DWC and
conversely in 2D.

The equivalence in 2D between DWCness/AWCness and CWChness is also
depicted on Figure 3.13, to favor the understanding and the link between
these three kinds of well-composednesses.
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Figure 3.14: Possible configurations in 3D.

Since it is well-known that EWCness, DWCness, AWCness and CWCness
are equivalent for (digital) sets in Z?2, they are also equivalent for 2D (digital)
binary or gray-level images.

In 3D, Latecki has proven that DWCness and CWCness are equivalent,
and has also shown that they imply EWCness. However the proof of the
equivalence of AWCness and DWCness in 3D, even if well-known and ad-
mitted in the community of digital topology, has not been published to our
knowledge. That is why we propose to recall in brief why it is true (the
detailed study in n-D, n > 2, is in Chapter D).

Looking at Figure 3.14, with the same reasoning as for the 2D case, we
obtain that there is no critical configurations in the restriction X NS, where S
is a 3D block, if and only if the boundary 0ZMM (X ) (made of green squares,
yellow edges, and red points) of the immersion ZMM (X) (such that white
points in Z? become blue cubes) of X is locally a simple closed curve. At the
contrary, in the cases containing one or more 2D critical configurations or a
3D critical configuration, 0ZMM (X) is not locally a simple closed curve: it
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2D: EWC & DWC & AWC & CWC
1995 [96]

3D: EWC <~ DWC & AWC & CwWC
1997 [98]

2

nD: EWC <« DWC <& AWC & Cwe
2015 [27] 2015 [27] 2013 [124] 2000 [95]

Table 3.1: The different “Havors” of well-composedness and their relationship
on cubical grids (our contributions are emphasized in yellow).

contains a “pinch” at a yellow edge in the case of a 2D critical configuration
and at a red point in the case of a 3D critical configuration. Note that
the cases that we can obtain by complementarity have been omitted since
well-composedness is self-dual. This gives the intuition of why AWCness and
DWChness are equivalent in 3D.

Obviously, the equivalence between AWCness, DWCness, and CWCness
in 3D is also true for (digital) binary or gray-level images by extension.

Finally, thanks to Latecki, 3D CWCness implies 3D EWCness (for sets),
and then each kind of WCness among AWCness, CWCness, and DWCness
implies in 3D EWCness for sets, binary images, and gray-level images.

In n-D, it is more complicated, because the case-by-case study is impos-
sible: the different possible cases depend on the given n. However, we have
proven that DWCness in n-D implies EWCness for digital sets and then for
binary and gray-level images.

We summarized all these relations in Table 3.1. Note that the relation be-
tween n-D DWCness, AWCness and CWCness has a “?” on the equivalence
relationships because the proof of the equivalence between AWCness and
DWChness remains not verified at this moment, and because the equivalence
between AWCness and CWCness (exposed later) is a conjecture.

Obviously, all the equivalences or relations cited in this section hold for

(Z/s)".
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Figure 4.1: Subdividing the domain D into D’ to interpolate.

Chapter 4

Digitally Well-composed
Interpolations in n-D

Let us begin with the definition of the interpolation of a digital image.

Definition 18. An interpolation of an image (R™,D,R,u) defined on a
(bounded hyperrectangular) domain D C Z" is an image (R", D', R, u’) such
that its domain D’ contains D and such that the restriction of the interpola-
tion u’ to the domain D of the initial image u is equal to u (see Figure 4.1).
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In this chapter, we are going to show that making an interpolation is
not so easy when some criterias are required: digital well-composedness,
self-duality, n-dimensionality, in-betweeness, and so on. In particular, we
are going to show in Section 4.1 that local interpolations fail to produce 3D
digitally well-composed interpolations satisfying all these constraints, and
that another approach has to be found. In Section 4.2, we will expose the
interpolation that we propose to this aim.

Note that in the sequel, we will always assume that the given images are
defined on a bounded hyperrectangular domain [[;cp, ,plmi, M;] N Z" where
[] is the cartesian product and where m, M are the minimal bound and
mazimal bound of the domain respectively. Interpolations will be defined on

subdivisions of these domains defined as [,y ,qlmi, Mi] N (%)".

4.1 Self-dual Local Interpolations

After having recall some preliminary vocabulary related to hierarchical subdi-
z

vidions, the usual process used to subdivide Z" into (E)n, we will show that
an “usual” interpolation of an digital image is simply a numerical scheme with
some constraints. In particular, when we combine orderedness, invariance by
90 degrees rotations, translations and axial symmetries, in-betweenness, and
digital well-composedness, we can characterize our interpolation method by
a set of “interpolating functions” that are used one by one to construct the
interpolation in such a way that it is digitally well-composed on all its do-
main at the end of the interpolation (if no impossible case is encountered).
Finally we will observe that our counter-example shows that every self-dual

interpolation verifying the properties above fail in 3D and higher dimensions.

4.1.1 Subdivisions and Interpolations

A block of Z™ can be subdivided into blocks of (Z/s)™ using the following
procedure that we call the subdividing rule:

Definition 19 (Hierarchical Subdivision of a block). Let us assume that a
value s € N* is given. Let S € B(Z™) be a block associated to a point z € Z™
and a family of vector F = (f',..., f¥) C B. Then the subdivision of S is
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denoted by Subd(S) and is equal to:

Subd(S) =S z+ Y Aif'; Vie [LE] A\ €{0,1/s,2/s,...,1}

i€[[1,k]

Note that the subdivision of a block of dimension 0 is this same block,
that a block of dimension 1 is subdivided into s blocks of same dimension,
that a block of dimension 2 is subdivided into s? blocks of dimension 2, and
SO on.

In the case where s is even, like when s = 2, we will sometimes speak
about the center of a subdivided block. For a given block S € B(Z"), the
center of the block S is defined as (p+¢)/2 where p and ¢ are two antagonists
in this block. Obviously, this point belongs to (%)n and is unique (in the
sense that it does not depend on the couple of antagonist that has been

chosen to compute it).

Let us define now the subdivision of a domain:
Definition 20 (Hierarchical subdivision of a bounded hyperrectangle). Let
us assume that a value s € N* is given. Let D C Z" be a bounded hyperrect-

angle. Then the subdivision of this domain is the union of the subdivision of
the blocks of Z" that are subset of this domain:

Subd(D) = | J Subd(S).

SeBD
Obviously, Subd(D) C (Z/s)™.

Now that we have defined the subdivision of a domain, we can define an
interpolation of an image defined on a cubical grid.

Definition 21 (Interpolations). Let (Z",D,R,u) be a given image (with D
a bounded hyperrectangle). We call real-valued (digital) interpolation of u
any image ((2)",Subd(D), R, ') such that its restriction to D is equal to u:

, —_—
UlD—U.

For example, on Figure 4.2, we can see an image defined on a 2D block

b ) On its right side,

and that can be represented as a 2D matrix by ( CCL d
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Figure 4.2: Hlustration of the subdivision process on a block S.

a ab b
we can observe the interpolation of this image | ac abcd bd | where the
c cd d

pixels (¢, 7,a),(i+1,7,0),(i,j + 1,¢), and (i + 1, j + 1,d), the primary pizels,
preserved their positions, and where (i +1/2, j,ab),(i,7 +1/2,ac),(i + 1,y +
1/2,bd),(i +1/2,j 4+ 1,¢d) and (i + 1/2,j + 1/2,abed), the secondary pizels,
are “inserted” between the primary ones.

(i-3) (i+1.) (ij+1)  (i+1j+1)

(i+%,5)  (Lj+%) (i+1,j+%) (i+%,j+1)

(i+%.,j+%)

Figure 4.3: Subd(S) C (£)" as a poset.

Now let us observe that the hierarchical subdivision (of a block) of Z"
when s = 2 induces an relation order, that is, a binary relation R : (%)n —
{0,1} which is reflezive (Va,aRa), antisymmetrical (Ya,b,aRbAbRa = a =
b), and transitive (VYa,b,c,aRb A bRc = aRc). For that, let us define the
mapping o : (%)n — N, called the order, defined such that Vp € Z, o(p) = 0,
such that for each point ¢ € (%)n inserted at the middle between two points
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of order 0 whose distance L' equals 1, o(¢) = 1, and such that for each point
r e (%)n which is not of order 0 nor 1 and which is inserted at the middle
between two points of order 1 whose distance L' equals 1, o(r) = 2, and so
on. This way, we can define the binary relation R : (£)" — {0,1} such that
D,q € (%)n verify pRq which is said “p is parent of ¢” iff o(p) < o(q) and
Ilp — ¢llo < 1/2. The couple (Z™, R) which represents Z" supplied with the
order relation R is called a partial order or poset. Also, a point p € (%)n
VA

is said to be a direct parent of q € (§)n iff pRq and there exists no point

into (%)n \ {p, ¢} such that pRr and rRq. Figure 4.3 shows this parenthood
relationship between the points of a 2D block S((4,j), (¢!, €*)) by linking a
point of the 2D block and its direct parent(s) in this block. Based on this
figure, we can also obtain the following matrix of orders corresponding to
this subdivided block:
010
1 21
010

A generalization to dimension n > 2 is proposed in the next subsection.

Note that a similar relation exists using the Khalimsky grids, where the
order relation is based on the inclusion, but we do not have any inclusion
right here since we are working on graphs made of vertices and edges.

4.1.2 Notations Specific to Hierarchical Subdibisions

. oy . n
As we have seen before, we can associate an order to a position in (%)

assuming that this space results from the subdivision of Z". Let us define
this notion more formally.

Definition 22. We denote by %(z) the set of the coordinates of the point
z € (%)n such that they are not integers:

%(z):{ieﬂl,n]]; z,-e%\z}.

This notation, even if looking much simple, will be very useful in the
following, because it permits to classify the points of (%)n just based on the
number of integral coordinates.
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Figure 4.4: Parenthood relationship in the graph of a subdivided block.

Definition 23 (Order). We denote by E; with k € [0,n] the set of points

in (£)" such that they have (n — k) integral coordinates:

E, — {z c (%)n . Card (%(z)) _ k:}

Then, we call order of a point z € (%)n the value k such that z € Ey.
The sets of parents can then be defined very easily:

Definition 24 (Parents). Let z be an element of (£)" \ Z". The set of
(direct) parents(see Figure 4.4) of z is denoted by P(z) and equal to:

P(z) = U {z—i—%,z— %}

With z an element of (%)n, we define the 0" order parents of z denoted P°(z)
and equal to {z}. Also, we define recursively, for any z element of (%)n\Z”,

and for k > 1:
Pz = |J P
peP(2)

Note that a point of Z"™ does not have parents if it corresponds to a
primary pixel. However points of order 1 have parents of order 0, points of
order 2 have parent of order 1, and so on. Also we can remark that {IE} ke[on]

represents a (hierarchichal) partition of (£)".
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Figure 4.6: Groups of the point z at the center of the subdivided block.

Now we define a category of points that we call ancesters (of a point
pE (%)n) They are very useful because they represent the set of positions
of the pixels whose depends directly the value of the interpolation at p (see
Figure 4.5) when using local interpolations.

Definition 25 (Ancesters). Let z be an element of (£)". The set of the
ancesters of p is denoted by A(p) and is defined such that:

A(p) = P*(2).
Note that A(p) is a subset of Z™.

Definition 26 (Groups). Let z be an element of (%)n The group of p
denoted by G(p) is defined such that:

o) = | P

ke0,0(2)]
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and represents the set of all the parents of any order of z in (%)n.

The usefulness of groups (see Figure 4.6) of a point z € (%)n will be seen
later.

A last notation is useful when we work with in-between interpolations.

Definition 27 (Opposites). Let z be an element of (£)" \ Z". The set of
opposites of z is the family of pairs or points:

opp(z) = U {{z—%z+%}}

ze%(z)

Let a, b, z be three points of (%)n, we say that a is opposite to b relatively to
z iff {a,b} € opp(z).

Now that we have defined the mathematical basics in matter of hierarchi-
cal subdivisions, we are able to define the different properties that an “usual”
local interpolation has to satisfy on a cubical grid.

4.1.3 “Usual” Local Interpolations

We have seen that an image v’ € Tm( (%)n ,R) defined on a domain D" C (%)n
is an interpolation of an image u € Tm(Z",R) defined on a given domain
D c 7" ifft D C D’ and the restriction of v’ to D, noted u/|_,, is equal to u,

that is, for any p € D, v/(p) = u(p).

D’

Definition 28. An operator T : Im(Z",R) — Im((%)" ,R) is said to be a
cubical (real-valued) interpolation method iff for any image u € Im(Z", R)
defined on a bounded hyperrectangle D C Z", Z(u) : Subd(D) — R is an

interpolation of u.

Definition 29 (Self-duality). A cubical real-valued interpolation method T :
Im(Z",R) — ]Im((%)n ,R) s said self-dual iff for any image u € Im(Z", R),
we have the relation:

Z(—u) = —Z(u)

In other words, if we denote by u'_ the interpolation by I of u and by u’
the interpolation by T of (—u), both of domain D' C (%)n, we have for any
p € D' the relation:

u, (p) = —u’_(p).
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Figure 4.7: Ordered computing of the values of the interpolation.

Self-duality is much important to us, and in image analysis in general,
because it represents that an image will be treated in the same manner
whatever if it contains bright components over a dark background or dark
components over a bright background.

Definition 30 (Ordered). Let D be a bounded hyperrectangle in Z". A cu-
bical real-valued interpolation method:

Z:Im(Z",D,R) — ]Im((%)n ,Subd(D), R)

is said ordered iff for any image u € Tm(Z",R), at each point p € Subd(D),
the value u'(p) of the interpolation Z(u) at p is computed based only on the
values of w at the parents of p in (%)n. In other words, the values at the
centers of the subdivided “edges” depend only on the values at the vertices of
the initial edges, the values at the center of the subdivided “squares” depend

only on the values at the centers of its edges, and so on.

As depicted on Figure 4.7 illustrating orderedness of an interpolation

a ab b
method, on the image | ac abcd bd |, abis a function of a and b, ac is
c cd d

a function of a and ¢, bd is a function of b and d, cd is a function of ¢ and
d, and abcd is a function of ab, ac, bd and cd, and then also a function of
a,b,bc and d. In other words, the values of the secundary pixels depend on
the value of their ancesters. In this manner, an interpolation method which
is ordered is also local:
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Definition 31 (Local). Let D be a bounded hyperrectangle in Z™. A cubical
real-valued interpolation method T : Im(Z", D, R) — Im((%)", Subd(D), R)
is said local iff for any image u € Tm(Z", D, R), at each point p € Subd(D),
the value u'(p) of the interpolation Z(u) at p is computed based only on the

values U|A(p) .

Definition 32 (In-between). A cubical real-valued interpolation method Z :
Im(Z", R) — ]Im((%)n ,R) is said in-between iff for any image u € Tm(Z", R)
defined on a domain D C Z" which is a bounded hyperectangle, its interpo-
lation v = Z(u) defined on the domain D' = Subd(D) is such that at each
point p € D'\ D, the value u'(p) satisfies the relation:

u'(p) € m intvl(v'(21), 4/ (27)).

{z=,2*}€opp(p)

Note that this relation is recursive. Also, this property is very interesting
because it implies that we do not create any extrema in the image when we
proceed to the interpolation.

Definition 33 (DWC interpolations). A cubical real-valued interpolation
method T : Im(Z",R) — Im((%)" | R) is said digitally well-composed (DWC)
iff for any image u € Tm(Z",R) defined on a domain D C Z" which is a
bounded hyperrectangle, its interpolation v = Z(u) defined on the domain
D' = Subd(D) is digitally well-composed.

Note that we make the difference between an interpolation, which is a
digitally well-composed image, and an interpolation method, which is an
operator which produces digitally well-composed images.

Now we can express the set of properties that “usual” local interpolations
on cubical grids satisfy in general. We call this set of properties (P):

(T is a cubical real-valued interpolation
7 is invariant by translations, 7’s rotations and axial symmetries
7 is ordered
7 is in-between
7 is self-dual
| Z is digitally well-composed
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Figure 4.8: Other kinds of subdivisions/interpolations.

Note that there exists other manners to subdivide the domain before pro-
ceeding to the interpolation. Effectively, the interpolation could be done on
a domain such that we added more than one pixel between each pixel. Also,
we could imagine an “double” interpolation, that is, made of two succesive
interpolations, which could lead to primary, secundary, and then ternary pix-
els. See Figure 4.8 for an illustration of these two methods. In our study,
we will limit ourselves to “simple” interpolations which subdivide only once
the original domain, as described for the cubical real-valued interpolation
methods using the operator Subd.

4.1.4 Constrained Interpolation Methods

We are going to show in this subsection that taking into account the set of
properties (P) for an interpolation method is equivalent to solve a system of
equations.

Lemma 7. Any cubical real-valued interpolation method Z : Tm(Z",R) —

Hm((%)n ,R) werifying (P) can be characterized by a set of functions { fi }repin]

constraining u' = Z(u) such that:

. Z\" , . [ u() if z € &

We denote such an interpolation method Ly, . s, .

Proof: The interpolation ' at the center of a subdivided 1D block de-
pends only on the values of u at the points of Ey. Furthermore, this method
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has to be invariant by translations, 90 degrees rotations and then does not
depend on the position or on the orientation of the 1D block. It does not
depend neither on the order of these two values because the process is in-
variant by symmetries. Hence, there is an unique function f; characterizing
this method on subdivisions of 1D blocks, and this function must be sym-
metrical. On a subdivision of a 2D block, the only unknown value is at its
center, since the values belonging to £y or [E; in the subdivided domain are
already valued. Since the method in invariant by translations and 90 degrees
rotations, the function that value the center of the subdivided 2D block does
not depend on the position or on the rotation, and then there exists one
only function f; used to compute this value. We can follow iteratively the
reasoning for the subdivisions of blocks of greater dimensions until n. ]

Notice that this Lemma is an implication and not an equivalence: an
interpolation verifying this numerical scheme does not always verify all the
properties in (P).

Definition 34 (Iy). Let (Z",D,R,u) be an image and let be a cubical real-
valued interpolation method T : Tm(Z",R) — Im((£)",R), such that we
obtain the interpolation u' = Z(u) defined on the domain D" = Subd(D). In
this case, we can define the set Iy(u', z) representing the set of possible values
u'(2) at z € D'\ D such that T is in-between:

I, 2) = () intvi(u/(z7), 0/ (27)).

{z7,2* }eopp(2)
In this manner, I is in-between iff V= € D'\ D, u/(z) € Iy(v/, z).

Definition 35 (lw¢). Let (Z",D,R,u) be an image and let be a cubical
real-valued interpolation method I : Im(Z",R) — Im((£)" ,R) such that we
obtain the interpolation v = Z(u) defined on the domain D' = Subd(D).
In this case, we define the set Iywc(u',z) such that for any z € E; ND,
Iwe(W, z) =R and for any z € E, N D" with k € [2,n]:

Iwe(u',z) = {veR | ¥(z)=v = u’|g(z) is DWC'}

Now, we can see that the restriction of v’ to G(z)\{z} makes the algorithm
able to decide how to value u/(z) such that the restriction of v’ will be DWC
on G(z). This way, if no unsolvable case is encountered, v’ will be digitally
well-composed on the whole domain D’ as a subset of (%)n at the end of the
interpolation.
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Definition 36 (/). Let (Z",D,R,u) be an image and let be a cubical real-
valued interpolation method T : Im(Z",R) — Im((%)" ,R) such that we
obtain the interpolation v’ = Z(u) defined on the domain D' = Subd(D). In
this case, we define the set Iy (W', 2) such that for any z € D'\ D:

Lg(u',2) = Iy(v, 2) N Iyc(d, 2).

The set I,,(u/, z) takes into account at the same time the fact that 7
must be digitally well-composed in (Z/s)", in-between, and ordered.

Theorem 4. Let (Z",D,R,u) be an image and let be a cubical real-valued
interpolation method T : Im(Z",R) — Im((%)" ,R) such that we obtain the
interpolation v = Z(u) defined on the domain D' = Subd(D). In this case,

if T satisfies (P), then we have:

v Z\" /() = u(z) if z € E,,
z€ 5 ) WE= fk(u‘A(z))EIsol(u,z) if z € By, k €[1,n].

Proof: It is the direct consequence of Lemma 7 and Definition 36. [

Notice that, this way, such a local interpolation method Z is ordered,
in-between, digitally well-composed, but not necessarily self-dual, and then
this numerical scheme is not sufficient to ensure that Z satisfies (P).

Now that we have proven that the set of functions {fi,..., f,} is charac-
teristic of such interpolations, let us determine them.

4.1.5 Determining f;

Let us begin with the study of fi, i.e., the function setting the values at
the centers of the subdivided blocks of dimension 1. This function has to
be self-dual, symmetrical, and in-between due to (P). We choose one of
the most common function satisfying these constraints: the mean operator
fi:R2 =R (v, v9) = fi(vr,ve) = (v + 1) /2.

Note that we do not prove here that this function is the only possible way
to satisfy all these constraints, but it is well-known in the community that
other possibilites are not convenient in practice, and that the mean operator,
satisfying self-duality, symmetry, and in-betweenness, is the most natural way
to interpolate in 1D because it corresponds to a linear interpolation.
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Figure 4.9: The 3 pos- Figure 4.10: u’|g(z) for z € 5 for any

-

sible configurations in self-dual local interpolation after the
2D (modulo reflections application of f; (with m any value €
and rotations). R).

4.1.6 Equations of f;

Concerning fs, i.e., the function which sets the values of u’ at the centers of
the subdivided blocks of dimension 2, let us compute Iy(v, z) and Iy e (v, 2)
for any given z € [Ey to deduce I, (v, 2).

However, since their values depend on the configurations of u| A() let us
examine which configurations are possible in the 2D case. Let us assume
a b
c d
Modulo 90 degrees rotations, axial symmetries and reflections, it remains
only 3 possible configurations: the a-configurations which correspond to the
relation a < d < b < ¢, the U-configurations which corresponds to a < b <
d < ¢, and the Z-configurations which corresponds to a < b < ¢ < d (see
Figure 4.9).

that u| AG) = . Then a total of 4! = 24 configurations are possible.

Proposition 15. Let ((%)n ,D,R,u) be a given real-valued image, and let z
be a point in z € EaNSubd(D). Modulo 90 degrees rotations and symmetries,
an a-configuration implies that u‘A(Z) 15 not digitally well-composed in 7",

whereas a U- or Z-configuration implies that u|A(Z) 15 digitally well-composed
mn 2"

Proof: Let us assume that an image u : D C Z" — R is given. For the

given z € Ey N Subd(D), let us denote by u‘A(z) (et ) the restriction

c d
of u to the 2D block A(z) in Z". If this restriction corresponds to an a-
configuration, that is, « < d < b < ¢ (next to a 90 degrees rotation or axial
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Figure 4.11: The Hasse diagrams for the a- and the U-configurations (left)
and for the Z-configuration (right).

symmetry), then clearly [u > b] N A(z) is a critical configuration in Z" and
then the restriction of u to A(z) is not digitally well-composed in Z". If
we have an U-configuration, we have a < b < d < ¢ (next to a 90 degrees
rotation or axial symmetry) and then intvl(a, d) Nintvl(b, ¢) = intvl(b, d) # 0,
and then the restriction of u to A(z) is digitally well-composed in Z™. And
if we have a Z-configuration, we have a < b < ¢ < d (next to a 90 degrees
rotation or axial symmetry), and then intvl(a, d) Nintvl(b, ¢) = intvl(b, ¢) #
and the restriction of u to A(z) is digitally well-composed in Z". O

Theorem 5. Given an image u : D C Z" — R, any cubical real-valued

interpolation Ly, . satisfying (P) and such that f, is the mean operator is
such that ¥ z € Subd(D) N Es:

fg(u‘A(z)) = med{u‘A(z)} if u}A(z) is not DWC,
f2 (u’A(z)) € [O(U/, Z) otherwise.

Proof: Let us begin with the computation of Iy(v/, z) for z € Es. From
the values already set in v’ on P(z) C E; by f; during the recursive process
(see Figure 4.10), we can compute Iy(u/, z) using the Hasse diagram of each
configuration (see Figure 4.11). Recall that a Hasse diagram is a representa-
tion of a finite partially ordered sets where greater elements are at a higher
position in the diagram. We obtain finally that Io(v/, z) = intvl(%<, &52) for
the three configurations, with one remarkable property: the median value of

u’/A(Z) always belongs to Ip(v, 2).
Let us follow with the computation of Iyc (v, z), where u/| 6(2) (see Fig-

ure 4.10) satisfies the four conditions:
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1ntvl(a m) N intvl((a +0)/2,(a+¢)/2) #0, (1)

intvl((a 4+ b)/2,(b+ d)/2) N intvl(m,b) #0, (2)

intvl((a + ¢)/2, (c+d)/2) N intvl(m,c) #0, (3)

\ intvl(m,d) N intvl((c+d)/2,(b+d)/2) #0. (4)
In the case of the a-configuration in Z", (2) = m < %4 and (4) =
m > 24 That implies that m = 24, which also satisfies (1) and (3). Con-
sequently, Iyo (v, z) = {med{u‘A( }}, and because Iy (v, z) C Iy(u, 2),

Lo (W, z) = {med{ul A(z)} in the not digitally well-composed case.

In the cases of the U- and the Z-configurations in Z", we obtain that

Iwe(u, z) = [42, 4] D [o(u/, 2), so we conclude that Iy (v, 2) = Io(v/, 2).

.11 s - B

10 | 11| 13| 15

10|11 13] 15 11‘11 15 11‘11 15|15

11‘11

Figure 4.12: An image, and its interpolations using the median, the
mean/median, the min and the max operators respectively.

Let us remark that all the well-known self-dual interpolations making
2D images well-composed are particular cases of interpolations characterized
by the two first interpolation functions f; and f;. They all use the mean
operator for f;. Furthermore, let z be a point in [E5 belonging to the subdi-
vision of the domain of the original image. The median method (see Figure
4.12), consists in setting the value u'(2) at med{u|A<z)} (in this case fy is

an operator and not only a function). The mean/median method of Late-
cki [95] consisting in setting the value u/(z) at mean{u| A (Z)} if the restriction

of the image to the 2D block is digitally well-composed and to med{u| A(Z)}
otherwise. And the min/mazx method, consisting in setting the value u/(2)

at 1 (min{u| /A(z)} + max{u| A(z)}) in the digitally well-composed case and to
med{u| A(z)} otherwise. Take care not to amalgamate the min method, the

max method and the min/max method.
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Figure 4.13: A counter-example proving that an interpolation satisfying (P)
(with only one subdivision and with f; the mean operator) cannot ensure
digital well-composedness (the values of v’ on [y are in green, the ones on
[E; are in blue, the ones on [y are in red, and the ones on 3 are in purple).

4.1.7 Equations of f3; for local self-dual interpolations

Theorem 6. No (local) interpolation satisfies (P) for n > 3 with one subdi-
wision when we choose the mean operator to interpolate in 1D.

Proof: Let z be the center of the subdivided block of dimension 3 such
that we have u"A(Z) as in Figure 4.13: the initial valued 3D block is on
the left, its “in-process interpolation” is on the right. We apply the first
interpolating function f7, i.e., we set the values of u' at the centers of the
1D blocks at the mean of the values of the initial block. Then we apply the
second interpolating function f,, which fixes the values of u' at the centers
of the subdivided 2D blocks at the median of the values of u’ at the initial
2D blocks because u is not digitally well-composed on them. Finally, since
we want that ' is digitally well-composed on the 3D blocks in the initial
cube, we need to have for any of this block S3 and for any point p € S5 and

p' = antagg, (p):
intvl(v/(p), «'(p')) N Span{«/'(p") | p” € S3\ {p. p'}} # 0.

This results in a set of two equations m > 3 and m < 1, where m € R is
the value of v’ at the center of the 3D block, that are impossible to satisfy
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simultaneously. Then, no interpolation can satisfy the set of constraints (P)
as soons as we reach n > 3. O

Finally, assuming that an usual interpolation is a cubic real-valued inter-
polation method that starts from an image defined on a bounded hyperect-
angle in Z", such that it satisfies the set of properties (P), and such that its
function f; is the mean operator, we have shown that no usual local inter-
polation is able to nmake digitally well-composed images in 3D (and higher

z

dimensions) in (%)".

4.2 A New Self-dual n-D DWC Interpolation

In Section 3.1, we have seen that it is usual to develop cubical real-valued
digitally well-composed interpolation methods Z such that:

(T is self-dual
7 is in-between
7 subdivides the domain only once
7 has a subdivision factor of 2
7 is invariant by translations,
7 is ordered
7 is local

[ Z uses the mean operator at the centers of edges

W = =

T

2

ot

s rotations and axial symmetries

-~ O

oo =~
— N N N N e

This list of properties is ordered by order of priority. Effectively self-
duality is mandatory because it is our main objective: as we have seen, min-
and max-interpolations already exist, and they favorize bright components
over dark ones or the converse. In-betweeness is important too, because it
ensures that we preserve the contours in the image in the sense that we do
not create new extrema. The third and fourth constraints are not necessary
but they mean that we interpolate the image by adding the minimal number
of pixels in the new image (assuming we want a regular grid as output and
that we want that the domain of the interpolation does not depend on the
input image). The fifth condition means that we want that the result does
not depend on a possible translation /rotation/symmetry. The sixth, seventh,
eighth conditions are finally of low priority: effectively life is easier when we
proceed to an ordered interpolation, because we know in advance the order
at which we value the domain of the interpolation, it is more “systematic”.
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Figure 4.14: The initial image u.

U
A

AT

Y

Figure 4.15: The “continuous” interpolation U.

But as we will see, there exists (at least) an interpolation that verifies the
constraints (1) to (5) without being ordered, since this interpolation is even
not local.

4.2.1 A Front-Popagation Algorithm (FPA)

Effectively, if we consider that orderedness and locality are not so much
necessary, we can use a front-propagation algorithm (FPA). More exactly, we
proceed in two steps. First we make the input image u depicted on Figure 4.14
“continuous” by adding secondary pixels between the primary pixels; their
values are not single values but intervals as depicted on Figure 4.15. We call
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this new map the interval-valued interpolation U.

0
A step 1 A step 2

XX

Figure 4.16: Flattening process.

And then, since the new function has some non-zero “thickness”, we can
use a FPA which flattens this function to make a third map u’ which has
new topological properties thanks to the “regularization” properties of the
FPA in n-D (we call them the intrinsic properties of the FPA and we will
detail them later).

We depicted the step-by-step process on Figure 4.16 starting from the
interval-valued interpolation U: we add a border that we consider as being
the initial front (for this reason, we depict it using green points), to ensure
that the propagation starts from the contour. Then we propagate the front
deeper and deeper in the image until the front, made of the green points,
recovers all the domain of U. The new image is called u” because it correspond
to U which has been flattened. Then, we remove the temporary border (see
Figure 4.17) to obtain an interpolation which is “smoother” than the original
image u.

Applying this algorithm in n-D, n > 2, leads to digitally well-composed
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Y

Figure 4.17: The interpolation of w.

images, as we are going to prove in the following subsections.

4.2.2 Origin of the FPA

The front propagation algorithm studied in the next subsection is related
to the algorithm proposed in [60, 40], which computes in quasi-linear time
the morphological tree of shapes [32] of a nD image. Schematically, the
tree of shapes computation algorithm is composed of 4 steps as depicted
in Figure 4.18. The input is an integer-valued image u, defined on the nD
cubical grid. First an immersion step creates an interval-valued map U,
defined on a larger space . A front propagation step, based on a hierarchical
queue, takes U and produces two outputs: an image u’ and an array R
containing the elements of IC. In this array, the elements are sorted so that
the next step, an union-find-based tree computation, produces 7 (u”) the tree
of shapes of u’. Actually ub’Zn =u and T(ub)‘zn = T (u). The last step, the
emersion, removes from 7 (u’) all the elements of X\ Z", and also performs a
canonicalization of the tree. So 7T (u), the tree of shapes of u, is obtained [60].

The front propagation step (highlighted in red in the schematic descrip-
tion) acts as a flattening of an interval-valued map U into a function u’,
because we have Vz, u’(z) € U(z) [60]. In the following, we will denote
by P both the front propagation algorithm (the part highlighted in red in
Figure 4.18) and the mathematical operator P : U + u”.

Last, let us give two important remarks. 1. We are going to reuse the
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(v, R)
J{ union-find
T (v)
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T (u)

Figure 4.18: Computation of the tree of shapes.

front propagation algorithm F*, yet in a very different way than it is used
in the tree of shapes computation algorithm. Indeed, its input U will be
different (both the structure and the values of U will be different), and its
purpose also will be different (flattening versus sorting). 2. Actually, the
front propagation algorithm is just a part of the solution that we present to
make nD functions digitally well-composed.

4.2.3 An explanation of the FPA

Let us now explain shortly the §B algorithm, which is recalled in Algo-
rithm 3. The basic procedures used to handle the hierarchical queue are
recalled in Algorithm 2 . The reader can also refer to [60] for the original
version. This algorithm uses a classical front propagation on the definition
domain of U. This propagation is based on a hierarchical queue, denoted by
@ and the current (queue) level is denoted by ¢. There are two notable differ-
ences with the well-known hierarchical-queue-based propagation. First the
values of U are interval-valued so we have to decide at which (single-valued)
level to enqueue the domain points. The solution is to enqueue a point A
at the value of the interval U(h) that is the closest to ¢ (see the procedure
PRIORITY_PUSH). The image v’ actually stores the enqueuing level of the
points. Second, when the queue at the current level, Q[/], is empty (and
when the hierarchical queue @ is not yet empty), we shall decide what is the
next current level. We have the choice of taking the next level, either less
or greater than ¢, such that the queue at that level is not empty (see the
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Algorithm 2: Handling of an hierarchical is ensured thanks to PRIOR-
ITY_PUSHand PRIORITY_POP.
PRIORITY _PUSH(Q, h, U, /)
/* modifies @ */
begin
[lower, upper] < U(h)
if lower > ¢ then
L 0« lower

else if upper < £ then
L 0 < upper

else
| ¢«

B PUSH(Q[{'], h)

PRIORITY_POP(Q, ¢): H
/* modifies @), and sometimes ¢ */
begin
if Q[/] is empty then
¢ + level next to ¢ such as Q[¢'] is not empty
Lt

return POP(Q[(])

procedure PRIORITY_POP). Practically, choosing going up or down the levels
does not change the resulting image «’. The neighborhood N5, used by the
propagation corresponds to the 2n-connectivity into (Z/s)".

Like in [60], the initialization of the front propagation relies on the def-
inition of a point, p., (first point enqueued), and of a value {y, € U(pso),
which is the initial value of the current level ¢. Similarly to the case of the
tree of shapes computation, p,, is taken in the outer boundary of the def-
inition domain of U. The initial level ¢, is set at the median value of the
points belonging to the inner boundary of the definition domain of U; more
precisely, when the interval-valued U is constructed from an integer-valued
function u, ¢, is computed from the values of the inner boundary of u. Using
the median operator ensures that /., is set in a self-dual way: schematically
loo(—u) = —l(u). An example is given later in Section 4.2.4.
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Algorithm 3: Computation of the function «” from an interval-valued
map U defined on (Z/s)".

FP(U) : Tmage ;
/* computes u” */;
begin
for all h do
L deja_vu(h) « false;

PUSH(Q[oc]; Poo);

deja_vu(ps) < true;

0+ Uy /* start from root level */ ;

while @ is not empty do

h < PRIORITY_POP(Q, /);

w(h) « ¢;

for all n € Nay,(h,(Z/s)™) such as deja_vu(n) = false do
PRIORITY_PUSH(Q, n, U, ¢);

L deja_vu(n) < true;

b

L return u

4.2.4 An illustration of the FPA

Let us now illustrate this algorithm on a simple run, depicted in Figure 4.19.
The initial interval-valued image U is displayed in (i). A square filled in gray
indicates the points that have already been processed in previous iterations.
A circle filled in orange indicates the point A being processed, and the value
displayed in the circle is the current level ¢; it means that we have just
executed the line “u’(h) < €7 of the algorithm. A dashed circle filled in
green, say at a point p, indicates that this point is in the hierarchical queue
@; the value displayed in this circle, say v, is the queue level of this point,
i.e., we have p € Q[v]. When no symbol is displayed at a point, it means
that this point is not yet processed and is not in (); we then depict its value

in U.

The input interval-valued image U is shown in (i). In the following,
the point coordinates are (row, column); for instance we have U(2,1) =
U(2,3) =14,5].

The initialization step is depicted by (ii). We assume that we have p,, =
(1,1) and ¢ = 2. The initialization thus adds p., in Q[2], and sets £ < (o,
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[1,3] | [24] | [1,3]
(i)
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Figure 4.19: The front propagation algorithm applied on a digitally well-
composed interval-valued image U.

so the current level ¢ is 2.

The first iteration of the 'while’ loop is depicted by (iii). It pops the point
h = (1,1), and performs the assignment u’(h) < ¢, precisely u’(1,1) < 2.
It then pushes its neighboring points (1,2) and (2,1) into @, respectively
with level 2 and 4. Indeed, we have U(1,2) = [2,4] and U(2,1) = [4,5] so
PRIORITY_PUSH respectively chooses in these intervals the levels that are the
closest to the current level ¢ = 2.

The second iteration is depicted by (iv). Since the queue Q[f] is not
empty, the current level does not change, and the point h = (1, 2) is popped.
w’(h) « ( is performed; precisely u’((1,2)) + 2. Then the points (1,3) and
(2,2) are pushed respectively in Q[2] and Q[3] since ¢ =2, U(1,3) =[1,3] =
{1,2,3}, and U(2,2) = [3,6].

The third iteration is depicted by (v), popping (1,3) from Q[2] (the cur-
rent level does not change), and pushing (2,3) in Q[4] since U(2,3) = [4, 5].

For the fourth iteration, depicted by (vi), the current level is ¢ = 2, and
the queue corresponding to the current level, namely Q[2], is empty. Indeed,
the hierarchical queue is only composed of Q[3] U Q[4]; the four points
depicted with circles in (vi) only contains the values 3 and 4. The procedure
PRIORITY_POP thus changes the current level to the closest level whose queue
is not empty, so £ < 3. The point h = (2,2) is then popped from Q[3], the
assignment u’(2,2) < 3 is performed, and the neighbor point (3,2) of & is
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pushed in Q[3] since U(3,2) = [2,4] = {2, 3,4}.

The following iterations, depicted by the sub-figures (vii) to (xi), lead to
the final integer-valued image u’, depicted by (xii). This resulting image is
such as:

VzeD vw(z) € Uz).

This front propagation algorithm thus flattens an interval-valued map U into
the integer-valued image v’ = FP(U).

4.2.5 Intrinsic continuity properties of the FPA

Two main continuity properties of the FPA are of major interest for the
sequel. Both properties relate the values of the flattened image u” at two
pixels p and ¢ of the domain D" C (Z/s)™ of U which are neighbors in (Z/s)"
depending on the values U(p) and U(q). We say that these properties are
intrinsic in the sense that they are a direct result of the internal functioning of
the algorithm. But let us introduce first some additional notations concerning

the FPA.

We define ¢ : D' — R as the real-valued map of levels: for a given point
z € D', U(z) € R is the value of ¢ when we enqueue z into the hierarchical
queue () during the front propagation. Note that it is different from the
“enqueuing level” ¢ presented just before in the algorithm. Also, we define
the enqueuing time map t : D' — N such that, for any point z € D', t(2)
is the time at which the point z has been enqueued into () during the front
propagation. We say that a position p € D’ is being processed while the
current position A is equal to p. Obviously, for any p € D', we use the
notation u’(p) assuming that this pixel has been valued yet by the front
propagation algorithm (we recall that each pixel of 4’ is valued only once).

Now let us begin with a preliminary lemma which correlates the values of
the initial interval-valued image U, the interpolation u* and the map of levels
¢ : D" — R. This lemma will be necessary to prove the first main intrinsic
continuity property detailed after.

Lemma 8. Let U : D' C (Z/s)" ~» R be an nD interval-valued map, and
let > = FP(U) : D' — R be the real-valued function resulting from the front
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propagation algorithm applied on U. Now, let r be a point of D', we can
observe the two following implications:

w(r) < [UN(r) = £(r) <w’(r) (1)

w(r) > [UJ(r) = Ur) > (r) (2)

Proof: By a case-by-case study, we can establish a correlation between
{(r) and w’(r) for any given point » € D’. The possible cases are £(r) <
LUL(r) (1), £(r) € U(r) (2), and £(r) > [U](r) (3):

1. we obtain that /(r) < u’(r) because u’(r) € U(r), and at the same

time, u’(r) is equal to |U](r) because it is the nearest value to ¢(r) in
U(r).

2. we obtain that u’(r) = £(r) because the nearest value to £(r) in U(r) is
((r) itself, and at the same time we obtain simply the initial property
w’(r) € U(r) (no additionnal assumption is possible).

3. we obtain that £(r) > u’(r) because u’(r) € U(r), and at the same time
w’(r) = [U](r) because this is the nearest value to £(r) into U(r).

Finally, we obtain this table:

CASE RELATION 1 RELATION 2

(1) : £(r) < [UJ(r) || £(r) <w’(r) || w(r) = [U](r)

(2) : £(r) € U(r) ((r) = (r) w(r) € U(r)

(3) : £(r) > [U(r) || £(r) > (r) || w(r) = [U](r)

Then we can observe that if w’(r) < [U](r), that is, if u’(r) # [U](r),
we are then either in the case (1) or in the case (2) and then we obtain that
((r) < u(r).

Conversely, if v”(r) > |U]|(r), that is, if v’(r) # |U|(r), we are then
either in the case (2) or in the case (3) and then we obtain that £(r) > u’(r).

]

There follows the first intrinsic property of the FPA, which is also the key
to understand why a digitally well-composed interval-valued image results in
a digitally well-composed single-valued image.
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Figure 4.20: A situation impossible to obtain with p,q € D being 2n-
neighbors in (Z/s)".

Lemma 9. Let U : D' C (Z/s)" ~» R be an nD interval-valued map, and
let v = FBU) : D' — R be the real-valued function resulting from the
front propagation algorithm applied on U. Let p,q € D' be two 2n-neighbors
in (Z/s)" and X € R. Then, it is impossible to get the following set of
properties together:

w(p) < A (H1)
[Ulp) > A (H2)
w(q) > A (H3)
[Ulg) < A (H4)

Now, let p, ¢ be two 2n-neighbors in D" and let us assume that there exists
a value A € R verifying (H1), (H2), (H3) and (H4).

We can observe easily thanks to (H1) and (#2) that «’(p) < [U](p) and
then by Lemma 8, we obtain:

((p) < u’'(p) (H5).

Also, thanks to (H3) and (H4), we obtain u’(q) > |U|(¢q) and using
Lemma &, this results in:

t(q) > (q) (H6).

Taking into consideration the two 2n-neighbors p and ¢, we have 4 possible
scenarii as depicted on Figure 4.21:

1. either p is enqueued before ¢, then two subcases are possible:

(a) either ¢ is enqueued when p is the current position,

(b) or ¢ is enqueued before p is the current position.
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push(Q,p,U,{)

push(Q,q,U,¢")

h < pop(Q,{) = p¢" h < pop(Q,f) ¥ p® h < pop(Q,{) =qe h « pop(Q,) *

push(Q,q,U,{")e push(Q,q,U,{")e push(Q,p,U,L")e push(Q,p,U,{")

(1.a) (1.b) (2.a) (2.b)

Figure 4.21: The 4 possible scenarii when only two 2n-neighbors p and ¢ in
D’ are considered.

2. either ¢ is enqueued before p, then two subcases are possible:

(a) either p is enqueued when ¢ is the current position,

(b) or p is enqueued before ¢ is the current position.

Let us notice that since p and ¢ are 2n-neighbors, ¢ cannot been enqueued
after p is the current position, and similarly p cannot been enqueued after ¢
is the current position (all the 2n-neighbors of the current position will have
been enqueued when it has been processed).

Now let us show that whatever the scenario we choose, we always obtain
a contradiction.

(1.a): pis enqueued before ¢, and then ¢ is enqueued when p is the current
position. It means that £(q) = u’(p). However, we have seen that u’(p) < A
by (H1), and that £(q) > w’(q) > X by (H6) and (H3). This leads to a

contradiction.
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Figure 4.22: Different cases corresponding to Scenario (1a): u”(p) > [U](q)
on the left and u’(p) < |U](g) on the right. Thanks to £(q) = v’(p), v’(q)
stays inferior to A like u’(p).

(1.b): pis enqueued before ¢, and g is enqueued before the current position
is set at p. This way, since the current level £ at ¢(p) is equal to £(p) < u’(p),
it is equal to £(¢) < w’(p) at t(¢) (no jump of the non-empty queue level
Q[w’(p)] is allowed by the algorithm). This means by (H1) that £(q) < .
However, by (H6) and (H3), £(q) > A. This leads to a contradiction.

(2.a) is the symmetrical case of (1.a) and (2.b) is the one of (1.b) and then
they lead also to contradictions.

The conclusion is that whatever the scenario (and one of these scenarii
happens during the computation of the interpolation), the combination of
hypotheses (H1), (H2), (H3) and (#H4) leads only to a contradiction. These
hypotheses are then incompatible.

O

Since this Lemma can be a little difficult, let us expose an intuitive ex-
planation of this incompatibility by a scenario-by-scenario study.

In Scenario (1.a), p is enqueued at the level u’(p) and at its pop, while the
current position is p, the algorithm enqueues ¢ into @ such that £(¢) = u’(p).
This way, by (H1) (v’(p) < A) and (H4) ([U](q) < A), we obtain that
w(q) < X (see Figure 4.22), contradicting (#H3).

In Scenario (1.b), ¢ is enqueued after p and before p is the current position.
This way, there exists a third point h € D’ such that £(¢q) = u’(h) < X thanks
to (H1) and (H2) (see the proof above), and then using (H4) (|[U](q) < \),
we obtain that u”(q) < A (see Figure 4.23), contradicting (#3).
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Figure 4.23: Different cases corresponding to Scenario (1b): w’(h) > [U](q)
on the left and u”(h) < |U](g) on the rlght Thanks to the enqueuing of p
into Q at the level w’(p) < A, £(¢) = v’(h) is inferior to A and then u"(q)
stays inferior to A too.
y
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Figure 4.24: Different cases corresponding to Scenario (2a): u
on the left and u’(q) > [U](p) on the right. Thanks to lcur(p)
stays superior to \ like u”(q).

"(q) < [U](p)
= u’(q), v’(p)

In Scenario (2.a), ¢ is enqueued at the level u”(q) and at its pop, while the
current position is ¢, the algorithm enqueues p into @ such that £(p) = u’(q).
This way by (H3) (v’(¢) > A) and (H2) ([U](p) > )), we obtain that
w(p) > A (see Figure 4.24), contradicting (H1).

In Scenario (2.b), p is enqueued after ¢ and before ¢ is the current position.
This way, there exists a third point h € D’ such that £(p) = u’(h) > X thanks
o (H3) and (H4) (see the proof above), and then using (H2) ([U](p) > N),
we obtain that u”(p) > A (see Figure 4.25), contradicting (H1).

Finally, whatever the chosen scenario, the values u’(p) and u’(q) are al-
ways on the same side of the line {y = A} (either both above, or both below).
That is what we call the first (intrinsic) property of continuity of the FPA..
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Figure 4.25: Different cases corresponding to Scenario (2b): u’(h) < [U](p)
on the left and u”(h) > [U](p) on the right. Thanks to the enqueuing of ¢
into @ at the level ©’(q) > X, £(p) = w’(h) is greater than A and then u’(p)
stays greater than A too.

Now, let us expose the secund intrinsic continuity property of the FPA
that we will use later to prove that the interpolation method used in this
thesis is in-between.

Lemma 10. Let U : D' C (Z/s)" ~ R be an nD interval-valued map,
and let v’ = FP(U) : D' — R be the real-valued function resulting from
the front propagation algorithm applied on U. Now, let a,m € D’ be 2n-
neighbours in (Z/s)" such that U(a) C U(m). Then u’(m) < u’(a) implies
that v’ (a) = |U](a) and u’(m) > u’(a) implies that u’(a) = [U](a).

Proof: Let us begin with the case t(a) < t(m), that is, a has been
enqueued before m. Three cases are possible.

The first subcase corresponds to £(a) > [U](a). Then v’(a) = [U](a),
Q[u’(a)] D {a} at t = t(a), and the current level ¢ remains greater than or
equal to u’(a) until a has been processed, because no jump of non-empty
queue level is allowed. Since m is enqueued after a (by hypothesis) and at
the latest during the processing of a (because a and m are 2n-neighbors),
¢(m) > u’(a). Since [U](m) > [U](a) > u’(a), we obtain finally the relation
w’(m) > u’(a) (Case 1.1).

The second subcase corresponds to £(a) € U(a). In this subcase, u’(a) =
((a), Qu’(a)] 2 {a} at time t = t(a), and the current level ¢ stays at the
value u’(a) until a is processed (at least). Since a and m are 2n-neighbors,
and since m is enqueued after a, m is enqueued after ¢(a) and at the latest
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while @ is processed. This way, ¢(m) = v’(a) and then u’(m) = v’(a) since
U(a) CU(m) (Case 1.2).

The third subcase corresponds to ¢(a) < |U](a). We reason by symmetry
and we obtain that u’(a) = |U](a) and v’(m) < u’(a) (Case 1.3).

Let us follow with the case t(a) > t(m). Then five subcases are possible.

If ¢(m) > [U7(m), then w’(m) = [U](m), Qu’(m)] 2 {m} at t = t(m),
and the current level £ remains greater than or equal to u”(m) until m has
been processed, because no jump of non-empty queue level is allowed. Since
a is enqueued after m (by hypothesis) and at the latest during the processing
of m (because a and m are 2n-neighbors), ¢(a) > u’(m). Then two subcases
are possible: either [U](m) > [U](a) and v’(a) = [U](a) < w’(m) (Case
2.1.a), or [U](m) = [U](a) and v’ (a) = [U](a) = v’(m) (Case 2.1.b).

If ¢(m) €][U](a), [U](m)], assuming that [U](a) < [U](m), v’(m) =
{(m), Qu’(m)] D {m} at t = t(m), and the current level ¢ stays at the value
w’(m) until m is processed (at least). Since a and m are 2n-neighbors, and
since a is enqueued after m, a is enqueued after ¢(m) and at the latest while
m is processed. This way, £(a) = u’(m), and then v’(a) = [U](a) < u’(m)
(Case 2.2).

If £(m) € U(a), u’(m) = £(m) (since U(a) C U(m)) and Q[v’(m)] 2 {m}
at t = t(m). Then the current level ¢ stays at the value v’(m) until m is
processed (at least). Since a and m are 2n-neighbors, and since a is enqueued
after m, a is enqueued after t(m) and at the latest while m is processed. This

way, {(a) = u’(a) and then v’(a) = u’(m) (Case 2.3).

If ¢(m) € [LU](m), |U|(a)] (assuming that [U](m) < |U|(a)), we reason
by symmetry and we obtain that u’(a) = |U|(a) > u’(m) (Case 2.4).

If ¢(m) < |U](m), we reason again by symmetry and we obtain that either
|U](m) < |U]|(a) and v’(a) = |U](a) > v’(m) (Case 2.5a), or |U](m) =
|U](a) and v’ (a) = |[U](a) = w’(m) (Case 2.5b).
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Let us summarize the different cases:

CASE | RELATION 1 RELATION 2 RELATION 3
(L1) | Ha) <tm) | @(a) = [U(a) | @(m) > (o)
(1.2) t(a) < t(m) w’(a) € Ula) w’(m) =’ (a)
(13) | Ha) < tim) | @(a)= [U)(a) | @(m) < (o)
(2.1.a) | t(m) <t(a) | v’(a)=[Ul(a) | «’(m)>u’(a)
(2.1.0) | t(m) <t(a) | v’(a)=[U)(a) | w’(m)=1’(a)
(2.2) t(m) < tla) | «’(a) =[U](a) | ©’(m)>u’(a)
(2.3) t(m) < t(a) w’(a) € Ula) w’(m) = v’ (a)
(2.4) t(m) < t(a) | «’(a) = |U](a) | v’(m) <u’(a)
(2.5.a) | t(m) <t(a) | v’(a)=|U](a) | «’(m)<u’(a)
(2.5.0) | t(m) <t(a) | v’(a)=[U](a) | w’(m)=1(a)

We obtain finally that u’(a) < w’(m) implies that we are in Case 1.1,
2.1.a, or 2.2 and then u’(a) = [U](a), and that v’(a) > u”(m) implies that
we are in Case 1.3, 2.4, or 2.5.a, and then u’(a) = [U|(a). This concludes
the proof. O

4.2.6 Fundamental properties of the FPA

Thanks to Lemma 9, the FPA presents a very strong property: if the input
image U is a digitally well-composed interval-valued image, the output image

» = FP(U) is digitally well-composed, whatever the chosen value /o at
which is set the inner boundary of the definition domain of U before the
front propagation. This result can be observed on Figure 4.19.

Theorem 7 (FP(U) is DWC if U is DWC). If the nD interval-valued map
U:D C (%)n ~ R, defined on a bounded hyperrectangle D', is digitally well-
composed, the resulting nD function v’ = FP(U) is digitally well-composed.

Let us assume that «’ is not digitally well-composed. Then, there exists
some A € R such that [u’ > \] contains a critical configuration of primary
or secondary type. Let us begin with the primary case.

If [u’ > \] contains a critical configuration of primary type, that means
that there exists some block S C D’ of dimension k (with 2 < k < n) such
that [u> > A NS = {p, p’} where p and p’ are two antagonists in S. In
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other words, we have:

"(p)
"(p)
"(

p
P") ,Vp"e S\ {p, v}

We know that u’(p”) < A implies that [U|(p”) < A, Vp" € S\ {p,p'}. This
way, we obtain the following relation:

max{ [U|(p") | p" € S\{p.P'}} < A\

NIV IV

A
A
A

2 & &

Moreover, |U | is digitally well-composed (since U is digitally well-composed).
The characterization of a digitally well-composed single-valued function im-

plies that intvl(|U|(p), [U](p’)) intersects Span{|U |(p”) ‘ P’ € S\ {p,v'}}
so there exists some p, € {p,p’} such that:

LUI(p+) < A

Also, we have:
{ [U1(ps) > A,
[U(antagg(p.)) = A

This means that these two antagonists in S belong to the set [[U] > )
which is digitally well-composed. Then, there exists a 2n-path connecting
them into [[U] > A] N S. Consequently, there exists some point p, €
Nan(ps) NS such that:

[UT(P.) = A

We thus end up with the four properties: «’(p,) > A, |[U](p.) < A,
w(p.) < A and [U](pl) > X with p,, p. 2n-neighbors in D’ (see Figure 4.26).
Thanks to Lemma 9, we obtain a contradiction.

For the secondary case, the hypothesis such as [u” > A] contains a sec-
ondary critical configuration is equivalent to have [ub < )] containing a pri-
mary critical configuration. With a symmetrical reasoning, we obtain that
w(pe) < A, [Ul(ps) > A\, @’(pl) > A, and |[U](p.) < A, which is impossible
too.

O

Since we are much interested in self-duality, there is another fundamental
property of our algorihm.
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Figure 4.26: Assuming U is digitally well-composed and u’ is not digitally
well-composed, we obtain the four properties: u’(p.) > A, |[U](p.) < A,
w(p.) < A, and [U](pl) > X with p,,p. 2n-neighbors in D', which lead to a
contradiction.

Conjecture 1. For any nD interval-valued map U, and whatever ps and
loo € U(pso) mow considered as parameters, we have:

gm(poo,eoo)(U) = —35B (—=U), so FP is self-dual.

The fact that this algorithm is self-dual is part of the proof that the tree
of shapes computation algorithm is self-dual. It is not published yet.

(Poos — €oo)

Now, there is a property of Algorithm 3, which is related to the deter-
minism of the FPA.

Conjecture 2. Once given ps, and l,, the front propagation algorithm B
(Algorithm 3) is deterministic with respect to its input, the nD interval-valued
map U.

The fact that this algorithm is deterministic is part of the proof that the

tree of shapes computation algorithm is correct. It is not published yet.

4.2.7 Making an nD function digitally well-composed

In this subsection, we explain the full process which starts from a given single-
valued image and ends up with a digitally well-composed interpolation of this
image.
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Our interpolation in details

We start from a gray-level image v : D C Z" — 7Z defined on a bounded
hyperrectangle D. We subdivide the domain of the image by computing the
smallest hyperrectangle D' C (%)n containing D and we define a new function
on the domain D’ such that the restriction of this function to D is equal to
u, that is, this function interpolates u. With B = {—3, 0, %}", where B, is
the translation of B by z, and with “op” an operator on (finite) subsets of

R, we define the following interpolation:

Definition 37. Let u: D — R with D C Z" a bounded hyperrectangle. We
define the operator-based interpolation Zo,(u) : D' = Subd(D) — R such
that, for any z € D':

op{u(z) } if z €D,
(Zop(u)) (2) = { og{ uw(z'), 22 € B,ND} otherwise.

This interpolation is said local since it is computed at each point p € D’

using only the nearest neighbors of p in (%)n

The following proposition, which could also be derived from [116], follows
easily.

Proposition 16. For any v : D C Z" — Z, the nD real-valued functions
Tnin(u) and Lypax(u) are digitally well-composed, and the interpolation op-
erators I and L.y are dual (i.e. Yu, Typin(u) = — Ipax(—u)).

Proof: The proof is in Chapter A. O]
Let us recall the definition of the Span operator: VV C V,

Span(V) = [min(V), max(V)] N V.

Using this operator on the interpolations Zi, (u) and Zyay(u), we obtain
the following span-based interpolation of u that we call Zgpan(u), defined such

that:
{ LISpan(u)% = Zin(u)

Since this interpolation is interval-valued, we say it is an immersion of w.
The property of Zgpa,(u) is then obvious:
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Proposition 17. For any u: D C Z"™ — 7Z, the nD interval-valued function
Tspan(u) : D' C (%)n ~ 7 is digitally well-composed, and the interpolation
operator Lspan 5 self-dual (it verifies ¥V u, Lspan(t) = — Lspan(— 1) ).

Proof: It follows from the fact that the two functions Z,, (u) and Zyax (u)
are (single-valued) digitally well-composed images and that an interval-valued
is digitally well-composed iff its upper and lower bounds are digitally well-

composed.
O

Then, starting from Zgp,(u) : D' C (%)n ~ 7. as developed above, we
add an outer border to the hyperrectangle D', which becomes D', , and we
define Uy : D/ ~» (Z/2) such that Vp € D', Uy(p) = (Zspan(u))(p), and
Vp € D).\ D', U(p) = {{x(u)}. This way, we preserved digital well-com-
posedness of the interpolation, since adding an outer border valued by a
constant to an image defined on a bounded hyperrectangle preserves digital
well-composedness. Effectively, we have the following proposition:

Proposition 18 (Adding a (constant-valued) border preserves DWCness).
Let Uy : D C (%)n ~ 7 be a DWC set-valued map defined on a bounded

hyperrectangle D in (%)n Now, let Uy : D' C (%)n ~~ 7, be another set-valued
map defined on a bounded hyperrectangle D' in (%)n such that §(D,se) C D’
where § is the dilation operator and se is the structuring element defined
such as {p € ()" ; ||pll~ < 1/2}, and such that Uilp = Uy and for any
p € D'\D, U'(p) = {c} (where c in a given constant in R). Then, Uy is a
DWC set-valued map.

Proof: We can prove that every block S € B(D') of dimension k& > 2
which intersects D and D’ \ D contains at least two elements of D'\ D which
z

are 2n-neighbors in (5)11 Let us now assume that U; is not DWC. There

exists then a block S € B(D', (£)") of dimension k > 2 such that U|s is
not DWC. Three cases are then possible: either S C D (which is impossible
since Uy|s = Up|s which is DWC), or S C D’ \ D (which is impossible since
Uils = {c} which is DWC), or S intersects at the same time D and D'\ D. In
this last case, there exists two different elements ¢!, ¢> € D'\ D that belong
to S and which are 2n-neighbors in (%)n Since these two elements belong
to D'\ D, Ui(q") = Ui(¢*) and then U; is DWC on the block S, which leads

to a contradiction. O

Then we apply the front propagation on U, with p,, belonging to the
outer border of D', . We obtain the single-valued image w D' — 7Z/2, which
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is digitally well-composed, at which we remove the border. Since removing
the outer border preserves digital well-composedness, we obtain the final
interpolation upwc : D' — Z/2 of u, which is digitally well-composed too.

With a € R, let us denote by b, the operator which adds an outer border
set at {a} to a interval-valued image defined on an hyperrectangle, and b~
the operator which removes the outer border to a single-valued image defined
on an hyperrectangle. We can then define our interpolation in this way:

upwe = Jpwe(u),

where the digitally well-composed interpolation operator is defined such that:
Jpwe = b~ o 3’% © béoo(.) o ISpan~

upwc is digitally well-composed

Combining the properties of the immersion and of the FPA, we obtain the
following proposition:

Proposition 19. Let u : D C Z" — Z be a given image. Then the image
upwe = Ipwe(u) is digitally well-composed.

upwc interpolates u

Since for each p € D, Ui(p) = (Zgpan(v))(p) = {u(p)}, the FPA cannot
choose another value than u(p) at the point p during the flattenning process,
and then upwc(p) = v’ (p) = u(p). This way, the following proposition is
straightforward:

Proposition 20. Let u : D C Z" — R be a given image. Then the image
upwe = JIpwe(u) interpolates .
upwc is self-dual

Since the immersion step and the front propagation are self-dual, the com-
plete process is self-dual, and then we obtain the following statement:

Conjecture 3. Let u : D C Z" — R be a given image. Then the image
upwe = JIpwe(u) interpolates u in a self-dual way.
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upwc 1s in-between

Let us recall the Definition 32 establishes what is an in-between interpolation.
This notion is much important because it represents that the interpolation
method outputs an image with no new extrema compared to the input image.

Proposition 21. Let uw: D C Z" — 7Z be a given image. Then the image
upwc : D' C (%)n — 72 defined such that upwc = Ipwe(u) is an in-between
interpolation of u.

Proof: Let uw : D — Z be a given image, and upwc = JIpwc(u) be
its interpolation. This way, we know that Vz € D, upwc(p) = u(p). Let
us assume now that upwc is not in-between. Then there exists some point

m € Subd(D) \ D such that:

UDWC (m) 4 m{p* ,p+}eopp(m)thV1(UDWC (p_ )a Upwc (p+)).

In other words, there exists two points a,b € Subd(D) such as {a,b} €
opp(m) and:
UDWC (m) g iIltVl(Uch(CL>, Uch<b))

Two situations are then possible:
e cither upwc(m) < min(upwe(a), upwc(b)) (Case 1)
e or upwc(m) > max(upwc(a), upwe(b) (Case 2).

Since these two relations are dual, we will study only the first case, the
reasoning being the same for the second one.

By hypothesis, upwc(m) < upwc(a), and then:
w(m) < u’(a), (P1).

Also, we know that a and m are 2n-neighbors in D’ (P2). Finally, since
a € P(m), Ur(a) = (Zspan(u))(a) S (Zspan(u))(m) = Uy(m) (P3). This
way, we have the three properties of Lemma 10 and we can conclude that
upwe(a) = Ub(a) = [Us](a).
With the same reasoning applied to b, we obtain that upwc(b) = U (D),
which leads to:
upwe(m) < min([Uy |(a), [U4](D)).
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By construction,

LUy J(a) = min{u(p) ; p € Ala)},

and
LU+ (b) = min{u(p) ; p € A(b)}.

This implies that «’(m) < min{u(p); p € A(m)} (since A(a) U A(b) =
A(m)), which is equal to |U|(m). However upwc(m) < |[U[(m) is im-
possible by construction. This concludes the proof.

O]

Invariance of upwc

Note that upwc should be invariant by translations, 7’s rotations and axial
symmetries, since the propagation of the front begins at the boundary of the
domain of the interval-valued interpolation of the input image, which justifies
the following conjecture:

Conjecture 4. Following the complete process detailed in this section, the
interpolation upwc of the image u is invariant by translations, 5’s rotations
and azial symmetries.

4.2.8 An illustration of the complete process

An example of the span-based interpolation is depicted in Figure 4.27. We
start from an image v that we interpolate using the digitally well-composed
interval-valued interpolation Zgp,, (v) at which we add a border to obtain U,
which is still digitally well-composed. This boundary is displayed in light
gray and is filled with a single value ¢ (u), which is actually the median
value of the set of values of the boundary of the definition domain of u. We
have:

loo(u) = med{3, 3,5, 7,0 11,13, 15} = 8.

When we take U, as input to the FPA, p,, can be any point of its boundary.
This way, which is similar to [60], we ensure that the propagation starts from
the outer boundary of U,, and that all the points of the inner boundary of
u are enqueued. Having (o (—u) = —{(u) guarantees that U, remains self-
dual with respect to u. Then the flattenning process is applied on U, and

results in a digitally well-composed image u”.
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9 | 11 ] 15
71 1 | 13
315 | 3
(a) u
{9y [ 9,11 | {11} [ [11,15] | {15}
17,97 | {121 | [1,11] | [1,15] | [13,15]
{7} | [1,7] {1} [1,13] {13}
13,71 | 15,70 | 11,51 | [3,13] | [3,13]
{3} | [3,3] {5} [3,5] {3}
(b) U= ISpan(u)
{8y T {8} {8} {8t {8} {8} {8}
{8} | {9} | [9,11] | {11} | [11,15] | {15} | {8}
8y [ 1797 | [3,11] | 11,110 | [1,15] | [13,15] | {8}
8| {7y | [1,7] {1} [1,13] {13} | {8}
{8y | 18,70 | [v,7] | [%5] | [3,13] | [3,13] | {8}
{8y | {3} | [3,39] {5} [3,5] {3} {8}
{8y [ {8} {8} {8} {8} {8} {8}
(c) U
S I
oo 11|11 ]15]s8
s s8] s [ s |13]z¢
sl7l7] 1] 8 [13]z¢
sl7]7] 5 [ s8] 8 |2
s13]s5] 5 5] 3]s
S I
(d) v’
o[ol11 1115
s8] &8 |8 |13
717 1] 8 |13
7175 [ 8| 8
3|55 5] 3
(e) upwc

Figure 4.27: The complete process in detail.

Figure 4.28 depicts the propagation steps: we start from Subfigure (a)
where po, is the only point to be enqueued in Q[{s(u)] = Q[8]. Then, until
Q[8] is empty, the propagation continues across the domain of the image,
which contains (at least) the ounter boundary, as shown on Subfigure (b)
in light gray. The green pixels correspond to the points which have been
enqueud during the propagation, and that are not valued yet. Then ¢ is set
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at 9, and the same process reiterates, until the whole domain of the image
has been enqueued and valued, which results in u” on Subfigure (j).

The final result upwe which corresponds to «’ minus its boundary is
digitally well-composed and computed in a self-dual way.

4.2.9 Conclusions about upwc

As proven in the section before, we finally have the following properties for
our interpolation:

upwc 18 self-dual

upwc 18 in-between

upwc subdivides the domain only once
upwc has a subdivision factor of 2
upwc 1S deterministic

Obviously, upwc is neither ordered not local, but this methods works in
n-D, n > 2.

4.2.10 From D — Z to D' — (Z/2)

We can notice that in practice, we will have an integer-valued map u whose
values are defined into Z, and then its immersion U will be also defined into
Z. When we add a border to the domain of U, we obtain a new function
U, , which is no more defined into Z but into Z/2, since the median at
which we set the border belongs to Z/2. The use of a generic library is then
necessary [107] (or we can round the value of ¢, but we can loose perfect
self-duality). The consequence is that u” and the final image upwc will be
defined into Z/2. According to us, it is a nice way (and perhaps the only
way) to ensure self-duality to an interpolation method starting from an image
whose values are defined into Z.

4.2.11 The FPA succeeds where local methods fail

We showed in [26] detailed in the chapter before that no self-dual local in-
terpolation with usual constraints can make any 3D image digitally well-
composed with one subdivision. However, our self-dual (non-local) FPA suc-
ceeds in making any nD image digitally well-composed thanks to its process
in 2 steps: the immersion U and the propagation upwc (see Figure 4.29).
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Figure 4.28: From U, to u’.
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Figure 4.29: A self-dual digitally well-composed interpolation of image of
Figure 4.13.
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Chapter 5

Some consequences and
applications

In this chapter, we explain how we can use the tools we have developed
in this thesis to reach our aims: we see in a first time how the self-dual
interpolation upwc of a given image u can be used to obtain pure self-duality
using a given self-dual operator, and in a second time, we explain how we
can combine this same interpolation and the conjecture that AWCness and
DWCness are equivalent on cubical grids to obtain finally a plain map with
strong topological properties such as AWCness and continuity. We also show
that thanks to the local equivalence of connectivities in a DWC image defined
on a cubical grid, the underlying structure of the graph of a well-composed
image does not depend anymore on the values in this image. Finally, we
observe we have no “ambiguity cases” using the Marching Cubes algorithm
on a DWC image, and we conjecture that this property is true in n-D.

5.1 Pure self-duality

A very powerful hierarchical representation, based on the inclusion relation-
ship of the components of an image, exists in mathematical morphology: the
tree of shapes [120, 60, 40] (see [117, 177, 178, 179] for some possible appli-
cations). It is sometimes seen as the fusion of the min-tree, made of the con-
nected components of the lower threshold sets (leaves are the regional minima
in the image), and its dual, the max-tree, which is made of the connected
components of the upper threshold sets (leaves are the regional maxima in
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Figure 5.1: In the middle, a gray-level image. On the left, its min-tree and
max-tree, and on the right its tree of shapes [60].

Figure 5.2: Incoherences using 4-connectivity for both upper and lower
threshold sets.

Figure 5.3: Incoherences using 8-connectivity for both upper and lower
threshold sets.

the image). Figure 5.1 shows a gray-level image and its component trees.

In fact, this morphological operator is self-dual in the sense that it is
invariant by contrast: it treats in a similar way bright objects over a dark
background or dark objects over a bright background. This is very useful
when we do not know a priori the contrast of the object, or if we need to
study several objects of different contrasts in the same image.

However, this operator is based on connectivities: we need to associate
a connectivity to the upper threshold sets and to the lower threshold sets
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Figure 5.4: An image u, its min/max interpolations, and upwc which is
self-dual.

used to compute the saturated connected components, called ”shapes”, in
the image using a “cavity-fill-in” operator.

Theoretically, a tree of shapes is such that if two components overlap,
they are nested the one in the other one; in the contrary case, they are
disjoint. However, in practice, it can be observed that by associating the
2n-connectivity (respectively the (3" — 1)-connectivity) to both upper and
lower threshold sets, we obtain some abnormalities: we can see on Figure 5.2
(respectively Figure 5.3) that there exist some shapes whose intersection is
non-empty and such that they are not included the one in the other one. In
these cases, the tree of shapes is a lattice but not a tree: it contains cycles.

To avoid these incoherences, it is common to associate a Jordan pair of
connectivities [11, 32] to the lower and upper threshold sets. However, the
(4,8)- and the (4, 8)-trees of shapes of a same 2D image will usually not be
exactly the same; in other words, we do not have unicity of the tree, which
is then ill-defined.

However, using a well-composed image (in the sense that connectivities
are equivalent), we can compute the tree of shapes of an image and its neg-
ative with exactly the same couple of connectivities (no switch is needed),
the result will be the same: Géraud and Najman [60] call this phenomenon
"pure self-duality”.

Since the front propagation in the computation of the tree of shapes
is based on 2n-connectivity, we can emulate the dual pair of connectivities
(Can, cgn—1) (which connects the zeros and disconnect the ones) on a min
interpolation. In the same way, we can compute the tree of shapes based on
the dual pair (¢3n_1, ¢a,,) (which connects the ones and disconnects the zeros)
on a max interpolation. So, starting from a given image u, we compute its
min, max, and self-dual interpolations as shown on Figure 5.4. Then we
compute their respective trees of shapes T (tumin), T (Umaz), and T (upwc) as
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Figure 5.5: The tree of shapes of the min, max, and self-dual interpolations.

Ty 2y

Figure 5.6: The initial image u containing a ball and a full torus and its
self-dual interpolation.

Upwe).

shown on Figure 5.5. We can observe that the upper and lower threshold
sets are not processed in the same way using the min and max interpolations,
contrary to the tree of shapes computed on our self-dual representations upwc
which treats exactly in the same way bright and dark components.

Now, let us show how our self-dual interpolation «’ deletes the pinches
in the image and let us observe the result we obtain on the tree of shapes.
We start from an initial 3D image u showed on the left of Figure 5.6 and we
compute its self-dual interpolation u” showed on the right of the same figure.
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Figure 5.7: On the left, u seen from the top, and on the right, upwc seen

from the top.

L4

0

Figure 5.8: The tree of shapes of w.

Figure 5.7 shows the same images seen from the top to see the “pinch”. The
final result is that the tree of shapes, showed on Figure 5.8, expose the same
separation as u” (since the union-find is applied on it).

Note that any self-dual operator which is based on connectivities, de-
rived [31, 178] from the tree of shape (or not), will be purely self-dual on
well-composed images. Effectively, an example of self-dual operator derived
from the tree of shapes is the grain filter, which removes the shapes in the
hierarchical representation of an image u whose area is smaller than a given
threshold. We can remark easily on Figure 5.9 that using the connectivities
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Figure 5.9: Grain filtering on an image u: our self-dual representation leads
to “pure” self-duality.
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Figure 5.10: From w to its underlying graph structure using the dual pair
(Cg, 64) .

(¢4, c8) or (cs,cq) does not lead to the same result. Furthermore, the use of
our self-dual representation gives a result which is between the two before,
and then shows how our self-dual representation upwc is “purely” self-dual.

In the same manner, in digital topology, we assume that a Jordan pair of
adjacencies, such as (cap, c3n_1), is associated to a binary or gray-level image,
that is, we associate 2n-adjacency to the ones (or the upper threshold sets),
and (3" — 1)-adjacency to the zeros (or the lower threshold sets). Note that
some other Jordan pairs of adjacencies can be considered, as its dual pair
(csn — 1, ¢an), depending on the application. In this manner, we obviate con-
nectivity paradoxes. The resulting problem is then that a specific adjacency
is considered depending on the values of the pixels in the image, and then the
underlying structure of the graph (corresponding to the domain of the image)
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Figure 5.11: All the possible cubical connectivity grids are equivalent on a
digitally well-composed image. In the raster scan order, the 4-connectivity
grid, the 8-connectivity grid, the perfect fusion grid, a 6-connectivity grid,
and the Khalimsky grid.

depends on the location (see Figure 5.10). However, DWC images have their
connectivities (locally) equivalent, and then they can be seen as (2n,2n) im-
ages. This way, the underlying graph of the image becomes simpler, regular,
90 degrees rotation and translation invariant, and is not anymore correlated
to the values in the image. In fact, since any chosen connectivity for the
ones and for the zeros will lead to the same result, we can associate any
graph structure to the image. This way, the perfect fusion grid [38, 39], the
Khalimsky grid [73], and so on (see Figure 5.11) can be associated to a DWC
image.

5.2 A new representation of digital images

Note that this section needs some prerequisites of Chapters C and D.

Since we work with images defined on bounded hyperrectangles in a space
of finite dimension n > 0, we can assume that we start from an image
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u: D — R where D = ®jc[in] [kmin kmax] - with k™0 k™ € Z" the lower
and upper bounds of the domain D of u respectively.

Also, since we are working with subsets of a finite spaces, we do not use
the topological boundary 0 but the border A instead. We recall that the
border of a subset X in any Alexandrov space of finite rank n > 0 (as an
order) is the union of the closures of the (n — 1)-faces that have one n-face
as coface.

From (Z/2)" to H* Now let us define the isomorphism between (Z/2)"
and H™ we use to immerse u into any cubical complex subset of H". We
define the application H : (Z/2) — H' such that:

Ve € (2/2),H(z) = { zt !ﬁ 0 (Z%/2) \Z, -

from which we deduce using the cartesian product the application H,, :
(%)n — H" such that:

Vz € (Z)2)" , Hn(2) = QiepyH (%)

We will denote by Z,, the inverse of the bijection H,,.

Span-based immersions are continuous but not AWC Then, a first
idea could be to immerse u into Imm,, : «(H,,(D)) ~» R such that:

{w(Z,(h))} if h e H

n’

Vz € a(Hn(D)), Imm, (h) = { Span {u(Z,(q)) ; ¢ € B(h) NH"} either.

Note that a(H,(D)) is a cubical complex (see Definition 70), since it is
closed by inclusion, and that any face of any face of this set belongs to this
set.

This way, we obtain an USC map as showed on Figure 5.12: the strict
upper/lower threshold sets are open and the upper/lower threshold sets are
closed.

However, this map is not AWC, as showed on Figure 5.13, in the sense
that its border in not a disjoint union of (n — 1)-surfaces.

154



u o | o

(o) (2) ol | 101 ||| 2
— B JEC

e o || {2} o021 {0}
T e |

{0}

2

I:I

[

| | -
{0} o2 {2}
I | ——
{2} 02 {0}
Co IHC=
[U 2]
I
©r ||=|| 2
. ) ——
@ ||| 1o
e o e

(open)

(closed)

Figure 5.12: Span-based immersion of w : [0,1] x [0,1] — R into a cubical
complex provides continuity properties to the new representation U of u.

o [ w0 e | @
of | {0} ||| {2}
=
of [ {2} || {0}
; [ & | ; [ © |

prey
N
-

{2}

S
2

{0}

{0}
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An AWC continuous representation on H" Note that this section
requires the content of Chapter D containing the sketch of the proof that
immersions of DWC images on the Khalimsky grids are AWC interval-valued
maps.

u
©

00
1001 10
||| (open)
u] 10
1001 10

>
:C
v
S

Io

]! 13| |1 lai mm—] | N . N

{0} ay ||| {2} D I D I
@] 1B @] 10 EEEmEC__0C_ W
e [ o - 1 Il [l }1-surf)
2 o [ J— i f—1
DR I
B IR o IR o 1M IR 0

Figure 5.14: Our method to obtain an AWC plain map.

For this reason, we propose the following numerical scheme (see Fig-
ure 5.14): we start from an image v : D — R where D is defined such
that:

D = @iena[26"", 26" N (22)",
we compute its span-based interpolation U : Dy ~» R with D, defined such
that:
Dz = iepn 247, 267,
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we apply the front propagation §J on it to obtain upwce : Dy — R, and then
we use upwc to compute its immersion Uawe defined onto a(H, (D)) € H”
such that Vh € o(H,(Ds)):

| {upwc(Z.(h))} if z € H,(Ds),
Unwe(h) = { SpaK?uDWC(Zn(q)) ;g € B(2)NH,(Dy)}  either.

We obtain finally Uawe which is AWC in the sense that the topological
boundaries of its threshold sets are either disjoint union of (n — 1)-surfaces
or empty sets (at least in 2D and in 3D, the n-D case, n > 4, being still not

verified).

Following the same idea as Najman and Géraud in [124], and considering
that the value image of U is supplied with the usual Euclidian distance, the
properties of our self-dual interpolation Uawc will be the following:

e Urwe is AWC,
[} UAWC is USC,

e for any A € R, the threshold sets [Uawe < A] and [Uawe B> A] are open
sets,

e for any A € R, the threshold sets [Uawc < A] and [Uawce B> A are closed
sets (since a(H,,(D2)) is closed by construction),

e Uxwc satisfies the intermediate value theorem,

e assuming that a(H, (D)) is unicoherent®, the set of shapes [124] T
of Uawc is a tree, that is, two components of ¥ are either nested or
disjoint; in other words, the tree of shapes is well-defined.

Note: Obviously, a span-based immersion applied on the AWC interpo-
lations described in Chapter E will also lead to AWC continuous maps with
these same properties.

LA topological space is said to be unicoherent iff it is connected and for any two closed
connected sets such that their union equals the whole space, their intersection is also
connected.
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Figure 5.15: Lorensen’s Marching Cubes Lookup Table [110]

5.3 n-D Marching-Cubes-like Algorithms

We propose here the conjecture that any n-D MC-like algorithm has no

ambiguity cases when the digital gray-level image we are working with is
DWC.

The main reference in matter of scientific and experimental visualization
of scalar field data on 3D cubical grids is the Marching Cubes (MC') algorithm
of Lorensen [110]. Assuming that we have a continuous scalar field f whose
values are known on the lattice points of a cubical grid, we can visualize
the approximate of the implicit surface [f = «] (usually assumed to be a
topological 2-manifold), o € R, using a triangular mesh, that is, a simplicial
complex, also called the surface tiling of the iso-surface. This algorithm
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Figure 5.16: The “hole problem” using Marching Cubes ([153])

computes the triangulation cube by cube in this way: each corner ¢ of the
cube (the lattice points of the cubical grid) whose value f(c) is superior or
equal to the given threshold « is said to be positive (they correspond to the
inside part of the object), and the other corners of the cubes are said to be
negative (they correspond to the outside part of the object). A boundary
point is then created on each edge of the cube using a (trivial or non-trivial)
interpolation such that one of its vertices is positive and the other is negative.
Then, using a lookup table proper to the MC algorithm [110] as shown on
Figure 5.15, boundary points are connected with one or several triangles,
making a triangular mesh, connected or not, depending on the configuration
of points in the cube. Then the "local” meshes are grouped together to make
the final mesh in R3.

We would then hope that the resulting mesh is an union of disjoint simpli-
cal surfaces [24] which separates the positive vertices to the negative vertices.
However some holes/cracks can appear as shown on Figure 5.16, due to am-
biguities in some configurations. In this case, the algorithm fails to produce
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a piecewise linear manifold: some edges are the face of only one triangle,
which means that they draw together the boundary of a hole in the surface.
To obviate these ambiguities, Han et al [74] use digital topology: a couple of
connectivities (among the 8-,18-, and 26-connectivities) is then associated to
the positive and negative lattice points, to be able to decide which surface
tiling has to be drawn (at each cube separatly). As usual, this couple must
be a Jordan pair to avoid the connectivity paradox of Rosenfeld. Then there
is only one possible tiling at each cube and positive and negative cubes are
separated in each cube by the local tiling surface. The resulting mesh is
“digitally” topologically correct in the sense that the surface tiling correctly
reflects the topology of the initial isosurface [f = «] if the connectedness is

well chosen. This algorithm is called connectivity-consistent marching cubes
(CCMCQ).

Be careful not to amalgamate the topological correctness in the context
of digital topology and the topological correctness used in isosurface extrac-
tion and which means that the approximating isosurface is homeomorphic
to piecewise trilinear interpolation of the digitization of the given continuous
scalar field.

However it is sometimes difficult to choose which connectivity is the best
for the application, and then we would avoid to choose a connectivity, since
the resulting mesh depends strongly on this choice. Digital well-composedness
(in the sense that the sets and its complement do not contain any critical
configurations) is then salutary: it has been stated in [86] that a cubic cell
is unambiguous iff there exists a 6-path of positive (respectively negative)
vertices in this cube connecting each pair of positive (respectively negative)
vertices of this same cube, which is equivalent to well-composedness in 3D.
This way, no choice of connectivity is needed anymore, since whatever the
chosen connectivities the result will be the same. Moreover, [f = af is
a PL (Piecewise Linear) 2-manifold with no hole, and then its boundary
is contained in the boundary of the cubical grid, what is called topological
consistency.

Furthermore, Siqueira et al. proved in [153] that the isosurface resulting
from the MC algorithm may reflect the topology of the initial continuous
scalar field when the given binary image is well-composed. If for some rea-
son, we are not able to make any well-composed interpolation or to use any
topological repairing method, the use of the Modified Marching Cubes algo-
rithm (MMC) [162] is a good choice, but it assumes that the digitized object
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Figure 5.18: n-D approach of Lachaud [94], based on the convex hull.

is r-regular and that the sampling grid has a sufficient resolution.

Note that some very powerful MC-like methods exist for the n-dimensional
case, n > 2, as the frontier orders of Daragon [42, 43] based on combinato-
rial topology and the continuous analog of the digital boundary of Lachaud
and Montanvert [94] based on digital topology. Both obtain the same sur-
face tilings in the 3D case, as shown on Figure 5.17, showing each possible
configuration in the 3D case, assuming that we use 6-,18-, or 26-connectivity
for the black points (and a dual connectivity for the white points). In other
words, (6, 18)-connectivity will join the black points which are 6-connected,
and will separate the black points which are only 18- or 26-connected. In
the same time, it will join the white points which are 6- or 18-connected,
and it will separate the white points which are only 26-connected. Note
that the n-D approach of Lachaud is depicted on Figure 5.18, and consists
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in computing in each cube separatly the boundary of the convex hull of the
set of points made with the black points plus the boundary points (see (a),
(b), and(c)). An equivalent approach but using a non trivial interpolating
function is showed from (d) to (f). Under reasonable constraints, these two
methods provide simplicial surfaces with no "holes”, at least in the 3D case.

Finally, we can mention the existence of isosurface simplification algo-
rithms [152, 83] used to reduce the excessive number of triangles produced
by the MC algorithm in practice. These methods works particularly well
with well-composed images since they preserve the topology of the bound-
ary of the continuous analog of the foreground of a well-composed digital
image [153].

Finally, we strongly think that a n-D image which is DWC has no possible
local ambiguity. Effectively, assuming that we want to extract the isosurface
of a set X C Z", an ambiguity appears in a block S € B(Z") if and only
if there exists two points p,p’ in X NS (respectively in XN S) which are
a-connected but not [-connected, where a-connectivity and (-connectivity
are two connectivities both implied by 2n-connectivity, and such that they
both imply (3™ — 1)-connectivity. However, if the set X is DWC, (3" — 1)-
connectivity in S of X (respectively of X¢) implies 2n-connectivity. In other
words, a-connectivity will imply (3™ — 1) connectivity, which implies 2n-
connectivity, which implies S-connectivity, and conversely. In that sense, any
pair of connectivities is be equivalent in any block S, and then no ambiguity is
possible on the domain of the image. This reasoning leads us to the following
conjecture:

Conjecture 5. Let u : D — R be a real-valued DWC' image defined on a
domain D. Then, u does not have any ambiguous cases. In other words, no
“hole problem” is possible in n-D using DWC' images.

5.4 'Tree of shapes of the sign of the DWC
morphological Laplacian

In this section, we present some results of Huyhn et al. [80] obtained thanks to
the computation of the tree of the sign of the (DWC) morphological Laplacian
in a self-dual way. Even if it is used here for text detection, this approach
can easily be extended to treat n-D signals, such as M.R images, videos, or
CT-scans.
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Figure 5.19: Summary of the method used by Huyhn et al. [80].

Nowadays, text detection methods [53, 181, 183] are widely used, espe-
cially on mobile devices, for recognition tasks. They are generally classified
into connected-components-based approaches, like FASText [30], the SWT
(Stroke Width Transform) [51], the TMMS (Toggle Mapping Morphologi-
cal Segmentation), and the MSER (Maximally Stable Extremal Regions), or
into sliding-windows approaches using SVM (Support Vector Machines) [36],
AdaBoost [105], or CNN (Convolutional Neural Networks) [174] as classifiers.

The one presented by Huyhn et al. [80] is part of the connected-components-
based approaches, and consists in transforming an image into a tree-based
hierarchical representation (see Figure 5.19), based on adjacency and inclu-
sion relationship between the components in the image.

To proceed, they compute the Laplacian of a given image using a mor-
phological Laplacian operator [172, 156, 126], whose zero-crossings are known
to be very precise contour estimations of the initial image. Using a large-
sized structuring element relatively to the size of the text to detect, spurious
contours are easily eliminated and salient contours preserved, thanks to the
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Figure 5.20: An inclusion tree and its corresponding image [80].

non-linearity of the operator. After that, a self-dual well-composed interpo-
lation (like the one we just presented) of this Laplacian is computed; this
way, the zero-crossings of this interpolation are simple closed curves. Using
these separated Jordan curves, we can naturally induce a hierarchy [28] in
the image: saturation of these curves (whatever the chosen connectivity) are
either nested or disjoint. A component labeling of the sign of the Laplacian
and the generation of the inclusion tree are then straightforward and very
fast (a classical blob labeling algorithm is sufficient).

Thanks to this tree-based representation of the image, they can extract
text candidates: a hole of a character or a solid character are leafs of the tree
(ss Figure 5.20), and so on. Text grouping is then simply a subtree of this
inclusion tree, since characters must be grouped iff they belong to the same
background.

Finally, in this context, well-composedness gave access to a very fast
(linear time) and efficient self-dual text detection algorithm thanks to the
hierarchy induced by the Jordan curves extracted from the well-composed
Laplacian.
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Chapter 6

Perspectives

In this chapter, we present some future works that seem promising and that
are related to well-composedness.

6.1 About the equivalence between AWCness
and CWCness on cubical grids

In digital topology, its is generally admitted that in 2D and 3D a finite set
X C 7" is continuous well-composed, that is, the boundary of its continu-
ous analog bdCA(X) is a (n — 1)-manifold, iff its immersion ZMM(X) =
Int(a(H,(X))) in the Khalimsky grids H" is well-composed in the sense of
Alexandrov, that is, its boundary is a disjoint union of discrete (n — 1)-
surfaces.

Starting from a finite subset ZMM(X) C H", let us recall how we can
proceed to build its underlying polyhedron into R".

Definition 38 (Underlying Polyhedron). Let hy be an element of H'. We
call underlying polyhedron of hy the set denoted by Poly(hy) and defined
such that:

a if day € Z s.t.hy = {a},
potschy — 4 o0 f 30, L= {an)

[al,al—i—l} ’LfElCLl cZ S.t.hl :{CLl,CL1+1}.

In other words, a 0-face becomes a point in R and a 1-face becomes a closed
unitary interval in R. Then, for any face h € H", we define the underlying
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Figure 6.1: Morphological dilation does not preserve digital well-composed-
ness using a structuring element based on 4-connectivity.

polyhedron of the face h as the cartesian product of the underlying polyhedron
of its coordinates:

Poly(h) = ®iep1,npPoly (hi).
Finally, let X C H"™ be a set of faces, then its underlying polyhedron is
defined as the union of the underlying polyhedron of its elements:

Poly(X) = | J Poly(h).

Note that any of these underlying polyhedra are closed into R™.

This construction seems equivalent to construct the continuous analog in
R™ with unitary n-cubes centered at the points of the set Z,(X’). Then we
propose the following conjecture:

Conjecture 6. Let X be a finite subset of Z" and let ZMM(X) be its im-
mersion in H". Then, ZMM(X) is well-composed in the sense of Alexandrov
iff X is continuous well-composed, that is, the boundary N of ZMM(X) in
an disjoint union of (discrete) (n — 1)-surfaces iff the topological boundary
OPoly(ZMM (X)) = bdCA(X) is a (n — 1)-manifold.

As for the equivalence between AWCness and DWCness, we believe that
the cartesian product is a property which is essential to prove that CWC-
ness and AWCness are equivalent. Furthermore, we can easily feel that the
decomposition of R™ into {Poly(h) ; h € H"} has the same structure as H”
whatever the dimension. For these reasons, we think that CWCness and
AWChness are equivalent on cubical grids.

6.2 Preservation of Digital Well-composedness

In mathematical morphology, digital well-composedness is not usually “sta-
ble”: even the simplest morphological operators like the dilation (see Fig-
ure 6.1 and Figure 6.2) and the erosion (see Figure 6.3 and Figure 6.4) do
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Figure 6.2: Morphological dilation does not preserve digital well-composed-
ness using a structuring element based on 8-connectivity.

[]
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Figure 6.3: Morphological erosion does not preserve digital well-composed-
ness using a structuring element based on 4-connectivity.

L |
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Figure 6.4: Morphological erosion does not preserve digital well-composed-
ness using a structuring element based on 8-connectivity.

not preserve digital well-composedness. It is even worst with second order
operators like the morphological Laplacian.

However, we are going to show that there exists some classes of mor-
phological operators that preserve digital well-composedness. Among them,
there exist the monotone plannings, a transformation which preserves the
order between neighbouring pixels, and the grain filters, a transformation
which removes components of small size in the hierarchical representation of
the image (computed using the tree of shapes).

6.2.1 Monotone Plannings

In [119], Meyer and Maragos present a strong morphological filter, the level-
ings, whose definition is the following:

Definition 39 (Levelings). An image g : D C (Z/s)™ — R is a leveling of
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the image f: D — R iff V(p,q) 2n-neighbors in (Z/s)":

{9(p > 9(@)} = {f(p) = 9(p) and g(q) > f(q)}-

The meaning of this definition is that if there exists a difference between
two neighboring pixels in the leveling g, there exists an even greater difference
in the original image f: “to any contour of a function g corresponds a stronger
contour in the function f at the very same location, and the localisation of
this contour is exactly the same”. In other words, levelings are morphological
scale-space filters, with nice properties (see [119)]).

In fact, levelings correspond to a particular case of monotone plannings [119]:

Definition 40 (Monotone Plannings). An image g : D C (Z/s)" — R is
a monotone planning of the image f : D — R iff V(p,q) 2n-neighbors in

(Z/s)":
{9lp > 9(0)} = {f(p) > f(@)}-

This definition called us to mind because monotone plannings constitute
a class of transformation which preserves the relation order between neigh-
boring pixels in an image, which is very close to digital well-composedness:
if we assume that a 2D image g contains a critical configuration, it means
that there exist two points p, p’ which are antagonist in a 2D block S such
that their value are strictly lower than the two other values in S. By defini-
tion of monotone plannings, the original image satisfies then this same order
relation, and then the critical configuration is preserved. That means that
in 2D, the monotone planning of a digitally well-composed image is digitally
well-composed. We can even announce that this property is true in n-D,
n > 2. To prove that, let us introduce some additionnal material.

Definition 41. Let z be a point in (Z/s)"*. We define the 2n-neigborhood
of order I, I > 1, such that N3 (x,(Z/s)") = Noy(z,(Z/s)"), and:

on(@, (Z/5)") = U Mealo (Z/s)),

vENS, (2,(Z/5)")

when | > 2. For sake of simplicity, we will also denote for | > 2:

N3 (P, (Z/5)") = N (p, (Z/5)") \ Now (. (Z/5)").
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Lemma 11. Let u : D C (Z/s)" — R be a real-valued image defined on
a bounded hyperrectangle D in (Z/s)"*. Now, let S* € B(D) be a block of
dimension k > 2 and p be a point in S* such that Vn' € S* NN, (p, (Z/s)"),
u(p) < u(n') (case 1), or such that Vn' € S* N Nau(p, (Z/s)"), u(p) > u(n?)
(case 2). Let assume that the restriction of u to S* is digitally well-composed
Then, for any 1 € [2,k], and for any n' € S*NONL (p,(Z/s)"), there exists
a block S' of dimension 1 included in Sy, such that there exists a 2n-path
7= (p,nt,....,n") C S such that Vi € [1,1]:

n' € 6N, (p. (Z/3)"),
and:
u(p) < u(n') < --- <u(nh), (case 1)

' u(p) > u(n) > - > u(nb). (case 2)

Proof: Let us proceed by induction on [ € [2,k] to prove Case 1, the
proof of Case 2 being its dual.

Initialization (I = 2): Let n? € S* N ONZ,(p, (Z/s)") be a point. n? is
then antagonist of p in a 2D block S? C S*. Since the restriction of u to S?
is digitally well-composed, we have:

intvl(u(p), u(n®)) N Span{u(q) ; ¢ € S*\ {p,n*}} # 0,

and then u(n?) > min{u(q) ; ¢ € S*\ {p,n*}}. This way,

™= (pv argmin (U(Q))7n2)
q€5*\{p,n?}

is the 2n-path we are looking for.

Induction (I € [3,k]): we assume that the property is true for (I — 1).
In other words, we assume that for any n'~* € S* N oNL(p, (Z/s)"), there
exists S € B(S*,(Z/s)") and a 2n-path in (Z/s)"™:

7= (p,nt, ..., C St cs”

such that u(p) < u(n') <wu(n?) <--- <wu(n'=1) withn' € SN (p, (Z/s)")
for any @ € [1,l — 1]. Then the following property comes out: Vg €
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SEANLE(0)\{p}, u(p) < u(q). Let be now n' € S'NSNL, (p, (Z/s)"). If we as-
sume that for any r € S'NN5,(n!, (Z/s)"), we have u(n') < u(r), then by the
induction hypothesis and following the same reasoning as for p in S'~!, we ob-
tain that there exists S! of dimension [ such that p € S! and such that for all
s € SINNL () \{n'}, u(n!) < u(s). In fact, S' = S,(p,n') = Sy(n',p) = S,
and then we have that:

max(u(p), u(n')) < min{u(q) ; ¢ € S'\ {p,n'}},

which would imply that u contains a critical configuration into S C S¥,
which is impossible. Then there exists r* € S' N Ny, (n!, (Z/s)") such that
u(r*) < u(n!). Since r* is a 2n-neighbor of n! such that it belongs to S,
r* € S'N NS (p), and then (p,n',... , n'~' = r* n!) is a 2n-path in S' as a
subset of (Z/s)" which satisfies u(p) < u(n') < --- < wu(n!). O

Then we can announce our theorem:

Theorem 8. Let u : D C (Z/s)" — R be a real-valued image defined on a
bounded hyperrectangle D, and let be v’ : D — R be a monotone planning of
w. If u is digitally well-composed, then v’ is digitally well-composed too.

Proof: Let us proof that if u' is not digitally well-composed and if u is
digitally well-composed, we get a contradiction. If «' is not digitally well-
composed, there exists a block S¥ € B(D, (Z/s)") of dimension k > 2 such
that p,p’ € S* are antagonist in S* and we have one of these two cases:

max(u'(p), u'(p')) < min{u'(q) ; ¢ € S \ {p,p'}}, (1)
max{u'(q) ; g € S\ {p,p'}} <min(/(p), ' (p')). (2)
Let us treat the first case, the reasoning being dual for the second case.

From (1), it follows that:

Vn'(p) € N3, (p) N S*, ' (p) < '(n'(p)),
vnl(p') € N3, (p') N S* ' (p) < o/ (n*(p')),

and u’ being a monotone planning of u, we have also that:

vn'(p) € N5, (p) 0S¥, u(p) < u(n'(p)), (A
vl (p') € N5, (0') 0S¥, u(p) < u(n'(p')). (A)
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Figure 6.5: The original Barbara image.

Since u is assumed to be digitally well-composed, we have that the restric-
tion of u to S* is digitally well-composed. Then (A) implies by Lemma 11
that there exists a 2n-path (¢° = p,...,¢* = p') into S* as a subset of
(Z/s)" going from p to p’ such that u(p) < u(q') < -+ < u(p’), and then
u(p) < u(p’). From (A’), we obtain using Lemma 11 that u(p’) < u(p),
which is impossible. We have a contradiction. Then w is not digitally well-
composed. O

Obviously, since we have proven that all kind of monotone planning pre-
serves digital well-composedness, it follows that levelings preserve also digital
well-composedness.

6.2.2 Grain Filters

We observed that another class of filtering preserves digital well-composed-
ness in morphological analysis: grain filters [31]. The principle is to decom-
pose the image into an hierarchical representations of the shapes in the image,
using the tree of shapes [32, 60], and to keep only the components such that
their area is greater than a given threshold. Figure 6.5 shows the original
Barbara image, Figure 6.6 shows the critical configurations contained in this
image, and Figure 6.7 shows our self-dual interpolation of this image.
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Figure 6.7: Our self-dual interpolation of the Barbara image.

Our observation is the following: grain filters preserve digital well-com-
posedness, as depicted on Figure 6.8 Figure 6.9, Figure 6.10 corresponding
to filtered DWC interpolations with different thresholds. The result is that
any of these images is digitally well-composed.

Our explanation of this phenomenon is that the hierarchical representa-
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Figure 6.8: A grain filter of the DWC interpolation of the Barbara image
with a threshold A = 10.

Figure 6.9: A grain filter of the DWC interpolation of the Barbara image
with a threshold A = 320.

tion of the interpolation consists in nested or disjoint connected components
such that they do no touch each other, since no critical configurations oc-
cur in threshold sets of digitally well-composed images. Then, by applying
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Figure 6.10: A grain filter of the DWC interpolation of the Barbara image
with a threshold A = 1280.

the grain filter, we juste remove some shapes, and in this manner we just
“simplify” the hierarchical representation of the image, and then the recon-
structed image must be digitally well-composed.

6.2.3 Geodesic Dilations/Erosions

We remarked that another class of operations preserves digital well-compo-
sedness: geodesic dilations and erosions, much used in mathematical mor-
phology. Geodesic dilation basically consists in starting from a given binary
image considered as the mask, that we associate to a marker image repre-
senting the “seeds” lying in this subset. Applying the geodesic dilation is
then equivalent to dilate progressively the seeds in the space corresponding
to the mask, such that they will completely fill the connected components
of the initial set, since dilation outside the set is forbidden. In this man-
ner, geodesic dilation simply extracts some connected components of a set
depending on the associated initial marker.

Starting from a digitally well-composed binary image where connected
components have Jordan curves as boundaries and do not “touch” each other,
geodesic dilation choose among these connected components which ones are
kept and which ones are rejected, and in this manner preserves the digital
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Figure 6.11: A 3D digitally well-composed binary image, the mask, and a
marker of the same size.

Figure 6.12: The geodesic dilation of the marker in the binary image is also
digitally well-composed.

well-composedness of this binary image. Note that this selection of which
components the algorithm keeps strongly recalls the grain filters of the section
before.

The geodesic erosion is simply the dual of the geodesic dilation, and
the geodesic dilation/erosion for graylevel is the natural extension of their
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binary version using cross-section topology. For these reasons, we think that
geodesic dilations and erosion preserve digital well-composedness.

6.2.4 Conclusion

Finally, as proven by Theorem 8 and showed by the experimental results we
obtained with grain filters, the class of transformations which preserve digital
well-composedness is much larger that we could believe: monotone plannings,
geodesic dilations/erosions, and grain filters, and certainly shapings [178§]
in general, preserve digital well-composedness in the sense that they only
remove shapes in the hierarchical representation of the image.

6.3 Graph-based Characterizations of AWC-
ness and DWCness

These approaches are based on regional minima and regional minima in
graphs, that we define such that:

Definition 42 (Regional extrema). Let G = (V, E) be a graph valued by a
map u : V — R. We say that a connected component B of G is a plateau
iff there exists v € R such that for any element p of B, the value u(p) is
equal to v. We call v the value of the plateau. We call a regional minima
(respectively a regional maxima) a plateau B of G (associated to its value)
such that for any neighbor q of P which does not belong to B, the value u(q)
is strictly lower (respectively strictly greater) than the value of B. Regional
minima and maxima are both said to be regional extrema.

6.3.1 Graph-based Characterization of AWCness

Note that this section needs some prerequisites presented into Chapters C
and E.

We recall that a partially ordered set | X| = (X, «) is said to be a discrete
O-surface if it made of two points which are not neighbor the one of the other
one, and a n-surface, n > 1, is defined such as it is connected and for any
point z belonging to X, the order |05 ()| is a (n — 1)-surface. It is therefore
easy to check if a set is a n-surface with a recursive program. Hence, it is easy
to check whether a digital set is well-composed in the sense of Alexandrov
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Figure 6.13: A discretized sphere with values on the 2-faces.

in n-D. However, even if a O-surface or a l-surface are easy to interpret, it
becomes harder to get the intuition of a 2-surface and higher.

Also, assuming that we are able to check in a short time whether a set in
an Alexandrov space is AWC, it seems much longer to check if a real-valued,
or even integer-valued, image is AWC, in particular in the dynamic of the
image is high or if the quantification has a very high resolution: assuming
that the domain D of the image u : D — R, made of n-faces, is finite,
whatever if it is cubical or not, we should check if, for any A\ belonging to the
space of the image, the closures of the threshold sets [u > A] and [u < A] are
AWC. Then it can be much interesting to find a characterization of AWCness,
like the one of DWCness on bounded hyperrectangles of (Z/s)".

Figure 6.13 depicts a triangulated sphere whose 2-faces are valued by a
real-valued function. The idea is then to find a new method able to check
whether this function is AWC without checking the AWCness of the closure
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of every threshold set.

Let us recall that, for any polyhedral complex PE", the set P& denotes
the k-faces of this complex, and that in the polyhedral complexes presented
here, the infimum between two faces h', h?, assumed to be well-defined when
a(h')Na(h?) is non-empty, in this complex is denoted h' A h? and is defined
as the supremum of the set a(h') N a(h?).

Conjecture 7 (Graph-based Characterization of AWCness). Let BE" be any
polyhedral complex of rank n > 2 which is a n-surface (bordered or not). Let
u be any real-valued map defined on the n-faces of this complex. The real
map u is AWC iff on PE™ iff for any z € P&, k € [0,n — 1], the valued
graph G(u,z) = (V, E) defined such that the set of vertices is defined such
that:

V ={u(h); h € Byen(2) NPE)}
and such that the set of edges is defined such that:

E = {(h',n*) € PE" x PE" ; K AR* € PC_,},
admits exactly one regional maximum and one regional minimum.

Figure 6.14 depicts how we can determine if a 2D image is well-compo-
sed in the sense of Alexandrov, and furthermore for which values A € R the
threshold sets [u > A] and [u < A] are not well-composed in the sense of
Alexandrov: by observing the values of u into the open neighborhood of the
0-face 2!, we can see that the graph G(u, z!) contains two maxima, circled in
red, and two minima, circled in green. From that, we can respectively deduce
that [u > 8] and [u < 4] are not well-composed in the sense of Alexandrov.
Observing the graph G(u, 2%), we can observe in the same manner that [u > 6]
and that [u < 2] are not well-composed in the sense of Alexandrov.

At the contrary, we can observe that the graph G(u, 2%) admits one only
minimum, which is equal to 1, and one maximum, which is equal to 5. This,
way, our conjecture says that this restriction of u to this subcomplex is well-
composed in the sense of Alexandrov, and effectively we can depict that the
boundary of each threshold sets is a 1-surface as shown on Figure 6.15.

As depicted on the octahedron in Figure 6.16, our method works also in
3D (and more): we have two points in G(u, z) whose value is one, they are the
maxima of G(u, z*), and we have only one minima, the connected component
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Figure 6.14: How to characterize AWCness in 2D.

Figure 6.15: Boundaries of the different threshold sets around 22

corresponding to the value 0 in G(u, z*). This means that u is not AWC.
Note that we can observe that it is crucial that we have at the same time
one only minimum and only maximum in each graph G(u, z), since we can
have a “pinch” and at the same time one only minimum in G(u, z*), where
z* is the point where this pinch occurs.
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Figure 6.16: A 3D image which is not AWC.

6.3.2 Graph-based Characterization of DWCness

Let us show that we can characterize DWC functions defined on bounded
hyperrectangles in Z" (and then in (Z/s)™) using graphs.

Notations 1 (Graph associated to u‘A(z)). Let u be a real-valued function
on a bounded hyperrectangle D C Z" and let D' be the smallest hyperrect-
angle containing D and subset of (%)n For any element z € D', the graph
G(u, z) = (V, E) (corresponding to u‘A(Z)) is defined such that:

V=Alpup); peAlz)},

and:

E:NgnﬂVxV.

In the sequel, we proceed in two steps: first we show that the digital
well-composedness of u is equivalent to say that for any threshold A € R,
and for any z belonging to D', the sets [u|A(z) > A, [u|A(z) < Al [u’mz) > A

and < A] are 2n-connected, and then we will prove that this property

[u‘l/\(z)
is equivalent to have for any z € D’, and for any A € R, that the valued
graph G(u, z) (see Figure 6.17) admits exactly one maxima and one minima,

which corresponds to our new characterization of DWCness.
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Figure 6.17: Some examples of graphs G(u, z).

Proposition 22. Let u : D C Z" — R be a real-valued image defined on a
bounded hyperrectangle D of Z". Then, u s digitally well-composed iff for
any value A € R and for any block S € B(D,Z"), the sets [u > N\ NS,
[u < AINS, [u>ANS, and [u < A\] NS are 2n-connected sets.

Proof: u is DWC implies that for any value A € R, [u > A], [u < )],
[u > A, [u < A\] are DWC, which implies that for any block S € B(D,Z"),
[u > ANS, [u<ANS, [u>ANSY, and [u < A\] N S are 2n-connected
sets: any two points of one of these sets are antagonists in this set and then
are connected by a 2n-path in this set. Conversely, the fact that, for any
block S € B(D,Z"), the sets [u > AJN S and S\ [u> A =[u< A NS
are 2n-connected implies that u is DWC (because no critical configuration is
possible then). O

For the second step, we need to formulate some definitions and lemmas.
Definition 43. Let G = (V| E) be a valued graph whose vertices are valued
by a real-valued function w. Now, let us define the set of regional maxima

{M?"};cx such that their respective values are in decreasing order: Viy, iy €
Z,11 > 19 = vy, < v;, where vy, is the value of M™ and v;, is the one of M".
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Then we say that My is the first regional maxima of G. Also, if Card (Z) > 2,
we say that G admits a second maximal region. Mo is then called the second
regional maxima of G. Note that the first and the second regional maxima of
a graph can have the same value.

Definition 44 (2n-adjacency). Let A C Z" be a subset of Z". We say that
x € Z" is 2n-adjacent to A iff x does not belong to A and there exists ¢ € A
such that p and q are 2n-neighbours.

Definition 45 (2n-separated). Let A, B be two finite subsets of Z"". We say
that A and B are 2n-separated iff the following relation holds:

(Non(A) N B)U (No,(BYN A) = 0.

Lemma 12. Let G = (V, E) a graph valued on its vertices V. C Z™ by a
real-valued function u : V — R, such that Card (V') < oo and G is connected
as a graph. We denote then by M* C V the first regional mazima of G, by A\
its value, and by p' any element of the regional mazima. Then, we obtain:

M* = CCy,([u > A\, p").

Furthermore, if G admits a second regional mazima, we denote respectively by
M? C V,)\? and p? this regional mazima, its value, and one of its elements,
and we define:

M} = CCou([u > N, p").

Then we obtain that there exists some p* € [u > N?| \ M3 such that:
M2 = CC2n([u > )\2],]72),
with A < A' Finally, M} and M? are 2n-separated.

Proof: Let G = (V, E) be a graph and let u be a real-valued function
defined on V. V is assumed to be 2n-connected and its cardinal is finite.
Now let us denote by (M?, \");c7 the family of regional maxima of G sorted
by decreasing order of value \'.

Let us say that p* belongs to the set {p € V' ; u(p) = max,ey{u(v)}} and
let us show that M* = CCa,([u > M|, p') is a first regional maximum of w.
Firstly, M! is connected by construction. Secundly, the value at each point
of M! is the same. Thirdly, there does not exist a greater plateau which
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contains p', and this way, any element ¢ € V which is 2n-adjacent to M*
admits a value u(q) which is strictly lower than u(p'). Then, M is a first
regional maxima of G.

Obviously, for i,j € Z such that i # j, M and M’ are 2n-separated: if
M*NNa,(M7) # 0, there exists p' € M* and p’ € M7 such that u(p') > u(p’)
(because p' belongs to the regional maxima M*) and such that u(p’) > u(p)
(because p’ belongs to the regional maxima M7). This way, u(p’) = u(p’)
and M? = M7, which is impossible.

Now let us admit that G admits at least two regional maxima, it is clear
that A2 < A!, due to the sorting of the family (M?, \);ez.

Let us now prove that the second regional maxima M? can be written
CCop([u > N?],p?) for some p® € [u > A?] \ M}. If p* belongs to M} which
is a connected component of [u > A?], then CCy,([u > N?], p?) = M}, which
means that this component contains M!, which is impossible. Also, let us
assume that p? belongs to [u < A\?], it is obvious that CCo,([u > \?], p?) = 0,
which is impossible too. Then, necessarily, p* belongs to [u > A\ M}. Let
us now show that it is a sufficient condition. Let us assume that p? belongs
to this set, then CCy,([u > A?],p?) is non-empty since u(p?) > A\?. Also, this
component is a plateau: if there exists a point in this component such that its
corresponding value is strictly greater than A%, then A\? does not correspond
to the secund regional maxima in V. Also, for any element g of V' which is
2n-adjacent to this component, u(q) < A\. Then, M? = CCo,([u > N?],p?).
Let us remark that by definition, M! and M? are 2n-separated.

Let us show now that M} and M? are effectively 2n-separated. If the
intersection of M? and N, (M7, Z") is non-empty, there exists v* € M?
and v' € M7 such that v' € Ny, (v, Z™). This way, CCoy([u > N?],p?) =
CCaon([u > N?],v?) contains v! (because u(v') > A?), and then M? contains
M1, which would imply that M? contains M, which is impossible since
they are disjoint. A same reasoning will show that N5, (M?, Z") N M} # 0 is
impossible too, and then M? and M} are 2n-separated. O

Lemma 13. Let G = (V, E) a graph valued on its vertices V. C Z™ by a
real-valued function u : V — R, such that Card (V) < oo and G is connected
as a graph. We denote then by m* C 'V the first regional minima of G, by p'
its value, and by p* any element of the regional minima. Then, we obtain:

mt = CCop([u < p'], pt).

183



Furthermore, if G admits a second regional minima, we denote respectively by
m? CV, u? and p* this regional minima, its value, and one of its elements,
and we define:

my = CCan([u < 1], p").

Then we obtain that there exists some p* € [u < p?]\ mL such that:
m2 = CCQn([U < M2]7p2)7
with pi* > p* Finally, mY and m* are 2n-separated.

Proof: We can prove this lemma by a reasoning dual to the proof of
Lemma 12. [

Notations 2 (Graph associated to u‘S) Let u be a real-valued function on
a bounded hyperrectangle D C Z". For any block S € B(D,Z"), the graph
G = (V,E) (corresponding to u|S) is defined such that:

V ={(p,u(p)) ; p € S},

and:

E:NganXV

Lemma 14. Let uw : D C Z" — R be a real-valued image defined on a
bounded hyperrectangle D, and let be a block S € B(D,Z"). If there exists a
value A € R such that [u > A\ NS is not 2n-connected, then u admits strictly
more than one maxima on the graph corresponding to u} 5

Proof: Let us assume that there exists some A such that [u > A\| NS
is not 2n-connected. It is sufficient to show that each 2n-component of
[u > A] NS contains at least one regional maximum of u| g Let {M}}icr =
CCon([u > A] N'S) be the family of connected components of [u > AN S,
Obviously, Card (Z) > 2. Let ¢ be an index in Z, and let A\ be the value
max,esi{u(p)}, we can then choose any point p’ in {p € M} ; u(p) = \'}
and M = CCap([u > N']NS, p’). Let us show that M" is a regional maxima of
win S. Firstly, M? is 2n-connected by definition. Secundly, M? is a plateau
(since A’ is the maximal value of  in this component), and is maximal for
the inclusion by construction. Thirdly, any point ¢ of S which is 2n-adjacent
to M* satisfies u(q) < A\". Each component M* is then a regional maximum
of w into S.
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To prove that there exist more than two regional maxima, let us prove
for each i € Z, the component M* is contained into M}. Effectively, \* is
greater than or equal to A by construction, and then [u > X C [u > )],
which implies that [u > \] NS C [u > AN S. Since u(p’) = X' > X\ and
p' € S, p' belongs to [u > A] NS and then:

CCon([u> NN S, p") C CCo([u>ANNS,pH),

which means that M* is included into M}. Based on this observation, we
obtain that M*' and M? are two separated regional maxima since:

Non (M) N M? C No, (M) N M3 =1,
Non(M?) N MY C Ny (M3) N My = 0.
]

Lemma 15. Let u : D C Z" — R be a real-valued image defined on a
bounded hyperrectangle D, and let be a block S € B(D,Z"™). If there exists a
value X € R such that [u < A\]|NS is not 2n-connected, then u admits strictly
more than one minima on the graph corresponding to u|S.

Proof: the proof is dual to the one of Lemma 14.

Proposition 23. Let u : D C Z™ — R be a real-valued image defined on
a bounded hyperrectangle D of Z"". Then, for any z € D', the graph G(u, 2)
admits exactly one regional maxima and one regional minima iff for any value
A € R and for any block S € B(D,Z"), the sets [u > A\ NS, [u < ANS,
[u>ANS and [u> N NS are 2n-connected sets.

Proof: Let us assume that for any value A € R and for any block S &€
B(D,Z"™), the sets [u > AJN S, [u < A|NS, [u>ANSand [u>ANS are
2n-connected sets, and let us show that for any z € D’, the graph G(u, 2)
corresponding to u| AG) admits exactly one regional maxima and one regional
minima. For that, let us assume that G(u, z) admits two regional maxima
on the block S = A(z) of Z™. Since S is 2n-connected and finite (because n
is finite), and since u| AG) is a real-valued function, we can apply Lemma 12.
This way, we obtain that (M, \!) is the first regional maxima of G(u, 2)
such that M = CCy,([u > M| N S,p') with p' an element of V such that
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u(p') = AN = max,es{u(v)}, and (M?,)\?) is the second regional maxima
of G(u,z) such that M? = CCy,([u > N?] N S,p?) with p* an element of
[u > N\ M}, where M} = CCay([u > NN S,p'). Furthermore, M} and
M? are separated. This means that M} and M? are two disjoint connected
components of [u > A\?] N S, which is connected by hypothesis. We obtain
a contradiction, and then u‘ A) admits one unique maximum. The same

reasoning applies for the minima of u‘ AG) by Lemma 13.

Conversely, we assume that for any z € D’ with D’ the smallest hyperrect-
angle containing D in (Z/2)", we have that the graph G(u, z) corresponding
to u| AG) admits one maximum and one minimum. Let us now assume that
there exists some A € R such that [u > A] N A(z) is not 2n-connected (or
equivalently such that [u > A\]NA(z) is not 2n-connected since we work with
a finite number of values). Then, by Lemma 14, the restriction of u to A(z)
contains at least two maxima, and then G(u, z) has at least two maxima too.
A dual reasoning using Lemma 15 will show that if [u < A\ N A(z) is not
2n-connected (or equivalently if [u < A] N A(z) is not 2n-connected), the
restriction of u to S contains at least two minima, and then G(u, z) has at
least two minima. This proves that for any A € R, the sets [u > A\| N A(z),
[u < AN A(2), [u> A NA(2) and [u < A]NV are 2n-connected. O

Theorem 9 (Graph-based characterization of DWCness). Letu: D C Z™ —
R be a real-valued image defined on a bounded hyperrectangle D of Z". Now,
let D' be the smallest hyperrectangle in (Z/2)" such that it contains D. Then,
u is DWC on D iff for any element z € D', the graph G(u, z) = (V, E) admits
only one regional maxima and only one regional minima.

Proof: This is the result of Propositions 22 and 23. ]

6.4 n-D Segmentation and Parameterization

Combining the conjecture that DWCness and CWCness are equivalent on
cubical grids in n-D, and the conjecture that geodesic dilation preserves
DWCness in n-D, we can segment gray-level images such that the final seg-
mentation result is CWC. This result permits then to (locally) parameterize
the topological boundary of the object (thanks to coordinate charts [104]),
this one being a topological (n — 1)-manifold.
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Figure 6.18: Boundary of the well-composed object is a manifold.

On Figure 6.18, we propose to segment the ventricles of the C.S.F. (Cerebro-
Spinal Fluid) in a partial M.R.I. (Magnetic Resonance Imaging) of an human
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brain (see [61, 112, 37] for more details on brain segmentation using mathe-
matical morphology and digital topology).

Firstly, we binarize the original image u with a threshold A = 0.2 (where
0 and 1 are the minimal and maximal luminances of the brain image re-
spectively) and we obtain the set [u > A]. Then, we proceed to a geodesic
dilation of this set using a marker made of a full ellipse of radius (10, 10, 5) at
the center of the image (where the C.S.F. is located). We compute then the
boundaries of the continuous analog of the geodesic dilation of this marker
into [u > A]. Since this image is not digitally well-composed, we obtain a
boundary with a lot of “pinches” which can cause topological issues.

Secundly, we repeat the same process but with the self-dual well-composed
interpolation upwc (proposed in this thesis) instead of u: starting from upwc,
we compute [upwc > A] which is digitally well-composed since the thresh-
old sets of a well-composed image are well-composed. Then we proceed to
a geodesic dilation of the (rescaled) marker into [upwe > A], resulting then
into a digitally well-composed image since geodesic dilations in a digitally
well-composed mask results in a digitally well-composed image. Since DWC-
ness and CWChness are equivalent on cubical grids in 3D, the boundary of
the resulting segmentation is a 2-manifold.
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Chapter 7

Conclusion

Our main contributions are the following: after a differentiation of the various
kinds of well-composednesses and their extension to n-D gray-level images,
we proved that DWCness implies EWCness in n-D, and we conjectured that
DWChness is equivalent to AWCness and to CWCness in n-D on cubical grids.
Since we are interested about how to make images DWC, we proved that no
self-dual local method making images DWC exists in n-D n > 3, and then we
proposed a non-local self-dual methods (based on front-propagation) which
makes images DWC in n-D. We also proposed a way to make images defined
on a polyhedral complex AWC. Because it is of much interest to be able
to test if an image is well-composed or not, we proposed a characterization
of n-D DWC images (on cubical grids) based on interval values and spans,
and a characterization of AWC images defined on the n-faces of polyhedral
complexes based on graphs.

To conclude this thesis, we will end with an open question: we have seen
that DWCness, AWCness, and CWCness seem to be equivalent on cubical
grids, but how CWCness and AWCness are related in polyhedral complexes?
The counter-example of Daragon [41], stated that the chain complex of the
order join of a 0-surface and a torus (see Figure 7.2) is a 3-surface, but not a
combinatorial manifold*. It proves effectively that discrete surfaces are not
always (combinatorial) manifolds, but is it enough to ensure that CWCness
is stronger than AWCness 7

"'We recall that a combinatorial n-manifold is a (geometric) simplicial complex C' of
dimension n and such that for each vertex {z} € C, the link of {z} in C is a combinatorial
(n — 1)-sphere(see p.67 of [41] for more details)
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DWC
Conjecture
AWC

Conjecture

CWC
Figure 7.1: Links betweens the different flavors of well-composedness on

cubical grids.

Figure 7.2: A (subdivided) torus and its incidence graph [41] (p.50).
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Appendix A

Proof that Z,,;,(u) and Zyax(u)
are digitally well-composed

We prove here that Proposition 16 is true, that is, for any real-valued image
u:D CZ" — R defined on a bounded hyperrectangle D, the nD real-valued
images Zmin(u) and Zy.x(u) are digitally well-composed (their respective
duality is obvious).

But before let us present a simple lemma relative to hierarchical subdivi-
sions:

Lemma 16. Let z € (£)" \ Z" be a point. Then A(P(z)) = A(z).

Proof: Let 2 be a point in (%)n \ Z", then:
AP(z) = | Aw),
= U PP,

peEP(2)
= | P,
pEP(2)
= PO7Y(P(2)),
= A(z2).
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Then, the interpolation Z,,(u) of Definition 37 can be reformulated as
well:

Proposition 24. Let u : D — R be an image defined on a bounded hyper-
rectangle D C Z™. Then the interpolation Z,,(u) : D' = Subd(D) — R can
be reformulated such that:

/ u(z) if z € D,
Vz €D, (Zop(u)) (2) = { op{u(p) ; p € A(2)} otherwise.

Proof: Let us remark that Uke[[om]] ErND" =D’ and then we can verify
the property for each z € E, N D" with k € [0,n].

The case z € [Eg D’ = D is obvious. For the other points of D', let us
proceed by induction.

Initialization (k = 1): Let z be a point in E; N D’. Then,

op{u'(p) : p € P(2)} = op{u(p) ; p € P(2)} = op{u(p) ; p € A(2)}

Induction (k € [2,n]): we assume that for any p € EpyND', k' € [1,k—1],
we have the relation op{u/(q) ; ¢ € P(p)} = op{u(a) ; a € A(p)}. Let us
prove that this relation is still true for z € E, N D"

op{u'(p) ; p € P(2)} = op{op{v'(q); g€ P(p)}; peP(z)},
= op{op{u(a) ; a € A(p)}; p€ P(2)},
= oplu(a); a€ A(p), p € P(z)},
= oplu(a) ; a € A(P(2))}, ’

= op{u(a) ; a € A(2)},

= op{u(a) ; a € B, ND}.

thanks to Lemma 16. O
This leads to the following proposition:

Proposition 25. Let u : D — R be an image defined on a bounded hyper-
rectangle D C Z". Then the interpolation Zy,(u) : D' = Subd(D) — R
(respectively Lyax(u) : D' = Subd(D) — R) are digitally well-composed.

Proof: We will treat only the case of Z ., since Z,i, and Z,,., are dual.
Let S € B(D, (%)n) be a block in the domain of the interpolation 7.
Then there exists a point z € D’ and a family of vectors F = {f!,..., f*} =
{ei, ... 7"} such that S = Sy(z, F).
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Let group together the indices of the vectors of B that are in F by denoting
J ={j1,---,jx}. Let be then m = (¢°, ..., ") defined such that:

and:

Ji+1 .
q + = otherwise .

l_ejl+1 - 1
Ve [0,k — 1], ¢ = { ¢ — i e3(2),

Obivously, ¢° is by definition the point of minimal order into S. Also we
can compute that:

P_ o ¢ e _ ¢
49 =4q Z 9 + 2 Z+ Z 2’
jegni(z) JET\L(2) J€T\5(2)

which shows that ¢* is the point of maximal order in S. We can then observe
that ¢° and ¢* are antagonist in S.

Also, we can remark that Vr € S, ¢° € P%(r) and r € P°(¢") for some
61,02 € [0,k], v'(¢°) < u'(r) < /(¢*), which means that u'(¢°) and u'(¢")
are respectively the minimal and maximal values of o/ ‘ 5

Hence, for any p,p’ € S such that they are antagonist in S, we need to
prove:

intvl(u/'(p), «'(p")) N Span{«/'(p") | p" € S\ {p, P} } # 0.

Two cases are possible: either p € {¢°, ¢*}, in this case {p,p'} = {¢°, ¢*}
and then intvl(v/(p), w/'(p')) = [/'(¢°),«/(¢")] 2 Span{w/(p") | p" € S\
{p, '} } and the intersection equals Span{«/(p”) | p” € S\ {p, p'} } which
is non empty. Or p € {¢°,¢*}, and then ¢° and ¢* belong to S\ {p, '},
which means that we have the converse case: Span{u'(p”) ! p’ e S\
{p,'}} = [W(q°), v (¢")] D intvl(v'(p), v/(p)) and then the intersection
equals intvl(/(p), «/(p")) which is non empty. O
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Appendix B

Topological Reparation in n-D

Two approaches exist to make binary images well-composed. The first one
is to keep the original space of the image and to change some of the values
of the initial image in such a way that the modified image becomes well-
composed [154]. The second is to make an interpolation to preserve the
topology of the original image [95, 162, 59]. However this second approach
needs a subdivision of the original space and measurably increases the com-
putational costs of the algorithms.

In this section, we propose a fast method that we published in [28] and
that produces a digitally well-composed image in n-D, n > 2, by modifying
the original values (see an application in Figure B.1). We will also illustrate
this algorithm with a 2D application to text detection.

B.1 An Increasing Process Producing Well-
Composed Images

B.1.1 Principle

Let uw : D C Z" — Z be a given image. We want to find a digitally well-
composed image u* : D C Z"™ — 7 which minimizes the deformation of u,

w* = arg min{ |[v — ul|; | vis DWC} (B.1)

However, to the best of our knowledge, such a combinatorial problem does
not have a solution reachable in a reasonable time. To find an approximate
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Figure B.1: Hierarchical representation of an image: since component bound-
aries are simple closed curves on well-composed images, two boundaries are
either disjoint or in an inclusion relationship; thus, the delimited regions
naturally form a tree. Actually it is a sub-part of the tree of shapes [60].
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solution to this problem, we propose to iteratively select critical configura-
tions and correct them, one by one. To prevent oscillation, we impose that, at
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each step of the algorithm, the current solution is greater than the previous
one. Our process is thus increasing.

As we modify a critical configuration, our algorithm is local, in the sense
that we only need to look at a block and modify the pixel in the block. How-
ever, the modification of the value of a given pixel can create a novel critical
configuration in its neighborhood. Hence, there is potentialy a propagation
effect, and thus several passes on the image are in principle necessary to
achieve convergence.

Due to this propagation effect, the convergence of the algorithm is only
ensured if the process is monotone. Indeed, if we allow the modifications to
either decrease or increase the image, then oscillation effects could appear.

B.1.2 Correction Step

Algorithm 4: The correction process.

SOLVECC (u,S) : p

begin

p' + antagg(p)

my <= min(u(p), u(p’))

My = max(u(p), u(p'))

my  min{u(p”) | p" € S\ {p,p'}}

My < max{u(p”) | p" € S\ {p,p'}}
/* Primary case: */

if M7 < my then

p* « argmax{u(q) | ¢ € {p,p'} }

u(p*) < mo

/* Secondary case: */

if Ms < m; then

p* « argmax{u(p") | p” € S\ {p,p'} }
| u(p®) < m

return p*

We want to correct a given critical configuration in the block S € B(D, (Z/s)™).
By definition of a critical configuration, there exists two points p € S,p’ € S

197



with p’ = antagg(p), verifying:

intvl(u(p), u(p')) N Span{u(q) | ¢ € S\ {p,p'}} = 0.

Then two cases are possible. Either we have:

max(u(p), u(p')) < min{u(q) | ¢ € S\ {p.p'} },

and we set:
{ p* + argmax,{ u(q) ‘ qge{p,p}},
u(p*) < min{u(q) | ¢ € S\ {p,p'} },
or we have:
max{u(q) | ¢ € S\ {p,p'}} < min(u(p), u(p)),
then we set:

{ p*  argmax,{u(q) | ¢ € S\ {p.p'}}
u(p*) < min(u(p), u(p')).

In both cases, u has been made digitally well-composed on S.

B.1.3 Convergence

The convergence of the method is easy to prove. Indeed, let us define u,,;, =
min{ u(p) |u(p) € D} and Ume, = max{u(p)|p € D}. As the algorithm
increases the function u by at least one (since we work in Z), we have a
maximum of (Upq, — u(p)) corrections for each p € D. The total number of
corrections is then inferior or equal to Zpep(umw —u(p)) < (Umaz — Umin) X
Card(D). This ensures the convergence of the algorithm, since Card(D) is
finite.

B.1.4 Proposed Algorithm

Given the correction step, the algorithm is straightforward, it is detailed in
Algorithm 5. It proceeds in two steps. First, the initialization step detects all
the critical configurations of the threshold sets {[u > A]}, on D and enqueue
them into (). Second, the correction step solves one by one the critical
configurations listed into () using Algorithm 4 and enqueue the new critical
configurations which appeared in the neighborhood of the modified value.
This algorithm iterates until there is no longer any critical configurations in
D; the resulting image u is then digitally well-composed.
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Algorithm 5: The increasing nD algorithm.

INCREASING (u) : Image

/* Makes the image DWC */

begin

/* Initialization of the queue: */

for all S € B(D) do

if CRITICALCONFIGURATION(S, u) then

| PUsH(Q, S)

while Q # () do
S < pPopP(Q)

/* Correction process: */
p + SOLVECC(u, S)

/* Detection of the direction of the propagation: */
for all S’ € B(D) s.t. pe S’ do

L if CRITICALCONFIGURATION(S’, u) then

| PusH(Q,S)

B.1.5 Experimental Results and Complexity of the 2D
Case

We used the test set of 100 natural images of the Berkeley image database [114].
Their sizes are (sx,sy) with sx = 481 and sy = 321 pixels or the converse.
We cropped each image with ten different windows (for each image) to ob-
tain images of various sizes. The size (newsx, newsy) of the crop window is
randomly chosen into [2,sx] x [2,sy] and its position is randomly chosen
into [1,sx —newsx + 1] x [1,sy — newsy + 1].

We experimentally assessed the percentage of critical configurations con-
tained in a given image. Figure B.2 shows that until 24.77% of the domain
of the original images is covered by critical configurations. From a statis-
tical point of view, an image contains on average 0.1237(%0.0361) critical
configuration by pixel. It is rare to have a digitally well-composed image.

Queue initialization. To initialize the queue of critical configurations, we
simply have to detect among the (newsx — 1) x (newsy — 1) blocks which one
contains a critical configuration, and in this case we insert it in the queue
(). Each detection and each insertion in the queue is in constant time. This
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Figure B.2: Number of critical configurations as a function of the size of the
image given in number of pixels.

implies that the initialization step is in linear time relatively to the size of
the image.

Correction process. Concerning the correction step, we had to proceed to
¢ corrections by pixel, with ¢ < 0.2376. From a statistical point of view, an
average number of 0.1195(40.0346) corrections by pixel has been observed.
Numerical experiments show that the correction step is linear on average
with respect to the image size.

The number of corrections by initial critical configuration is not a con-
stant: it can be seen on Figure B.3 that the number of corrections is between
m = 86.93% and M = 108.33% of the number of initial critical configura-
tions. Indeed, a given correction can repair several critical configurations at
the same time, which explains that m is less than 100%. Conversely, the
propagation effect is responsible for M being greater than 100%. Statisti-
cally, we obtain a mean ratio of 0.9659(+0.0338) corrections by initial critical
configuration.

Detection of the direction of the propagation. For each processed
correction, there exists only one position p € D such as u(p) is modified
in the image, and then the propagation is possible in a bounded number
of blocks, i.e., in the blocks containing p. This means that the number of
blocks processed in the detection step is proportional to the total number of
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Figure B.3: Number of corrections as a function of the number of initial
critical configurations.

the cost because, once
sual measures. Those

Figure B.4: Original image u.

corrections. Since the correction step is in linear time, so is the detection
step.

Complexity. Since the 3 steps of the algorithm are in linear time, the
complete algorithm is in linear time with respect to the size of the image (in
number of pixels).

B.2 Illustration and Conclusion

We illustrate the interest of well-composedness to text detection with the
morphological Laplacian in 2D. Let us recall that the morphological Laplacian
L of a given image u is defined as Lgo(u) = dso(u) + £se(u) — 2u where se is
a given structuring element. The contours of u are the zero-crossing of the
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Figure B.5: Zero-crossings of the original Laplacian.
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Figure B.6: Zero-crossings of the Laplacian modified by the increasing pro-

asas

(a) Using the original (b) Using the DWC
Laplacian. Laplacian.

Figure B.7: Text segmentation results.

Laplacian. As they are boundaries of level-sets of the grayscale image, the
zero-crossing are closed curves. We can set the gray-level of a given contour
to the mean of the gradient of the original image along the contour.

We start from Figure B.4. Without correction, it can be seen on Fig-
ure B.5 and Figure B.7a that some characters are broken into several con-
nected components. If we apply the proposed process on the Laplacian im-
age, we observe that the contours are simple. In practice, it can be seen on
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Figure B.6 and Figure B.7b that the correction repairs many contours.

B.3 Conclusion

In conclusion, we have presented a new algorithm that produces digitally
well-composed images without interpolation. Compare to the interpolation
methods, the proposed algorithm is faster and less memory consuming. It
can be seen as a natural extension of the algorithm of topological repair of
Siqueira et al. [154] to gray-valued images.

The source code of the proposed algorithm has been implemented using
our image processing C++ library “Milena” [106, 107], which is free software
under the GNU Public Licence v2. Since we advocate reproducible research,
this source code is released on our web site at:
http://publications.lrde.epita.fr/boutry.15.icip.
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Appendix C

Axiomatic Digital Topology

Our sources in matter of Combinatorial Topology and of Piecewise Linear
Topology in this chapter are mainly: [48, 16, 2, 41, 79, 2, 7, 4, 108, 41].

C.1 Topology

Definition 46 (Topological spaces [84, 2|). Let X be a set of points, and let
U be a set of subsets of X such that:

e X, Del, (TO1)
e any union of any family of elements in U belongs to U, (TO2)
e any finite intersection of any family of elements in U belongs to U. (TO3)

Then U is said to be a topology, and the couple (X,U) is called a topological
space. The elements of X are called the points of (X,U), and the elements
of U are called the open sets of (X,U). We will abusively say that X is a
topological space, assuming it is supplied with its topology U.

An open set which contains a point of X is said to be a neighborhood of
this point.

Definition 47 (Closed sets and Closure [2]). Let (X,U) be a topological
space, and let S be a subset of X. A set S C X s said closed iff it is the
complement of an open set in X. The intersection of all the closed sets in X
containing M is denoted by Clo(x)(S) and is called the closure of S. When
no ambiguity is possible, we will abusively denote it Clo(S).
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Proposition 26 (Properties of the closure [2]). Let (X,U) be a topological
space, and let S, T be subsets of X, then:

e Clo(SUT) = Clo(S)UClo(T),
e 5C Clo(S),

e Clo(0) =0.

Definition 48 (Interior [2]). Let (X,U) be a topological space. A point p in
X s said to be an interior point of S relatively to the topology U iff there
exists U € U such that p € U C S. The set of all the interior points of a set
S C X is denoted by Int x4 (S).

Note that the interior of a set S C X is an open set in X.

Definition 49 (Topological boundary [2]). Let (X,U) be a topological space.
The boundary of a set S C X is Clo(S) \ Int(x ) (5).

Definition 50 (Relative topology [48]). Let (X,U) be a topological space and
let S be a subset of X. We call relative topology induced in S by U the set
of all the sets which can be written U NS where U € U. A set which is open
in the relative topology of S is said to be a relatively open set.

Definition 51 (Connectedness [48]). Let (X,U) be a topological space. A
set S C X 1s said to be connected iff there is no decomposition S =Ty U T
such that Ty N Ty = (), both Ty, Ty # 0, and relatively open sets with respect
to S.

Proposition 27 (Union of non disjoint connected sets [2] (p.14, Prop. 3.13)).
Let (X,U) be a topological space. Let A, B be two connected subsets of X . If
ANB#0, then AU B is connected.

Definition 52 (Components [2]). Let p a point of a topological space (X,U).
The union of all connected sets containing p is connected, is the largest con-
nected set in (X,U) containing p, and is called the component of the point
p in (X,U). We denote it CC(X,p) where X represents abusively (X,U).

Proposition 28 (Continuous functions). A function f mapping a topological
space (X,U) to (Y, V) is said to be continuous iff for any set U C'Y which
15 open in Y, its inverse image:

) ={reX; f(z) €U}

15 open in X.
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Proposition 29 (Image of a connected set). The image by a continuous
mapping of a connected topological space is a connected topological space.

C.2 Regular open/closed sets

Let 7 be a topological space. Then, Int+ denotes the interior operator and
Clor the closure operator in this topological space.

Definition 53. A set X subset of a topological space T is said to be a regular
open set iff X = Int7(Clor(X)).

Definition 54. A set X subset of a topological space T is said to be a regular
closed set iff X = Cloy(Int7(X)).

C.3 TO0-spaces and Alexandrov Spaces

Definition 55 (Degenerate sets [2]). Let (X,U) be a topological space. A set
M C (X,U) is said to be degenerate if it consists of only one point.

Definition 56 (70 Axiom and T0-spaces [5, 84, 2].). We say that a topolog-
ical space (X,U) verifies the T0O axiom of separation iff it for any two dif-
ferent points in X, at least one has a neighborhood not containing the other,
or equivalently iff two distinct degenerate subsets of X have distinct closures
in (X,U) . A topological space which verifies the TO aziom of separation is
said to be a TO-space.

Definition 57 (Discrete Spaces [7]). A topological space (X,U) is said dis-
crete iff the intersection of any family of open sets of X is open in X, or
equivalently iff the union of any family of closed sets of X 1is closed in X.

Definition 58 (Alexandrov Spaces [48]). A discrete TO-space is said to be
an Alexandrov space.

Proposition 30 (Smallest open/closed sets [48]). Let (X,U) be an Alexan-
drov space. For any point P € X, there exists a smallest neighborhood of P
15 X:

or= () U

Uel s.t. PeU
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Due to the symmetry of Alexandrov spaces, there exists also a smallest closed
set containing P:

CP = N U.
U closed in X s.t. PeU

Alexandrov spaces get some interesting properties [48]:

Theorem 10. Let (X,U) be an Alezandrov space, and P, Q) be two points of
X.

1. if P # Q, then:

e PcOQ=Q¢O0P,
e Pc(CQ=Q¢&CP,

2. PeCQ & Q€ OP,
3. CPCCQ < 0Q COP.
Definition 59 (Locally finite). A topological space (X,U) is said to be locally

finite if each point P € X has as finite neighborhood and a finite closed set
containing P.

Theorem 11 (Path-connectivity and Connectivity in Alexandrov spaces [48].).
Let (X,U) be an Alexandrov space. Then S C X is connected iff it is path-
connected.

C.4 Partially ordered sets

Definition 60 (Binary relation [16]). Let X be an arbitrary set. A binary
relation R on X is as subset of the cartesian product X x X:

RC X x X.

Equivalently, a binary relation R on X is a mapping from X x X to {0,1}
such that Vr,y € X:

{(z,y) € R} = {R(z,y) = 1}, and {(z,y) & R} = {R(z,y) = 0} .

Sometimes will denote by xRy or by y € R(x) the fact that (x,y) € R.
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Definition 61 (Properties of binary relations [16]). A binary relation is said:

o reflexive iff, Vo € X, (z,x) € R,

e irreflexive iff, Vo € X, (z,2) &€ R,

e symmetrical iff, Vz,y € X, (z,y) € R< (y,z) € R,

e asymmetrical iff, Vz,y € X, (z,y) € R and (y,z) € R=x =1y,

e transitive iff, Vx,y,2z € X, (z,y) € R and (y,2) € R= (x,2) € R,

Definition 62 (Inverse of a binary relation [16]). Let X be a set, and R
a relation order on X. We say that the binary relation R' on X such that
Ve,y € X, (z,y) € R< (y,x) € R, is the inverse of R.

Notations 3 (R" [16]). Let X be a set, and R a relation order on X. We
will note RE the relation order defined such that, Vx,y € X :

{(z,y) € R7} & {(z,y) € R and x # y} .

Definition 63 (Order relation [16]). Let O be a set of arbitrary elements.
An order relation on O is a binary relation on X such that R is reflexive,
antisymmetric, and transitive.

Definition 64 (Posets/Orders [16]). A set X of arbitrary elements supplied
with an order relation R on X is denoted (X, R) or |X| and is said to be a
partially ordered set (poset) or simply an order. We will also say that the

order relation R is associated to X, and that X s the domain of the poset
(X, R).

Notations 4 («, 5 and 0 [16]). Let | X| be a partially ordered set. We will
usually denote by ax the order relation associated to its domain X, in such
a way that O = (X,ax). Also, we will write Bx the inverse of ax, and
QX = x U Bx.

Notations 5 («, # and 0 applied to sets). By extension, we will define for
any X subset of a partially ordered set:

Oé(X) = UJ;EX Oé(flf),
AX) = Usex B(),
0(X) = Usex 0(2).
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Notations 6 (ax(z), Bx(x), Ox(z) [16]). Let | X| be a partially ordered set,
and let x be a point in its domain X. Then we denote:

e ax(z)={peX;p<a},
o Ox(x) ={pe X; z<p},
o Ox(x) =ax(x)UpBx(z).

ax(p) is called the closure of p in | X| and is the minimal closed set in X
containing x, Bx(p) is called the star of p in |X|, and is the minimal open
set in X containing X, and Ox(x) is called the neighborhood of p in | X|.

To forge the intuition let us cite an example [2] of partially ordered sets:
the set consisting of the points, staightlines, and planes of an Euclidian space
is partially ordered by letting a point (respectively a straight line) precedes
any straight line (respectively plane) containing it. In this case, if p € O is
a point, a(p) is simply the set made of this point {p}. If p is a straight line,
a(p) is this straight line plus all the points lying on this line. If p is a plane,
a(p) is this plane, plus all the straightlines lying in this plane, plus all the
points lying in this plane. Also, if p is a point, 5(p) is this point, plus all the
straight lines containing this point, plus all the planes containing this point.
If p is a straight line, B(p) is this straight line, plus all the planes containing
this straightline. Finally, if p is a plane, 8(p) is the set made of this plane.

Note that the set O of all the subsets of an arbitrary set M:
O={A; AC M},

is also a partially ordered set. Futhermore, if Ay, Ay € O, A; > A, means
that A, is a proper subset of A, which can be written Ay C A;. The resulting
order is called the natural order in the collection of set O. It is also called
the order based on the inclusion. We will see the importance of this order
using Khalimsky grids in a further subsection.

Definition 65 (Isomorphic orders [16]). Let |X| = (X,ax) and (|Y| =
(Y, ay) be two orders. Then, these two orders are said isomorphic (in the
order sense) iff there exists an isomorphism in the order sense between | X|
and |Y|, that is, a bijection f : X — Y such that for any couple (xq1,x2) of
elements of X :

{1 € ax(@2)} & {f(21) € ay(f(x2))}-
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Notations 7 (Empty order [41]). Note that all the orders whose domain is
empy are isomorph, and we denote them by |()].

Definition 66 (Suborders [16]). Let | X| = (X, ax) be an order, and let S
be a subset of X. The suborder of | X| relative to S is the order (S, ag) with
ag =ax N (S x9). If no ambiguity is possible, we will write (S, ag) = |S]|.

Proposition 31 (ag(z), Bs(x), Os(x) [16]). Let (X, ax) = |X]| be an order,
and S be a subset of X inducing a suborder (S,as) = |S|. Then for any
€S, as(x) =ax(x)NS, Bs(x) =PBx(x) NS, and Os(x) = O0x(z) N S.

Definition 67 (Rank [16]). Let (X, ax) = |X| be an order. The rank px(x)
of an element x in | X| is 0 if 3 (x) = 0 and is equal to:

max (px(y)) +1

yeaF (x)

either. The rank of an order |X| is denoted by p(|X|) and is equal to the
maximal rank of its elements:

p(IX]) = max(px (z)).

As underlined by Daragon [41], the notion of dimensions and of ranks are
different, even if they often match: the dimension of an object is inherent to
an object, when the notion of rank depends of the elements that lie into the
neighborhood.

Definition 68 (Point/k-element [16]). Let (X, ax) = |X| be an order. An
element of X such that px(x) = k is called point or k-element of X.
C.5 From posets to T0-spaces

There comes a much important theorem of Alexandrov [2] relating orders
and Alexandrov spaces.

Theorem 12 (Theorem 6.52 [2] (p.28)). Let O be a partially ordered set, and
let A be a subset of O. We shall say that A is closed iff for any p,p’ € O:

{peAandp <p}={p € A}.
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This topology (based on the closed sets) converts O into an Alexandrov space
(X,U) = f(O). Conversely, every Alexandrov space (X,U) can be turned
into a partially ordered set O = ¢((X,U)) if, for any two distinct elements
p,p € (X,U), p < p is taken to mean that p' € «a(p). It follows that

fle((X,U))) = (X,U) and $(f(0)) = O.

As explained by this theorem [2], partially ordered sets can be identified
with Alexandrov spaces in such a way that ap(p) is synonymous with the
(topological) closure in the equivalent Alexandrov space f(O), and fo(p) is
equal to the minimal (open) neighborhood of the point p in f(O) (where

B=al).

C.6 Khalimsky Grids

Definition 69 (Khalimsky Grids [85]). The Khalimsky grid of dimension n
is denoted |H"| = (H", D) and is defined as the order such that:

Ho = {{a};aeZ},
Hi = {{a,a+1}; a€Z},
H' = H)UH,

H* = {hy X+ xh,; Vie[l,n],h; € H}.

Definition 70 (Cubical complexes). Let X' be a subset of (H", agr). We say
that X s a cubical complex iff its is closed under inclusion, that is, for any
element h of X, all the elements h' of H™ such that h' C h are elements of
X. In other words, X = agn(X).

Figure C.1 shows two usual representations depicting a same cubical com-
plex. On the left, we percieve the elements of H" as sets of points of Z", and
we clearly see when their interection is empty or not. On the right, we per-
cieve elements of H" as geometric objects (vertices, edges, squares, cubes,
and so on), this is the splitted representation, whose name is justified by the
fact that even elements whose intersection is non empty are separated on the
representation.
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Figure C.1: Different representations of the same cubical complex.

A consequence of Definition 69, showing that o =D, is that for any h €
H", we have the following equalities for the closure, the opening, and the
neighborhood:

a(h) = {W €H" ; b C h},
B(h) ={W €H"; h C W},
O(h) = {W € H": I’ ChorhCH}.

Obviously, any suborder | X| of |H"| verifies that its associated order relation
ax equals O MNX x X which corresponds to the inclusion order restricted to
X, and then for any h € X:

ax(h) ={h" € X ; I’ Ch},
Bx(h) ={W € X ; hC I},
Ox(h)={h € X ; ¥ Chor hCH}.

Definition 71 (Dimension and H}). Any element h of H" which is the
cartesian product of k elements, with k € [0,n], of H} and of (n—k) elements
of H} is said to be of dimension k, which is denoted by dim(h) = k, and the
set of all the elements of H" which are of dimension k is denoted by HJ.

Property 1. For any k € [0,n], any element h in H} is of rank p(h, |H"|) =
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k. In other words, in the Khalimsky grids, the dimension is equal to the rank
in |H™.

Proof: Let us proceed by induction on the dimension of h € H".

Initialisation (dim(h) = 0): When dim(h) = 0, there exists a € Z" such
that h = Qieqinp{ai}, and then a(h) = Qe np{{a:}} = {h}, then a"(h) = 0,
and then the rank of A in |H"| is equal to 0.

Induction (dim(h) € [1,n]): We assume that for any i € [0, k — 1], when
the dimension of h is lower than or equal to (k — 1), the dimension is equal
to the rank in |H"|. Let us now assume that dim(h) = k, we can rearrange
the space coordinates such that A can be written:

h = ®ie[[1,k]]{ai, a; + 1} ® ®i€[[k+1,n}]{ai}a

and then by the closure operator we obtain that:

a(h) = @ieppilai}, {ai; ai + 1}, {ai + 1} } @ Qicprr1np{{ai}}-

In other words, the only element of «(h) of dimension k is h itself, all the
other elements being of dimension in [0,k — 1], and then:

max {dim(h) ; K’ € a”(h)} =k — 1.

When the dimension il lower than or equal to (k — 1), the dimension
equals the rank in |H"|, and then we obtain:

max {p(K, [H"|) ; I € a7(h)} =k — 1,

and then the rank of A is k.

Finally, we obtained that for any value of k, and then for any element of
H", the dimension equals the rank in |H"|. O

Proposition 32 (Khalimsky grids are Alexandrov spaces [16]). For any
n > 1, the Khalimsky grids |[H" = (H", )| supplied with the order relation
a =2, as defined in Theorem 12, is an Alexandrov space.

Figure C.2, Figure C.3, and Figure C.4 show the different possibles clo-
sures/openings/neighborhoods in the case of a “point”, an “edge”, and a
“square” in H2. We will see next that these Kovalevsky cells will be called
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Figure C.2: The closures a(z), a(y), a(z) in H? [41] (p. 34)
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Figure C.4: The neighborhoods 6(z), 0(y), 0(z) in H? [41] (p. 34)

214



B

Figure C.5: A binary image up;, in Z? [41] (p. 31)

Figure C.6: wupiy [41] (p. 31) supplied with the (4, 8)-topology on the left
and with the (8, 4)-topology on the right (the foreground is in black and the
background in white).

respectively 0-faces, 1-faces, and 2-faces and that this notion exists in any
finite dimension.

Starting from a binary image uy;, or equivalently from a set whose up;, is
the characteristical image depicted on Figure C.5, we can supply this image
with the (4, 8)-topology, or the (8,4)-topology very usual in digital topology
(see Figure C.6). Just observe then the different connected components of
the foreground that result from this choice: 3 components in the first choice,
and 2 in the second choice.

No, let us immerse the image in H? in different manners. In the raster scan
order, the first is the most simple, we do a (1 —1)- mapping between the two
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Figure C.7: Different immersions of uy;, into H? [41] (p. 31).

spaces, but this space is not invariant by translation. The second approach
uses the miss strategy (which reflects the (4, 8)-topology, and that we will use
next as immersions): the elements of Z? are mapped to the squares of H?,
and each point or edge in H? whose all the neighboring squares are in the
foreground are assigned as foreground too. The third approach uses the hit
strategy (which reflects the (8,4)-topology): the elements of Z? are mapped
to the squares of H?, and each point or edge in H? which is a face of a square
of the foreground is assigned as foreground too. The fourth approach is like
we will proceed next using an isomorphism: points become n-cubes.

Definition 72 (Paths [16]). Let |X| be an order. A path from x € X to
y € X is a sequence (p° = x,p', ..., p* L, pF =y) of elements of X such that
for any i € [0,k — 1], z € Ox(y).

Figure C.8 depicts a path in H?Z.
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Figure C.8: A path in H? [41] (p.34)

Definition 73 (Connectivity of an order [16]). An order, as every topological
space, is connected iff it cannot be partitioned into two non-empty open sets.

Effectively, this definition holds since Alexandrov spaces and partially
ordered sets are equivalent by Theorem 12 [2].

Definition 74 (Path-connectivity of an order [16]). An order |X| is said
connected by path or path-connected iff for any couple (z,y) of elements of
X, there exists a path from x to y into | X|.

Theorem 13 (Connectivity VS path-connectivity [16]). Let | X| be a partially
ordered set. Then |X| is connect iff it is path-connected.

Since the pathwise-connectivity between two points z,y belonging to an
order constitutes a binary relation which is reflexive, symmetrical, and tran-
sitive, that is, an equivalence relation on X, we can define the equivalence
classes of X in H" as the connected components of X in H"™:

Definition 75 (Connected components [16]). Let |X| be an order. A con-
nected component C' of | X| is a subset of X such that for any couple (z,y)
of elements of C, there exists a path from x to y lying entirely into C, and
such that C' is maximal for this property.

Definition 76 (Simple closed curve [16]). An order | X| = (X,ax) is a
simple closed curve if for any point v € X, Card(05(z)) = 2 and such that
the couple (y, z) of elements of 0% (z) verifies that y & 05 (z).
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Figure C.9: A simple closed curve in H? [41] (p.34)

As proved in [85], a simple closed curve (see Figure C.9) separates H? and
then satisfies an analog of the Jordan curve theorem in the 2D Khalimsky
grids.

C.7 Order Joins

Definition 77 (Order Join [16]). Let |X|,|Y| be two orders. It is said that
| X| and Y| can be joined if X NY = 0. If | X| and |Y| can be joined, the
join of | X| and |Y| is defined as the order:
| X|*|Y|=(XUY,axUay UX xY).
Some properties [41] of the join are important to remark:

e the empty order || is the neutral element of the join operator: |X ||| =
|01+ X = | X],

e the operator * is not commutative,

e the operator * does not create new elements, it adds some order rela-
tions between the elements of X and the elements of YV,

e the elements of Y keep their initial rank when the join operation is
applied, when the elements of X have a rank which is incremented by
the rank of Y plus one.
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The construction of an order join can be made in this way: we put on
the top each element of X, and at the bottom all the elements of Y. Then
we connect the elements of X according to ax, and then the elements of Y
according to ay. Finally, we connect each element of X to each element of
Y, and we have obtained the Hasse diagram of the order join.

Property 2 (Order join and 6% (x) [41](Property 1)). Let | X| be an order.
Then for any v € X:

0% (2)] = |83 (2)[«|ak ()]

We will see in this section that as is the thesis of Daragon [41], this equi-
laty is particularily crucial, since it allows to “decompose” the neighborhood
of a point of H" into two orders which own many very strong topological
properties.

Property 3 (0%,y () [41](Property 2)). Let | X| and |Y| be two orders that
can be joined. Then let x be an element of X and y be an element of Y.
Then we obtain that 05, ()] = 0% () +]Y] and 102,y (1)] = | X [+02()]

On Figure C.10, three orders of increasing complexity are depicted. Their
joins are depicted on Figure C.11 and Figure C.12. Note that the Hasse
diagrams are on the top, and the geometrical representation at the bottom.
Observe that the rank of these orders is straightforward to compute looking
at their Hasse diagrams.

C.8 n-surfaces

Definition 78 (CF-orders [16]). Let | X| = (X, ax) be a partially ordered set.
| X | is said countable iff its domain X is countable. Also, | X| is said locally
finite iff for any element x € X, the set Ox(x) = {y € X ; (z,y) € Ox} is
finite. A partially ordered set which is countable and locally finite is said to
be a CF-order.

Now let us recall the definition of discrete surfaces or n-surfaces of Evako,
Kopperman and Mukhin [52] which will be essential to define well-compo-
sedness in the sense of Alexandrov.
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Figure C.10: Three examples of orders | X/, |Y],|Z| ([41], p.37)
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Figure C.11: The join operator x is not commutative ([41], p.37)

Definition 79 (n-surface). Let | X| = (X, ax) be a CF-order. The order | X|
is said to be:

o a (—1)-surface iff X =0,

o a O-surface iff X is made of two elements x,y € X which are not
neighbors the one of the other one: © € ax(y) and y & ax(x),

220



X
a
M z
cl c3
cl c3
[ ) [ )
pl p2 p3
pl p2 p3
IXI*|ZI IYI*|ZI
pl
cl c2
p2 c3 p3

Figure C.12: Some order joins representing a simplicial complez on the left
and a sphere on the right [41] (p.37)
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Figure C.13: A 2-surface: the sphere Sy [41] (p.50)

e a n-surface, n > 1, iff | X| is connected and for any v € X, the order
0% ()| is a (n — 1)-surface.

To forge the intuition on discrete surfaces, we propose to show an ex-
ample extracted from [41]. On Figure C.13, we can observe according to
Daragon [41] the most simple 2-surface: the sphere |Sy|. It is made of 6
elements: Sy = {a,b,c,d, e, f}, and any point = € S, verifies that its neigh-
borhood |03, ()] is a 1-surface. Effectively, the neighborhood of any point
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y € 03, (x), we have that is made of two points which are not

o

99%(@(3/)

neighbors, that is, is a O-surface.
Another example of 2-surface is simply |H?|: the neighborhood of any

point of H? is a simple close curve. Effectively, as proven by Evako et al.
in [52]:
Theorem 14. The order |H"| is a (discrete) n-surface.

Note that this theorem is fundamental and will have many implications

later in our study of the relation between well-composedness in the sense of
Alexandrov and digital well-composedness.

Also, Daragon [41] proved this following theorem on partially ordered
sets:

Theorem 15. Let | X| and |Y| be two orders that can be joined, and let n € N
be an integer. The order | X|x|Y| is a (n + 1)-surface iff there exists some
p € [-1,n+ 1] such that | X| is a p-surface and |Y| is a (n — p)-surface.

The proof of this theorem is based on Property 3 due to Bertrand [16].

Definition 80 (Homogeneity [41]). An order |X| is said homogeneous iff
for any element x € X, Ox(x) contains a n-element.

Property 4 (Rank of a n-surface [52]). Let |X| be a n-surface. The rank of
| X| is equal to n.

Property 5 (Homogeneity of n-surfaces [41]). Let |X| be a n-surface. Any
element x of | X| is O-neighbor of a n-element of | X|.

Property 6 (Decomposition of a n-surface [41] (Property 10)). Let |X| =
(X, ax) be an order. Then |X| is a n-surface iff for any x € X, |5 (x)| is
a (k —1)-surface and |f5(z)] is a (n — k — 1)-surface, with k = p(z, | X]).

Since this property will be fundamental next, let us show an example of
the SY-adherence and of the a™-adherence of a point x € H? of rank 2 in |H?|
(see Figure C.14). Since z is a 2-element, its a”-adherence is a 1-surface,
and its fP-adherence is a 0-surface.

Definition 81 (Separation [41]). Let |X| be an order, and let Y be a strict
subset of X. Then it is said that |Y| separates | X| iff | X'\ Y| is not connected.

If |X]| is a n-surface, and Y is a strict subset of X such that |Y| is
a k-surface, then necessarily &k = n — 1 (as in continuous topology using
topological n-manifolds).
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Figure C.14: Different kinds of adherences of a 2-element in H? [41] (p.54)

C.9 Closed Orders

Definition 82 (Closed orders [41]). Let |X| = (X, ax) be an order. |X]| is
said to be closed iff for any z € X, and for any y € o (z), for any value

i €lply, [X1]), pl, | X
3z € oy (2) N Y (z) s.t. p(z,|X]|) = i.

In other words, this relation means that there exists in a closed order
elements “between” x and y which are of any rank between the rank of z
and the rank of y in the order. It recalls simplicial complexes which are closed
by inclusion in the sense that for any k-simplex in a simplicial complex S,
there exists at least one [-simplex in S which is a face of s for any value [
in [0, k] (since a simplicial complex contains by definition all the faces of its
elements).

Property 7 (n-surfaces are closed orders [41] (Property 20 p.63)). Let | X|
be an order. If | X| is a n-surface, | X| is a closed order.

C.10 Geometric Simplicial Complexes (in R")

Since polyhedral complexes are made of convex polyhedral domains which lies
in R™, let us first recall some basics in linear algebra.

Definition 83 (r-planes and linear independency). An r-dimensional sub-
space, 0 < r < n, of R" is called a r-plane. The points 2°,... 2" are said
linearly independent iff they are not contained in any k-plane with k < r.
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Definition 84 (Affine combination and affinely independency). Letu®, ... u*
be (k+1) points in R". A point x =3, 154 \iu' is said to be an affine com-
bination of the u® iff Zz’e[[o,k}] Ai = 1. Also, these (k + 1) points are said
affinely independent iff any two affine combinations x = Zie[[o,k]] At and
Y= icqony Hit' are equal iff Vi € [0, k], \i = p;.

A consequence is that the (k+1) points u°, . .., u”* are affinely independent

iff the k vectors (u' — u®), Vi € [1, k], are linearly independant. In R", we
can have at most n linearly dependent vectors and then (n + 1) affinely
independent points.

Definition 85 (Convex). The straight line defined by two points a,b is the
set of all the points of the form Aa + upb, where A + p = 1. The subset of
this straight line defined by the conditions A > 0, > 0 is called the closed
segment [ab]. Then, a set M is said to be convex if for any two points a and
b in M, it contains also the whole segment [ab].

Definition 86 (Convex Polyhedral Domains [2] (p. 212)). A bounded nonempty
subset of R™ which is the intersection of a finite number of closed half-planes
of R™ is called a (closed) convex polyhedral domain.

Definition 87 (Dimension of Convex Polyhedral Domains [2] (p. 210)). The
dimension of a convex polyhedral domain @) is the maximum number r such
that @ contains (r + 1) linearly independent points.

Definition 88 (Supporting planes [2] (p. 213)). Let Q" be a n-dimensional
convex polyhedral domain in R™. The intersection of every (n — 1)-plane
R C R™ with Q™ is convex. A plane R" ' is called plane of support of
the polyhedral domain Q™ if Q" N R #£ () and R*' NInt(Q) = O (where
Int(Q) denotes the topological interior of Q).

Definition 89 (Face of a Convex Polydral Domain [2] (p. 213)). The in-
tersection of every supporting plane R"' with the topological boundary OQ™
of the convex polyhedral domain Q™ coincides with the set R"™ 1 N Q™ and is
therefore a closed convex polyhedral domain Q" of dimension r < n — 1; if
r=(n—1), Q" is called a (n—1)-face of the polyhedral domain Q™. Following
the same reasoning, the (n — 2)-faces of the (n — 1)-faces of Q™ are called the
(n — 2)-faces of Q™, and so on.
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Definition 90 ((Closed) Polyhedral complex). Let K be a finite set K of
(closed) convex polyhedral domains situated in some R". K 1is said to be a a
(closed) polyhedral complex iff :

1. any intersection of two different elements h', h? of K is an element h?
of K such that h? is a common face of h* and h?,

2. every face of every convex polyhedral domain of K is also an element
of K.

Note that tis family of complexes is also known as convez linear cell
complezes in Hudson’s book [79].

Even if these complexes are basically geometric structures, we will see
later that they have also very nice topological properties as orders, when
they are supplied with the inclusion order D.

Definition 91 (Dimension of a polyhedral complex [2]). The dimension
of a polyhedral complex is the maximum dimension of its convex polyhedral
domains.

Definition 92 (Convex combinations and Convex hull). Let u',... u" be
n points in RY. The sum > ic[in] Aiu® such that each X\;, i € [1,n], is
nonnegative, s said to be a convex combination of the u'. The convex hull
of these points is the set of convex combinations of u'.

Definition 93 (Geometric n-simplex, Vertices of a geometric simplex [79]).
A geometric n-simplex in RY is the convex hull of (n+1) linearly independent
points, called its vertices.

Definition 94 (Simplicial Complex [79]). A geometrical simplicial complex
1s a polyhedral complexr whose convex polyhedral domains are all geometric
simplices.

Definition 95 (Vertex Set of a Geometric Simplicial Complex). The vertex
set of a geometric simplicial complex C is denoted by Vert(C') and is equal
to:

{o € C; dim(c) = 0}.

Definition 96 (Underlying Polyhedron [79]). If K is any geometric simpli-
cial complez, we denote by Poly(K) the pointwise union in R™ of all the faces
in K, and we call Poly(K) the underlying polyhedron of K.
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Figure C.15: Examples of simplicial complexes ([41], p.40).

C.11 Abstract Simplicial Complexes

Now, we recall some results in combinatorial topology, mainly applied to
abstract simplices and abstract simplicial complexes.

Definition 97 ((Abstract) Simplex). Let A be a countable space of arbitrary
elements. We will say that s C A is a abstract simplex (in A) iff it is a
non-empty finite subset of A. We will also say that an abstract simplex is
an abstract n-simplex (in A) if it is made of (n+ 1) elements of A. We will
sometimes call it abstract simplex of dimension 7.

Definition 98 (Faces). Let A be a countable space of arbitrary elements.
We will say that an abstract simplex f C A is a face of the abstract simplex
s € N iff f Cs, and that it is a proper/strict face of s iff f C s.

Definition 99 (Abstract Simplicial Complex). Let A be a countable space
of arbitrary elements, and let C' be a family of simplices if A. We will say
that C' is an abstract simplicial complex iff Card (C') < oo and C' its closed
by inclusion, which means that for any face s belonging to C', any of its faces
f C s belongs also to C.

Note that in this manner, an abstract simplicial complex is a finite set of
finite subsets of A.

Definition 100 (Support). Let A be a countable space of arbitrary elements,
and let C' be an abstract simplicial complex in A. We will say that the minimal
set Ao such that any element s € C' is a subset of A¢ is the support of C.

Definition 101 (Subcomplex). Let A be a countable space of arbitrary ele-
ments, and let C' be an abstract simplicial complex in A of support Ac. We
will say that the subset K of C' such that Ax C A¢ is a subcomplex of C' iff
it 1s an abstract simplicial complex.

226



Definition 102 (Full subcomplex). Let A be a countable space of arbitrary
elements, let C' be an abstract simplicial complex in A of support Ac, and let
be K a subcomplex of C'. Then K 1is said to be a full subcomplex of C iff any
face f € C such that f C A is an element of K.

Figure C.15 depicts on (a) an abstract simplicial complex C' of support
Ac = [1,6]. On (b), we can observe a subcomplex K of C' of support
Ak =1{1,3,5,6}. Each face of C' which is included in Ax belongs to K, and
in this manner K in full into C. On (c), we can see the subcomplex K’ of C,
whose support is A = {1,2,3,6}. The abstract simplex {2, 3,6} belongs to
C, is a subset of Ag/, but does not belong to K’. In this manner, K’ is not
full into C.

Definition 103 (Vertex Set of an Abstract Simplicial Complex). The vertex
set of an abstract simplicial complex A is denoted by Vert(A) and is equal to:

Us

s€EA

C.12 Abstract VS Geometric Simplicial Com-
plexes

Edelsbrunner defined a geometric realization of an abstract simplicial com-
plex in the following manner:

Definition 104 (Geometric Realization and Abstraction [49]). A geometric
realization of an abstract simplicial complex A is a geometric simplicial com-
plex K together with a bijection ¢ : Vert(A) — Vert(K) such that s € A iff
ConvHull(¢(s)) € K. Conversely, A is called an abstraction of K.

Roughly speaking, any abstract simplicial complex can be “transformed”
into a geometric simplicial complex, by attributing coordinates to its vertices,
such that they are equivalent, two geometric simplices will intersect iff their
corresponding abstract simplices intersect:

Theorem 16 (Geometric Realization Theorem [50]). Every abstract simpli-
cial complez of dimension d has as geometric realization in R2I+1,

Proof: The proof we propose here is based on the argumentation of
Edelsbrunner in [50].
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Let us assume that an abstract simplicial complex A, made of finite sets of
finite arbitrary elements in A, is of dimension d > 0 Now, let ¢ : Vert(A) —
R24*1 ba an injection such that for any set {p°, ..., p**1} C A4, the set
{o(%), ..., p(p**1)} is affinely independent. Let us define:

G = {ConvHull(p(a)) ; a € A}.
We want to prove: that:

1. for any a in A, a € A < ConvHull(p(a)) € G,
2. ¢ : Vert(A) — Vert(G) is a bijection,

3. (G is a geometric simplicial complex.

The first property is simply the consequence of the definition of G. For
the second property, let us prove first that the image of Vert(A) is Vert(G).
Starting from the definition of G, we obtain:

Vert(G) = {ConvHull(¢(a)); a € A, dim(ConvHull(p(a)))) = 0},
= {ConvHull(¢(p)) ; {p} € A},
= {{e)}; {p} € A},

= {e({p}); {p} € A},
= {p(a); a € Vert(A)},
= (Vert(A)).

This way, ¢ is injective and surjective from Vert(A) to Vert(G), and then
bijective.

To show that G is a geometric simplicial complex, we first have to show
that for any geometric simplex g € G, any face f of g belongs also to G (a),
then we have to show that for any pair of geometric simplices g*, g* of G,
g' N g? is also a geometric simplex of G (b), and then we have to show that
gt N g? is a common face of g* and ¢ (c).

(a): Let g be an element of G, then there exists a, € A such that

g = ConvHull(¢(a,)), which can be rewritten using a, = (al,...,a") into

FIREE g
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g = ConvHull{p(a}), ..., p(ak)} where the set {¢(a}),. .., (ak)} is affinely
independent by hypothesis on ¢. This way, each face of the geometric sim-
plex g can be written f = ConvHull{p(a!l),...,¢(a?)}, that is, the con-
vex hull of a subfamily of {¢(a}),...,¢(a;)}. In other words, there exists
ag ={a,,...,al} C a, € Asuch that f = ConvHull(¢(ay)) € G.

(b): Let ¢g', g% be two elements of G, then there exists a',a? € A such that
g* = ConvHull(p(a')) and such that g = ConvHull(¢(a?)). If a' Na® = 0,
then ¢g' N ¢g? = 0: if there exists z € R?**! such that z € g' N ¢2, then:

2= M) = ) me(p),
p€Eal pEa?
which means that there exists {¢,} not all empty such that:
Z fp(p(p> =0,
pEalUa?

which is impossible since the family {¢(p) }peatiqz is made of at most (2d+2)
different elements (and then affinely independent). Now, if a* Na® # (), then
there exists 7 € A such that r € a' Na?, and then p(r) € ConvHull(¢(a')) N
ConvHull(¢(a?)) # 0. Then, any element r of g' N g* can be written:

r=Y_Aem) =Y Me),
pEal pEa?

which implies that:

> &elp) =0,

p€alUa?
with:
Ap if peala?
& =19 (—ip) if pea®\d,

(A\p — pp) ifpealna

Since a' Ua? contains at most (2d+2) elements, then {p(p) }peatuaz is affinely
independent, and then all the coefficients &, are equal to zero, which means
that:

A=0  ifpeat\d

u, =0 ifpea\a,

A =pp ifp€a'na’
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Then 7 = 37 Ciing2 Ap@(p), With 37 102 Ay = 1, and Vp € a' Na®, A, > 0.
Finally, g' N g* is then equal to ConvHull(p(a' N a?)). Since a € A and
a'Na® Ca', a' Na? € A, and then ConvHull(p(a' Na?)) € G.

(¢): since g' = ConvHull(p(a')) is a simplex, its faces are the convex hulls
of any subset of a'. The same reasoning applies for g> = ConvHull(p(a?)).
Then g' N ¢g? = ConvHull(¢(a! N a?)) is a common face to g' and g% O

Note that this bound is optimal in the sense that there exists examples
of k-complexes which need at least R?***! to be realized. For example, the
set of all faces of dimension lower than or equal to k (called the k-skeleton)
of a (2k + 2)-simplex needs to be realized in R?**1. Also, the complete graph
of five vertices usually denoted by K3 identified by Kuratowski [93] as being
one of the obstruction to graph planarity, is a 1-complex which can only be
realized in R®. Some other examples like these ones are given in [58] and in
[171].

For this reason, the definitions and theorems recalled or introduced in the
sequel hold for both abstract and geometric simplicial complexes.

C.13 Simplicial Complexes as Orders

Like we did with the Khalimsky grids, we can associate a canonical order
relation o =2 based on the inclusion to any simplicial complex C: |C| =
(C,a). This way, simplicial complexes are partially ordered sets. For this
reason, the reader is invited to refer to Section C.4 and to Section C.5 for
some recalls in matter of partially ordered sets and Alexandrov spaces.

Now let us recall some properties in simplical complexes extracted from [41].

Property 8. Let A be a countable space of arbitrary elements, and let C' be
a simplicial complex in A. Then the order |C| = (C,a) with « =2 defined
as in Theorem 12 where « is the closure operator, is an Alexandrov space.

Property 9. Let A be a countable space of arbitrary elements, and let C' be
a simplicial complex in A. Then for any s € C, ac(s) does not depend on
the structure of the simplicial complex C' and then can be written a(s).

Property 10. Let A be a countable space of arbitrary elements, and let C' be
a simplicial complex in A. Then, for any s € C, the rank of any k-simplex

in |C| is p(s, |C|) = k.
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In other words, the dimension of an abstract simplex equals its rank into
the simplicial complex it belongs to.

Property 11. Let A be a countable space of arbitrary elements, and let C' be
a simplicial complex in A. Then, for any s € C, «a(s) is a simplicial complez.
Also, let S be a subset of C, the set aS) = (J,eq a(s) is a simplicial complez.

Since we have defined the closure a¢ in a simplicial complex C, we have
induced the definition of its inverse binary relation fo = aal, called the star
operator (in C):

Vs e C,fo(s) ={teC; sCt}.

Note that, contrary to the closure operator «;, we cannot simplify this no-
tation, since Sc(s) clearly depends on the structure of the simplicial complex

C.

C.14 Simplicial Neighborhoods

Definition 105 (Simplicial neighborhood). Let A be a countable space of
arbitrary elements, let C' be a simplicial complex in A, and let be K a sub-
complex of C. We denote by N(K,C) the simplicial neighborhood of the
subcomplex K into the simplicial complex C, and we defined it such as:

N(K,C) = | alBe(s)).

seK

Property 12. Let C' be a simplicial complex and let K be a subcomplex of
C. Then then simplicial neighborhoord N(K,C) of K in C is a simplicial
complex.

Figure C.16 depicts in (a) in dark gray a simplicial complex C', and in
light gray a simplicial subcomplex K of C. On (b), we can observe in light
gray the closure of the star of K in C, that is, N(K,C).

C.15 Chain Complexes

Now that we have defined simplices, simplicial complexes and subcomplexes,
we can define the chain complezes.
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(a) (b)

Figure C.16: From a subcomplex to its simplicial neighborhood ([41], p.46).

Definition 106 (Chain). Let |X| = (X, ax) be a partially ordered set. Any
subset ¢ of X such that |c| = (¢, a.) is totally ordered is called a chain of | X]|.

Definition 107 (Chain complex). Let | X| = (X, ax) be a partially ordered
set. Then the set of all the chains of | X| is denoted by C* and is called the
chain complex of | X|.

Property 13. Let |X| = (X, ax) be a partially ordered set. Then C* is a
sitmplicial complex, and its support is equal to X.

Effectively, for any element s € CX, each face of s belongs to C* since it
is also a total order. This way, C¥X is closed by the inclusion order, and is a
simplicial complex. Also, C¥ is the set of the subsets of X which are totally

ordered (in | X]), and in this manner its support is the set of the elements in
X, that is, X itself.

Figure C.17 shows on the right an order | X| made of all the simplices in
A = {a,b,c} and on the right its chain complex C¥. Since any set made of
only one element is totally ordered, obviously {{a}}, {{b}}, {{c}}, {{a,b}},
{{b,c}}, {{a,c}}, and {{a,b,c}} belong to C*. Also, {{a},{a,b}} is made
of {a} and {a, b} which belong both to X and are ordered in |X|, and then
{{a},{a,b}} belongs to C*. We can continue this way until we obtain the
simplicial complex C*.

Now that we have defined chain complexes, we can cite a fundamental
theorem of Daragon [41], based of prerequisites defined in Section C.8:

Theorem 17 (Theorem 17 (p. 58 of [41])). Let |X| be an order. Then, |C¥X|
is a n-surface iff | X| is a n-surface.
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<~ {ab}

chain complex >

~—{b} = {{b}}

{{a.b}}
}// {{b}{a,b}}

{{b}.{ab}{abc}}

{abc} {{abc}}

a) b) c) d)

Figure C.18: From a simplicial complex to a frontier order ([41], p. 86).

Intuitively, this theorem means that if an order is a discrete surface, then
its “triangulation”, that is, its decomposition into triangles, is also a discrete
surface.

C.16 Frontier orders

Definition 108 (Frontier Orders [41]). Let C' be a simplicial complex, and

Ac its support. Let us decompose now A¢ into the union of K the foreground
and K' the background:

Ae=KUK'.

Then C' can be decomposed into 3 disjoint parts: Cx which is the set of the
simplices contained into K, Ck: which is the set of simplices contained into
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Figure C.19: A cubical complex and the frontier order of the central square
into this order.

K', and Cg/x which is the set of simpleves not contained into K and not
contained into K'. Then |Ck/x/| = (Ck/kr,2) is called the frontier order of
K into A¢ relatively to C'.

Note that a frontier order is not a simplicial complex: since any vertex
belongs either to K or to K’, it does not belong to Ckx-.

Figure C.18 depicts on (a) a simplicial complex C; on (b) a subset K of
the support of C' (c.f. the white points); on (¢) the tripartition of C' into
K in white, K’ in dark gray, and the frontier order C /g in light gray; on
(d), we can see the “immersion” of the frontier order represented with black
squares and the edges that link them.

The definition of a frontier order exists also for any order [41].

Definition 109. Let | X| be an order, and let |Y| and |Y’| be two suborders
of |X| such that Y UY" = X. The order |C5,y.| = (C5)y, 2), where C3)y,
denotes the set of simplices of CX such that they are not contained into Y
and not contained into Y, is called the frontier order of |Y| into | X]|.

Figure C.19 depicts a cubical complex | X| (on the left), where X is de-
composed into Y UY”. Y is depicted by the black square, and Y’ corresponds
to X'\ 'Y (the white faces of the complex). Then, applying the chain complex
on this order, we obtain the right figure, where the complex whose support
is Y is made of the black vertex, the complex whose support is Y’ is made
of the white vertices, and the remaining part of the chain complex is the
frontier order Cff/y/ whose immersion is represented with the little squares
and the edges linking them.
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Theorem 18 (Frontier Orders of a Simplicial Complex [41] (Th. 37 p. 89)).
Let C be a simplicial complex which is a n-surface, n > 2, and let be A¢ its
support. Let K be a strict non-empty subset of Ac. Then the order |Ck k|
is an union of disjoint (n — 1)-surfaces.

Theorem 19 (Frontier Orders of an Order [41] (Th. 38 p. 90)). Let | X| be
an order, and let |Y| be a strict suborder of | X|. Then the order |C})f/y,| is a
disjoint union of (n — 1)-surfaces.

C.17 Derived Neighborhoods

As we are going to recall, a chain complex can be effectively seen as a trian-
gulation.

Definition 110 (Derived subdivision). Let C' be a simplicial complex. The
first derived subdivision of C' is denoted C* and is defined such that:

C'={{co,...,cn} CC; g C- Ceyl}.
The nt" derived subdivision is defined such that:
cm = (CmhHL
As we can see, the first derived of a simplicial complex C' is simply its
chain complex C°.

Definition 111 (Derived neighborhood). Let C' be a simplicial complex of
support Ac. Let also K be a full subcomplex of C' such that its support Ay
satisfies Ay C Ax. The first derived neighorhood of K in C is denoted by
NYK,C) and is equal to the simplicial neighborhood of K' into C':

NY(K,C)= | a(Ber (k).

kleK!?

Figure C.20 shows the step-by-step process to compute a derived neigh-
borhood of a subcomplex K which is full in a simplicial complex C. On (a),
the entire figure corresponds to the simplicial complex C, and the triangle
whose corners are white, with all its faces, corresponds to the full subcom-
plex K. Then, in (b), a derived subdivision is processed. It is equivalent to
compute the chain complex of C'. On (c), we can see in light gray the derived
neighborhood of K which is equal to the union of the closures of the stars of
K into C*. On (d), we can see the border of the derived neighborhood of K
in C, its definition will come hereafter.
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a) b) c) d)

Figure C.20: From a full subcomplex to its derived neighborhood ([41], p.
08).

C.18 Border of a Derived Neighborhood

Let us now recall the definition of a border, since it is the link between a
derived neighborhood and a frontier order.

Definition 112 (Border of a derived neighborhood (p.98 [41])). Let C' be
a simplicial complex and K be a full subcomplex of C. The border of the
derived neighborhood of K into C is denoted by A(K,C) and is equal to:

A(K,C)={he N(K,C); Bc:(h) £ NY(K,C)}.

Theorem 20 (Th. 40 (p.99 [41])). Let X be a simplicial complex of support
Ax, let Y be a full subcomplex of X of support K, and let K' be the com-
plement of K into Ax. Then A(Y,X) is equal to the chain complex of the
frontier order Xk, that is:

A(Y, X) = [Xiyre]'

For Theorem 19 and Theorem 21, Daragon deduced then:

Theorem 21 (Th. 42 (p.101 [41])). Let X be a simplicial complezx. If X is
a n-surface, n > 1, and if Y is a subcomplez full in X, then A(Y,X) is a
disjoint union of (n — 1)-surfaces.
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C.19 Plain maps

Let us now recall some mathematical background coming from [10, 124].

Let A = (X,U) be an Alexandrov space.

Definition 113. An application F : X — P(R) (which is also written F' :
X ~ R) is said to be a set-valued map. The domain of F' is the set D(F') C
X such that Vo € X, F(z) #0 < x € D(F).

Definition 114. A set-valued map F : X ~ R is said to be upper semi-
continuous (USC) at x € D(F), for any neighborhood U of F(x), Va' € 5(z),
F(z') CU. A set-valued map is said to be upper semi-continuous (USC) iff
it is USC at each point v € D(F).

Definition 115. A set-valued USC map F : X ~» R is said to be a (closed)
quasi-simple map iff for any x € D(F), F(z) is a closed connected set and
furthermore, for any v € D(F') such that {x} = (), F(x) is degenerate.

Definition 116. A quasi-simple map F : X ~~ R is said to be a simple map
iff for any quasi-simple map Fy : X ~> Z such that F(z) = Fy(x) when x € D
is such that f(x) = {x}, then for any x € D(F), F(x) C Fy(x).

Definition 117. A set-valued map F : X ~» R is said to be a plain map iff
it 1s a closed-valued interval-valued simple map.

Now, let us assume that A and B are two topological spaces.

Definition 118. Let F' : A ~ B be a set-valued map. We call the inverse
image of M by F the set F~(M) ={x € A; F(x)NM # (}. Also, we call
core of M by F the set F*(M)={x € A; F(x) C M}.

Then some properties [10] follow for USC maps:

Proposition 33. A set-valued map F : A ~~ B is USC at z iff the core of
any neighborhood of F(z) is a neighborhood of x. Hence, a set-valued map
F: A~ B is USC iff the core of any open subset is open.

Proposition 34. If D(F) is closed, then F' is USC iff the inverse image of
any closed set is closed.
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Appendix D

About the equivalence between
AWCness and DWCness

Today, 4D signals (and beyond) are of primary importance, and then it is
crucial to determine the relations between the different definitions in mat-
ter of well-composedness. In this section, we investigate the relation between
digital well-composedness and well-composedness in the sense of Alexandrov.
In fact, if these two definitions are equivalent, it means that well-composed
in the sense of Alexandrov images can easily be obtained on cubical grids
thanks to digitally well-composed interpolations, and conversely, that digi-
tally well-composed images share the strong topological properties of images
that are well-composed in the sense of Alexandrov when they are immersed
on Khalimsky grids.

So, in the following sections, after having presented a counter-example
showing that this proof is not simple, we will present a sketch of the proof.

Note that the complete proof can be found at the following address:
https://hal-upec-upem.archives-ouvertes.fr/hal-01375621

Note: since this proof has not been verified yet, it will be considered in
this thesis as a conjecture.
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(1,1,1,1)

(1,0,1,1)

Figure D.1: A 4D digitally well-composed set (depicted in blue) and its
complement (in red).
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D.1 Preamble

Before beginning the study of the equivalence between these two kinds of well-
composednesses, we propose to illustrate the difficulty of this proof with an
example showing that the intuition that “a digitally well-composed set should
always be the limit of an increasing sequence of digitally well-composed sets”
is false. A 4D example of digitally well-composed sets can prove this (see
Figure D.1). Effectively, removing/adding any point to this set made of
yellow points and blue edges creates a critical configuration of dimension 2,
and there there exists no strictly increasing/decreasing sequence of digitally
well-composed sets which converges to this set.

D.2 A sketch of the proof

Let us present the main steps of the proof that AWCness (see Section 3.1)
and DWCness are equivalent on cubical grids.

From (%)" to H" We define the bijection H : (Z/2) — H' such that:

meamae- (LU 1 IR oy

We can then deduce the bijection H,, : (%)n — H" defined such that:

Hn - ®i€[[1,n]]H(Zi)a

where 2; denote the i’ coordinate of z € (Z/2).

We can compute the inverse bijection of H, that we denote by Z : H! —
(Z/2), and defined such that:

a if Ja€Zst. h={a,a+ 1},

a—1/2 if JaeZst. h={a}. (D2)

Vh e HY, Z(h) = {

We can then deduce the bijection Z,, : H" — (Z/2) defined such that:
Z, = ®i6[[1,n]]z(hi)>

where h; denote the i** coordinate of h € H".
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$¢1$¢¢¢$>Z

-1/2 0 1/2 1 3/2

-1} {-1,0} {0} {0,1} {1} {1,2} {2}

— b < < O N >

Figure D.2: Bijection between H' and (Z/2)

Figure D.2 shows how (Z/2) is mapped to H'. Furthermore, it can be
shown that supplying (%)n with a particular topology, Z,, (respectively H.,,)
is in fact a topological isomorphism, that is a bicontinuous bijection, between
H" and (%)n (respectively between (%)n and H"). In other words, these two
spaces have the same topological structure.

Immersion into Khalimsky Grids Starting from a given digital set X C
7", we can immerse it into H" in the following manner:

IMM(X) = Int(a(H,(X))),
where Int it the topological interior in H":

Int(X) = {h e X ; B(h) C X}.

Stating the problem The context is the following: we have a set X made
of points in Z", from which we compute its immersion ZMM(X) in the
Khalimsky grids. X is digitally well-composed iff it does not contain any
critical configuration, and X (or its immersion ZMM (X)) by identification)
is said well-composed in the sense of Alexandrov iff the topological boundary

N of ZMM(X) defined such as:
N =a(ZMM(X))NaoH" \ ZMM(X)),
is made of disjoint discrete (n — 1)-surfaces.

We want to establish that these two concepts are rigorously equivalent.

Reformulating the topological boundary The topological boundary
OIMM(X) can be reformulated as a function of X = H,(X) and the
complement ) = H” \ X of X in H?. Effectively, we have the following
proposition:

N=a(X)Na)).
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Summarily, we can reformulate this way the boundary because these fol-
lowing properties are verified in H"™:

e H" is a n-surface and then is homogeneous,
o Vze H", a(f(z) NHY) = a(5(2)),

e Vz e H", a(z) is a regular closed set,

e Vz € H", 5(2) is a regular open set.

Figure D.3: The subspace |5(z)| we are working in to study AWCness
(2D/3D cases).

Reformulating the problem in a local way We could then directly
prove that the fact that ZMM(X) is well-composed in the sense of Alexan-
drov implies that X is digitally well-composed, and the converse, and we
would be done. However, we observed that we can reformulate the condi-
tion “ZMM(X) is well-composed in the sense of Alexandrov” with another
condition, much simple to handle and manipulate, since it is a local criteria
(as digital well-composedness is). Effectively, ZMM (X)) is well-composed in
the sense of Alexandrov is equivalent to:

{Vz e N, |Bx(z)| is a (n — 2 — dim(2)) — surface} .
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Since |35 (2)] is equal to |91 N BY(2)|, we understand effectively that we are
studying a restriction of the boundary 9 in a small subspace, that is, | 3-(2)|,
depicted on Figure D.3, where we can observe that the point z in the middle
of the subspace has been omitted, since it is not taken into account in the
local criteria.

Figure D.4:

Figure D.5: Examples of 1-surfaces.

The question is then: what does it mean that |35(2)| is an (n — 2 —
dim(z))-surface? When dim(z) = (n —2), that is, when 5(z) is a subspace of
dimension 2 as on the left of Figure D.3, it means that |S5(2)] is a O-surface,
that is, the restriction |35(z)| of the boundary 91 to the subspace 5"(z)
is made of two elements which are not neighbors the one of the other one
(see Figure D.4). When dim(z) = (n — 3), that is when (z) is a subspace
of dimension 3 as on the right of Figure D.3, it means that the restriction
|85 (2)| of the boundary M to the 3D subspace 37(z) is a l-surface, that is,
a simple closed curve (see Figure D.5).
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Our aim is then to prove that X is digitally well-composed iff for any
element z of the boundary 9, we have that |35(2)] is a (n — dim(z) — 2)-
surface.

Study of the converse sense Let us begin with the converse sense: we
admit that for any element z of the boundary 9, we have that |85(2)| is
a (n — dim(z) — 2)-surface, and we want to prove that X is digitally well-
composed. For that, we will prove the counterposition: we assume that X
is not digitally well-composed, and then contains a critical configuration,
and we show that it implies that there exists a “critical point” z* such that
|85 (2%)| is not a discrete surface.

So, let assume that X contains a primary critical configuration in a block
S of dimension k& > 2, that is, X NS = {p,p’} such that p and p’ are
antagonist into S (the secondary case follows the same reasoning, by duality
of well-composedness in the sense of Alexandrov and digital well-composed-
ness). It is then clear that all the other points of the block S belong to he
complement Y of X in Z".

R |

O o ..

Figure D.6: From a 2D critical configuration in Z? to a critical point z*
H2.

Let us begin with the 2D case, that is, when the block S is of dimension
k = 2 in Z". In this case, its isomorph in H", which is in reality made of
n-cubes, can be represented using squares, as depicted on Figure D.6. Then,
the center of these four squares, that we will call z*, has a dimension (n — 2).
Let us show that this point is critical in the sense that |85(z)] is not a 0-
surface. For that, as shown on Figure D.6, we work into the space 8°(z*),
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which contains our four colored squares, and we compute their respective
closures (into the subspace 87(z*)), their intersection will then be 35 (z*).
Effectively, |85(2*)| is not a O-surface, because it is made of 4 points and a
O-surface is made of two points, then z* is “critical” and we have “proven”
the reciprocal sense for k = 2.

Let us now proceed to the 3D case, that is, when the block S is of dimen-
sion k = 3 in Z". In this case, its isomorph in H" can be represented using
cubes, as depicted on Figure D.7. Then, the center z* of these 8 cubes has a
dimension (n — 3) and is critical in the sense that |35 (z*)| is an union of two
disjoint 1-surfaces, and then it is not a 1-surface. So we “proved” the case
k = 3 too.

In fact, for the general case k € [2,n], it can be proven that, if we denote
by p and p’ the isomorphisms of the two points p and p’ respectively into the
cubical complexes H", starting from the formulation 91 = a(X) N a(Y), we
obtain:

Ba(=) = (a7 (p) Ua=(p") N (27,
which can be decomposed into two orders |[a”(p) N B7(z*)| and |a"(p’) N
B (2*)| which are disjoint (n — 2 — dim(z))-surfaces, and then their union is
not a (n — 2 — dim(z))-surface.

Study of the direct sense Since we have explained how we proceed in
the countersense, let us show how we proceed in the direct sense.

We want to prove that if X is digitally well-composed, then ZMM (X))
is well-composed in the sense of Alexandrov, which can be proven by the
fact that for any element z of the boundary 91, we have that |85(2)| is a
(n — dim(z) — 2)-surface. In fact, we will proceed by induction. We define
the property (Pj) such that if this property is true for any value k € [1,n],
then X is well-composed in the sense of Alexandrov:

(Pr) = {Vz € MNH}_,, |Bn(z)| is a (n — 2 — dim(2)) — surface} .

Obviously, the case k = 0 is not necessary, since no point of the boundary
N is a n-cube.

So let start with k& = 1: in this case, z is a (n — 1)-face, and then 37(z)
is empty, which means that |35(z)| is a (—1)-surface since it is the empty
order. Let us continue with & = 2. In this case, z is a (n — 2)-face, and
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Figure D.7: From the 3D critical configuration to the critical point.
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Figure D.8: Assuming that X is DWC, |85(2)| is a O-surface when dim(z) =
-2 (k=2).

then it is sufficient to proceed cases by case (modulo symmetry, rotation, and
complementation), as shown by Figure D.8. The isomorphism of X restricted
to B2(z) is depicted using blue faces, and the isomorphism of ¥ = Z" \ X
restricted to $”(z) is depicted using red faces. Since we have the relation
N = a(X)Na(Y), we obtain in the two DWC cases (on the left and at the
middle) that the intersection of the closure of the blue faces and the closure
of the red faces makes a O-surface in 8”(z) (depicted in black), since its
restriction to 87(z) is made of two points which are not neighbors the one
of the other one. The case k = 2 is then treated.

For the cases k € [3,n], we can proceed by induction on k since the
initialization succeeded. So let us assume that k € [3,n] is given and that
the property (7,) is true for any | € [1,k — 1], we want to prove it for k.

In this case, z is a (n — k)-face with & > 3, which means that dim(z) <
(n — 3), and then (n — 2 — dim(z)) > 1. Tt is clear then that |85(2)| is
a (n — 2 — dim(z))-surface iff we have two conditions: (1) |35 (2)| must be
connected, and (2) for any point u of 85(2), ]9?g(2)| must be a (n—3—dim(z))-

surface.

Even if the secund condition seems to be much more complicated than
the first one, it is in fact the converse. Effectively, it it easy to prove by a
simple calculus that |9?D (o] 15 equal to:

N

B () = | (w) 1 B7(2)

which corresponds to an order join of |55 (u)| which is a (n — 2 — dim(u))-
surface by the induction hypothesis and |a”(u) N 7(2)],

Y
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prove it is a (dim(u) —dim(z) — 2)-surface. Since an order join of a k;-surface
and of a ko-surface is a (k; + kg + 1)-surface by Theorem 15, "9?5 (Z)\ is a
n

(n — 3 — dim(z))-surface. Then (2) is proven.

To prove (1), we assume that there exists z € H"_, such that |85(z)]
is not connected. We will see that this hypothesis is essential, since many
properties will follow on, until we reach a contradiction.

Assuming |(5(2)| is not connected obviously means that it is made of
several connected components, that we will denote by {Fj}, ;. The first
fundamental property is that each component F}, i € Z, is a (n —2—dim(z))-
surface because they are connected (by definition) and because we can prove
that for any u € Fj, we have |#7| which is equal to |6)ﬂ|:’th (o> Which is a

(n — 3 — dim(z))-surface, and then Fj is a (n — 2 — dim(z))-surface.

I
l

O
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I
]

O

Q
Q
Q
o

OO0 o0 e

Figure D.9: Examples of opposites in H2.

Starting from this first property, a secund fundamental property follows
on: for ¢ € Z, a same component F; cannot contain opposite faces relatively
to z. Roughly speaking, opposite faces are two faces which are symmetrical
relatively to a third face (see Figure D.9). Effectively, we can feel that if
one first component contains two opposite face in 52(z), it will separate any
other component of |85(z)], which is impossible since each F; is connected
by hypothesis.

Now that we know that each component F; cannot contain two opposite
faces, the third fundamental property can be proven: each of them contains
exactly (n — dim(z)) (dim(z) + 1) faces of 8”(z). For example, in the 3D
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Figure D.10: Structure of 35 (z) when we have (n — dim(z)) = 3 assuming
that |85(2)] is not connected.

case, that is for dim(z) = (n—3) as on Figure D.10, where (dim(z) + 1)-faces
are depicted in red, each component contains exactly 3 (dim(z) + 1)-faces.
Since there are 2(n — dim(z)) of these faces in 87(z), |85(2)| is made of 2
components £} and F5.

Using these three fundamental properties, it can be proven that each
of these two components F; and F3 lies in the closure of characteristical
n-faces a,b € H! that we define here as the supremum of the (dim(z) + 1)-
faces contained in each of them. More precisely, |Fi| C |ozD(a) N ﬂ'j(z)|
and |F»| C |a”(b) N 87(2)|. Furthermore, since we can prove that two k-
surfaces which are included the one in the other one are equal and since
|a"(a) N f7(2)| and |a=(b) N 7(2)| are two (n — dim(z) — 2)-surfaces like
the components F; and F5, we obtain that:

a”(a) N B7(2)
a”(b) N B7(2)

[P =
|[Fy| =

Y

On Figure D.10, representing the 3D case (dim(z) = n — 3), the first compo-
nent made of red 1-faces and of blue 2-faces on the left lies in the closure of
the 3-face a (in the subspace ”(z)) and the second component made of red
1-faces and of blue 2-faces on the right lies in the closure of the 3-face b (in
the subspace 37(z)).
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The link between the configuration we obtained in H by assuming that
|85(2)] is not connected and a critical conguration is then clear: since 5(z) C
N, if a belongs to X, then the rest of the block minus b belongs to Y, and
then b belongs to X to, and we obtain a critical configuration of primary
type in X. The dual reasoning leads to a secundary critical configuration
in X. In both cases, we obtain a contradiction. Then |35(z)| is connected.
Finally, ZMM(X) is well-composed in the sense of Alexandrov when X is
digitally well-composed.

Conclusion for sets Finally, we obtain the following conjecture:

Conjecture 8. A set X C Z" is DWC iff its immersion ZMM(X) into the
Khalimsky grids |H"| is AWC, that is, is such that its topological boundary
OLIMM(X) is made of disjoint (n — 1)-surfaces.

Conclusion for plain maps Starting from a function u : Z" — R, we can
compute its immersion U : H" ~ R into the Khalimsky grids, defined such
that:

0 _ J {u(Za(h)} if z € Hy,
vh € H",U(h) = { Span{U(q) ; ¢ € B(z) NH}} either .

Note that U is a plain map (see Section C.19).

On Khalimsky grids, for a given plain map U : H" ~» R, the following
threshold sets exist [124]:

Definition 119. Let U : H" ~» R be a given plain map. We say that this
map is well-composed in the sense of Alexandrov or AWC iff, for any value

of A € R, the connected components of the topological boundary of each of its
threshold sets [U > M|, [U > A], [U < A], and [U < A are (n — 1)-surfaces.
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We obtain finally the following conjecture for maps:

Conjecture 9. A real-valued image u : " — R is DWC' iff its immersion
U :H" ~ R into the Khalimsky grids is AWC.

Obviously, we can use functions v : D — R defined on a bounded hyper-
rectangle D as domain, in this case we obtain with the same procedure an
immersion U : a(H,(D)) ~» R defined on the closed subset a(#,(D)). We
will still have that u is DWC iff U is AWC.
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Appendix E

Well-composed Interpolations
on Polyhedral Complexes

In this chapter, we assume that the domain of the initial function is either the
set of n-faces of either a discrete n-surface or what we call a bordered n-surface
(see the definition below), both in a polyhedral complex. We also assume that
this domain is finite in the sense that it is made of a finite number of faces,
to ensure the convergence of the front propagation we will use on the image
defined on this domain. The first interpolation that we propose is based on
the derived neighborhoods and the second one is based on the chain complex
of the hierarchical subdivision (introduced in this thesis). In both cases, we
obtain AWC interpolations in the sense that the topological boundaries of
the (closure of) threshold sets are disjoint union of (n — 1)-surfaces. Also,
by computing the underlying polyhedra of the n-faces of the dual cells on
which are defined the interpolations, we will see that our interpolations are
also CWC' the boundaries of underlying polyhedra of their threshold sets
are (n — 1)-manifolds.

E.1 Introducing new mathematical background

In this section, we extend the usual definition of border and interior to homo-
geneous orders, that we will use to define AWCness for subsets of polyhedral
complexes. Then, we follow with the introduction of a combinatorial verison
of the dual cells of Hudson (coming from PL topology), and with our defini-
tion of (simplicial) cell complexes. We continue with the natural extension of
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AWCness to cell complexes and functions defined of cell complexes, and we
finish with the definition of CWCness applied to cell complexes and function
defined on them.

E.1.1 Border and Interior

Let us recall the definition of homogeneity of an order.

Definition 120 (Homogeneity [41]). Let | X| = (X,ax) be a CF-order of
finite rank n > 0. We say that |X| is homogeneous iff for any element
f e X, the set B(f) N X, is non-empty.

Since orders are in equivalent to Alexandrov spaces, that is, supplied
with a topology, we can define the border (drew from the face boundary of
Latecki), and then the interior, of an order in this manner:

Definition 121 (Border and Interior of an order). Let |X| = (X, ax) be
an homogeneous CF-order of finite rank n > 0. We denote by Char(X) the
characteristical faces of | X| defined such that:

Char(X) ={f € X,,_1; Card (B(f) N X,) = 1},

we can then define the border, denoted by AX, of |X| such that it is the
closure of the characteristical faces of X :

AX= | ax(f)

feChar(X)
Then we call the interior of | X| the set |a(X)\ AX| and we denote it Int(X).

Note that we differentiate in this thesis the the topological boundary 0.X,
where X is a subset of an Alexandrov space A, from the border AX, which
does not need a greater space like A to be well-defined. Since we are going
to work with Alexandrov spaces which can be finite, we will use borders and
not topological boundaries.

Figure E.1 depicts the border of a polyhedral complex being an homoge-
neous order.

From now on, we will only work with homogeneous orders.
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Figure E.1: A polyhedral (simplicial) complex (on the left) and its border.
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Figure E.2: Among these orders, the only bordered 2-surface is the one on
the right.

E.1.2 Bordered n-surfaces

Real signals are always definite on a bounded domain, which justifies the
introduction of a definition of (finite) bordered m-surfaces, which represent
low constrained domains with nice topological properties.

Definition 122 (Bordered n-surfaces). Let |X| = (X, ax) be a CF-order,
whose cardinal is finite, of rank n > 1, such that it is connected and such
that its border AX is non-empty. Then, if, for any z € Int(X), |65 ()| is a
(n — 1)-surface, and if AX is a disjoint union of (n — 1)-surfaces, then |X|
is said to be a bordered n-surface.

Figure E.2 shows some examples of topological structures that are not
bordered n-surfaces except the last one which is a bordered 2-surface. The
interior is depicted in red in the Hasse diagrams, and the border is depicted
in blue. The first example is a CF-order of rank 2, but its boundary is not
a 0-surface since the two faces in it are neighbors. The secund example is a
CF-order of rank 1, and then is not a bordered n-surface. The same reasoning
holds for the third example. For the fourth example, which is of rank 2, we
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Figure E.3: A triangulated Mobius ruban is a bordered 2-manifold.

can see that the border is connected, but is not a 1-surface, and then this
structure is not a bordered 2-surface. Finally, the fifth example verifies all
the constraints, and then is a bordered 2-surface.

Also, Figure E.3 shows a Mdbius ruban which has been triangulated: it
is a bordered 2-surface since its boundary is a 1-surface, and since for any
point z at the interior of the ruban, the neighborhood |07 ()| is a 1-surface.

Finally, note that these examples are made of simplices, but any complex
supplied with an order relation can be a bordered n-surface, as shown of
Figure E.4. On the left, we have a cubical complex of rank 2, whose border
is not a l-surface: there exists one “critical point” in the boundary such
that it admits four neighbors, and then the border is not a 1-surface, which
implies that this structure is not a bordered 2-manifold. At the contrary,
on the right, we have a connected CF-order of rank 2, with a non-empty
border which is made of two disjoint (n — 1)-surfaces, and such that for any
interior point, the #”-neighborhood is a 1-surface. Then, this is a bordered
2-manifold.

In fact, we will see in the sequel that these orders seem to be the lowest
constrained orders needed to obtain AWC interpolations using our method.

Conjecture 10. The chain complex of a bordered n-surface is also a bordered
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Figure E.4: On the left a topological structure that is not a bordered 2-
manifold, and on the right a bordered 2-manifold. Interiors are depicted in
black and borders in red.

n-surface.

E.1.3 AWCness on Polyhedral Complexes

Now, let us recall the definition of well-composedness in the sense of Alexan-
drov according to L. Najman [124] for any polyhedral complex supplied with
the canonical order D.

We recall that a polyhedral complex is said locally finite iff for any element
of this complex, the neighborhood of this point in this complex has a finite
cardinality.

Definition 123 (AWC Polyhedral Complexes [124]). Let |B€"| = (P, a)
be a (locally finite) polyhedral complex of rank n > 0 supplied with the canon-
ical order a =2, and let ABE" be its border. We say that PE"| is well-
composed in the sense of Alexandrov iff its border is a disjoint union of
(bordered or not) (n — 1)-surfaces. Also, we say that a subset S C PE™ is
well-composed in the sense of Alexandrov if |a(S)| is an AWC simplicial
complex.

By extension, we can define well-composedness in the sense of Alexandrov
for functions using threshold sets:

Definition 124 (Threshold Sets on Orders). Let |BE"| = (PE", a) be a
polyhedral complex of rank n > 0, and let D be a subset of P& : u is then
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Figure E.5: [u < 0] and [u < 1] are AWC, but [u > 1] is not AWC.

defined only on the n-faces of the polyhedral complex. Then, we define the
threshold sets of u : D — R such that:

[u> AN ={xeD; u(z) > A},
[u> A ={zeD; ulx) >},
[u< A ={xeD; u(z) <A},
[u< A ={zeD; ux) <A}

Definition 125 (AWC Functions on Polyhedral Complexes). Let |PE"| =
(BE", ) be a polyhedral complex of rank n > 0 supplied with the canonical
order a« =2, and let D be a finite subset of PC&. Now let u : D — R be
a real-valued function defined on D. We say that u is well-composed in the
sense of Alexandrov on D iff the border (of the closure in |PBE"|) of any
threshold set of u is a disjoint union of (bordered or not) (n — 1)-surfaces.

Let us denote that, without particular constraints on the domain of w,
we need to check the AWCness of both upper and lower threshold sets to
know if a function u is well-composed in the sense of Alexandrov, as shown
on Figure E.5.

E.1.4 Dual Cells

As we will see in the sequel, the following definition, using derivate neigh-
borhoods, will be needed:

Definition 126 (Dual Cells). Let K be a simplicial complex, and K" its first
derived neighborhood. For any element A € K. Then, we define A*, the dual
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Figure E.6: Dual cells.

cell of A, to be the following subcomplex:

A= () alBr ({{e}}).

{v}ca

Note that this definition is the combinatorial version of dual cells of Hud-
son [79]. The difference between these two definitions is that in PL topology
a point in R™ is this same point after a subdivision (like a barycentric sub-
division) when in combinatorial topology, a vertex {z} becomes a vertex
containing this vertex {{z}} after having computed a subdivision like the
chain complex, which explains this term in Definition 126.

Figure E.6 shows on the left a simplicial complex C', where A is a 1-
simplex and where B is a O-simplex. Both are elements of C. On the right,
we subdivided the complex C' by computing its first derived C!, that is, its
chain complex, in dotted lines. A* is then the intersection of the closures of
the stars of each O-simplex contained in A, and is the subcomplex depicted
in orange. B*, the dual cell of B, is computed in the same manner, and is
the subcomplex depicted in light blue.

E.1.5 Cell Complexes and AWCness

Definition 127 (k-adjacency). Let |C"| = (C", «) be any simplicial complex
of rank n > 0 supplied with the canonical order o =2. Two different faces
are said k-adjacent, k € [0,n], iff they share a face of rank equal to k but
not more.
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Figure E.7: From a partition of a simplicial complex to its corresponding cell
complex (one color by 2-cell).

Definition 128 (Strong Connectedness). Let |C"| = (C™, «) be any simpli-
cial complex of rank n > 0 supplied with the canonical order o =2. A set
S of n-faces of C™ is said strongly connected iff for any couple (h*,h?*) of
elements of S, there exists a finite sequence (¢° = h',... q" = h?) of (r+1)
elements of S such that for any i € [0,7—1], ¢' and ¢"™' are (n—1)-adjacent.

Since we want to be able to group together simplices of dimension n
and their faces into bigger and more complex cells, we propose the following
definitions. Effectively a same n-face in the initial polyhedral complex will
become during the procedure a vertex and then a simplicial subcomplex.
Since all the n-faces of this simplicial subcomplex will be valued the same
way, it can be useful to group them together to give back to the initial cell
its geometrical structure.

Definition 129 (Cells and Cell Complexes). Let |C"] = (C™, «) be any
simplicial complex of rank n > 0 supplied with the canonical order o =2.
Now let be any partition {P'}icr of the set C" of n-faces of C":

| |Pi=cp,

1€T

such that for anyi € I, P' is strongly connected. We say that each simplicial
subcomplex a(P?) of C™ is a n-cell of C' with respect to the partition {P'}cr.
Then, any closure a(f) of any (n — 1)-face f of the border of a n-cell is
a subcomplex of dimension (n — 1) that we call (n — 1)-cell with respect to
{P'}icz, and so on. The set €E" of all these k-cells, k € [0,n], is said to be
an simplicial cell complex corresponding to the partition {P'};cz. Note that
we will denote the k-cells of the cell complex €€™ by CC}.
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Figure E.8: Families of n-cells: AWC on the left and not AWC on the right.

Figure E.7 depicts a partition of the set of 2-cells of a simplicial complex
and its corresponding cell complex.

Definition 130 (AWC Family of n-Cells). Let |C"| = (C™, «) be any simpli-
cial complex of rank n supplied with the canonical order o =2 and let €C" be
an cell complex corresponding to any partition of C*. Now let X = {S%}ier
be a family of n-cells of €C". Then we say that X s well-composed in the
sense of Alexandrov into C" iff the border A of the simplicial subcomplex
U,z ' subset of C™ is a disjoint union of (bordered or not) (n—1)-surfaces.

Figure E.8 shows an AWC family of 2-cells on the left since its boundary
is made of a disjoint union of 1-surfaces, and on the right a family of n-cells
which is not AWC, since its boundar owns a “pinch”.

E.1.6 AWC Functions on Cell Complexes

Definition 131 (Threshold sets on a cell complex). Let |C"| = (C", «) be
any simplicial complex of rank n supplied with the canonical order « =2 and
let €&™ be an cell complex corresponding to any partition of C}'. Now let
u:D =& — R be a real-valued function mapping a real value to any
n-cell of C. Then, we define for any A € R the threshold sets of u on D

such that:
u> N ={xeD; u(x) > A},

[u= Al (

[u> A ={zeD; ulx) >},
[u< A ={zxeD; ulx) <A}
[u< A ={zreD; ulx) <A}

In other words, a threshold set is made of families of n-cells, and since
we have defined well-composedness for this kind of sets, we can define well-
composedness for functions defined on the n-cells of a cell complex.
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Figure E.9: Functions on cell complexes: AWC on the left and not AWC on
the right.

Definition 132 (AWC Functions on Cell complexes). Let |C"| = (C™, «)
be any simplicial complex of rank n supplied with the canonical order oo =2
and let €€ be an cell complex corresponding to any partition of C)'. Now let
u: €& — R be a real-valued function. Then we say that u is well-composed
in the sense of Alexandrov in C™ iff all the closures of the threshold sets of
u on €& are well-composed in the sense of Alexandrov in C™.

Figure E.9 shows an AWC function defined on a cell complex on the left:
any non-empty threshold set is a family of n-cells such that its boundary
is made of disjoint 1-surfaces, when on the right, we can observe that the
boundary of the threshold set [u > 2] of the function u defined on this same
cell complex is not made of simple closed curves.

E.1.7 Cell Complexes and CWCness

Let us recall that the definition of an underlying polyhedron of a geometric
simplex is given in Definition 96. Also, in the sequel, we will only consider
geometric simplices or geometric simplicial complexes.

Definition 133 (Underlying Polyhedron of a Cell Complex). Let C™ be any
simplicial complex or subcomplex of rank n > 0. Then its underlying poly-
hedron is denoted by Poly(C™) and is equal to:

Definition 134 (CWC Cell Complex). Let C™ be any simplicial complex
or subcomplex of rank n > 0. Then, C™ is said continuous well-composed
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Figure E.10: An image defined v on the n-dimensional convex polyhedral
domains of a polyhedral complex.

iff the topological boundary in R™ of the underlying polyhedron of C™ is a
(n — 1)-manifold.

Definition 135 (CWC Functions on Cell complexes). Let |C"| = (C™, «)
be any simplicial complex of rank n supplied with the canonical order o =2
and let €€ be a cell complex corresponding to any partition of C'. Now let
u: € — R be a real-valued function. We say that u is continuous well-
composed iff the topological boundary in R™ of the underlying polyhedron of
each non-empty thresholds sets is a (n — 1)-manifold.

E.2 Direct use of these tools fail to produce
a self-dual AWC function

Let us now explain how we could have used the existing mathematical tools in
matter of combinatorial topology and in piecewise linear topology to extract
the boundaries of an function defined on a polyhedral complex such that
their boundaries would have been discrete surfaces. We are going to see that
these solutions are not satisfying.

Among the different tools we are going to speak about: the chain com-
plexes, the simplicial neighborhoods, the derived neighborhoods, the frontier
orders.

Let assume now that a function w : PE; — R is defined on the n-
dimensional convex polyhedral domains of a polyhedral complex which is
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Figure E.11: Chain complex of the initial image.

either a n-surface (as a simplicial subdivision of a sphere or R"), or a bor-
dered n-surface (which seems more usual). Figure E.10 depicts such an im-
age, which is obviously not well-composed in the sense of Alexandrov: the
boundary of the threshold set [u < 1] is not a simple closed curve.

If we apply a chain complex on the domain of this image u, we obtain
Figure E.11. We can observe that each face becomes a vertex in the chain
complex, and then we preserve the geometry of the whole domain, but we
loose the one of the convex polyhedral domains which are valued. A solution
to give back the geometry to these cells could be that we use the simplicial
neighborhoods on the valued vertices, but in this manner we come back to
the initial configuration, and the pinches in the images are preserved.

Another available mathematical tool is the simplicial neighborhood, but
as we have just seen before, it is the inverse operation of the chain complex,
and then it will not permit us to increase the resolution of the cells in such
a way that we delete the pinches, and furthermore we need a simplicial
structure to use them.

Another possibility is then to use the derived neighborhoods. This struc-
ture needs to be applied on a simplicial complex, but the given domain of w is
a polyhedral complex. Let us then try to apply the same principle as the one
of the derived neighborhood but on the polyhedral complex: we start from
the set of n-faces corresponding to some threshold set, let us say [u > 2|, and
then we deduce the corresponding polyhedral subcomplex K as depicted on
the left of Figure E.12 in gray. Furthermore, we need this subcomplex to be
full (see Theorem 21), which leads to the definition of a new subcomplex, K,
as depicted in at the center of Figure E.12 in gray. Then we can compute the
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Figure E.12: Using derived neighborhoods directly on the initial domain does
not lead to a satisfactory result.

Figure E.13: Using derived neighborhoods on the chain complex of the do-
main of u does not lead to a satisfactory result neither.

border of its derived neighborhood on the polyhedral complex that we could
define as the simplicial neighborhood of the chain complex of K’ in the chain
complex of the initial polyhedral complex (we have then extended the defini-
tion of the derived neighborhood to polyhedral complexes). At the end, we
can observe that we effectively obtain a border made of one (n — 1)-surface,
and then we can imagine that in more complex cases, this border will also
be made of disjoint union of (n — 1)-surfaces. However, we have completely
destroyed the structure of the initial subcomplex K by making it full, so this
solution does not correspond to our needs.

Let us now try another approach with derived neighborhoods, but on
simplicial complexes to avoid pathological situations as the one seen just
before. Let us then use the chain complex on the polyhedral domain of the
image u, and let us transpose the values of the image u onto the new image
defined on C*, which gives a new image u/. We obtain Figure E.13, where
we can see that the derived neighborhood of any threshold set has a border
made of disjoint (n — 1)-surfaces. However, we can observe that the border
of the derived neighborhood of the threshold set [u/ > 0] does not cover the
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Figure E.14: Using frontier orders on the chain complex of the closure of the
domain of the image disconnects the pixels.

whole domain of u, which is problematic. Furthermore, we have lost the
connectivity between the initial cells, which means that the contours we will
obtain by thresholding v will not be representative. This solution is not good
neither.

The last “simple” solution seems then to be the frontier orders. Let us
first try them on a simplicial complex, since they can be used either on a
simplicial complex or on any partially ordered set. In this case, we have to
use it on the chain complex of the (closure of the) domain of u. Like before,
even if the borders are disjoint union of (n—1)-surfaces, we have disconnected
the initial pixels as shown on Figure E.14. Then we have to try the secund
solution, which leads finally to the same solution, since using frontier orders
on an order which is not a simplicial complex is the same thing as applying
it on its chain complex.

Note that if the (closed) domain of u had been a simplicial complex C,
we could have used directly the frontier orders as depicted on Figure E.15:
we compute the threshold set [u > 1] and we deduce its support K. Then
K’ is the complement of K into the support of C, and we obtain the frontier
order depicted by the red line and the squares. The result is a frontier order
which overlaps the simplices corresponding to [u < 1], and then this solution
is not self-dual: it overemphasizes the ones over the zeros. This solution does
not corresponds neither to our needs.
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Figure E.15: Using directly frontier orders on a simplicial complex is not
self-dual.
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Figure E.16: From u defined on the n-cells of a polyhedral complex to U
defined on all the faces of the complex.

E.3 An n-D AWC Interpolation

Now let us present our solution, which finally seems very natural: starting
from the observation that derived neighborhoods “disconnect the pixels”,
we can simply proceed to an (in-between) interpolation on the whole (finite)
polyhedral complex, such that the connection between the pixels is preserved.

As for our digitally well-composed self-dual interpolation, we value all the
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Figure E.17: U’ defined on all the 0-faces of the subdivided complex.
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Figure E.18: The same image U’ with an additional border.

faces of our polyhedral complex using a new function, U defined such that:

{u(2)} if z € P&,
Span{u(z') ; 2’ € B(z) N PEL} either.

Vz e PE", U(z) =

Then we transpose as depicted on Figure E.17 the image U defined on all

the cells of the cell complex to its derived subdivision (depicted in blue) by

the operation (using the chain complex as described above):

vz} € P U'({2)) = U(2).

Then, to be able to compute a self-dual interpolation, we add a border to

the subdivided domain initialized at the median value of the border of the

initial image, which leads to Figure E.18.
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Figure E.20: v’ (without the temporary border).

We can finally apply the propagation algorithm explained before (see
Algorithm 3), which leads to the image uﬁr depicted on Figure E.19, and
w : (C¥")y — R as depicted on Figure E.20 after we have removed the
temporary border.

Note that the front propagation will assurely end since we are working
with domains of finite cardinals.

Note that this front-propagation algorithm does not need a structure of
cubical grid to be able to proceed: it works on any graph G = (V, E) where
V' are the vertices, that is, the domain of the propagation, and where E
denotes the “directions” of the propagation, that is, the (direct) connectivity
between cells.

Since we do not have yet drawn the contours of the future cells, we can
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Figure E.21: F([u’ < 1],C¥").

define the following subcomplex of C¥*¢" for any A € R:

Flw <A, C*) = {fec s fofw <A}

An example of this kind of subcomplex is depicted on Figure E.21 where
we drew F([u” < 1],C%").

Some remarks about this subcomplex:

e it is full into C*¢" by construction

e when B¢" is a bordered n-surface, C¥®" is also a bordered n-surface
(if Conjecture 10 is true), and then by Theorem 21, the border of the
derived neighborhood of the full subcomplex F([u> < 1],C¥") is a
disjoint union of (n — 1)-surfaces.

The second property is depicted on Figures E.22, E.23, and E.24 where
F([uw> < M],C¥") is drawn in orange and the corresponding border is in
red. As we can observe, these boundaries are simple closed curves, that is,
1-surfaces in the derived subdividision of the chain complex of the initial cell
complex.

Since this formulation is not particularly easy to manage, we can use the
formula of dual cells of Hudson [79]. Then, starting from any element A of
C¥®" we can compute its dual cell A* as follows:

A = () alBeverp({{}})),

{z}cA
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Figure E.24: AN (F([u’ < 0],C¥"),C¥").

where [C¥*®"]! denotes the first derived neighborhood of C¥®". A 0-face which
is valued in C*%" becomes a simplicial complex of rank n by duality, and we
are able to group these simplices into a simplicial n-cell to form a valued cell
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Figure E.25: The new valued cell complex representing an AWC function.

complex which is well-composed in the sense of Alexandrov (since any union
of any cells in this cell complex is AWC by construction).

Effectively, since the union of the n-faces of the dual cells of the 0-faces
of C*¢" covers [C¥*®"]!, we can partition the set of n-faces of this last set such
that: ([C*"]"),, = U eener P(A) with P(A) = (A*),. Using this partition, we
can defined a cell complex €€ corresponding to { P(A)} scewen. This way, we
obtain finally uawc : €€ — R defined such that Vz € €€ uawc(z) = v’ (O)
where C' € (C*¢") is such that 2z € C*.

Note that since the function uawc is only defined on n-cells, the threshold
sets of uawc are sets of n-cells, and then we compute the borders based
on the closures of the threshold sets: Aa(juawc > A)), Aa([uawe < A]),
Aa([uawe < A]) and Aa([uawe > A).

We obtain finally the equalities:
YA € R, Aa([uawe > A])) = ANYF([u’ > A],C¥"), ¥,
YA € R, Aa([uawe < A)) = ANYF([u’ < A],C¥), P,
VA € R, Aa([uawe > A])) = ANYF ([’ > N],CFE"), CF),
VA € R, Aa(fuawe < A]) = ANY(F ([’ < A, C*),CP),
and for this reason, we propose the following conjecture:

Conjecture 11 (A first AWC/CWC interpolation). Let n be a finite in-
teger such that n > 2, and let u be a real-valued image defined on the n-
dimensional convex polyhedral domains of a polyhedral complex, which is a
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Figure E.26: Cubical subdivision VS double derived subdivision.

n-surface (with or without border). Then, any image uawc valued on the cell
complex computed like it is described in this section is well-composed in the
sense of Alexandrov and continuous well-composed. This method is self-dual.

Note that the geometry of the cells is not preserved.

E.4 Another n-D AWC Interpolation

We observed that due to the derived neighborhood, the geometry of the
cells are not preserved (see Figure E.26), even if we start from a cubical
cell complex. Then, we propose an alternative: we still use a sequence of
two subdivisions, but the first one is replaced by an hierarchical subdivision
(introduced hereafter), which attenuates the deformation of the original cells.

E.4.1 Introducing the hierarchical subdivision

We define an hierarchical subdivision as following:
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Figure E.27: From a cell complex to its hierarchical subdivision.

Definition 136 (Hierarchical subdivision). Let |O| = (O, «) be a partially
ordered set. Then we define the hierarchical subdivision of the order O as:

SH(O) ={a(a) N B(b) ; Ja,b € O,afa) N B(b) # 0},

supplied with the canonical relation order O. Obviously, |[SH(O)| is an order.

E.4.2 An AWC interpolation based on hierarchical sub-
division
Applied to a polyhedral complex |BE€"|, which is closed by inclusion, the
hierarchical subdivision provides a new structure that is depicted on Fig-
ure E.27. On the left, we draw the initial cell complex, where 2-faces are
depicted in blue, 1-faces are depicted in green, and O-faces are depicted in
red. On the right, since any face h € PE" leads to a 0-face a(h)NG(h) = {h}
into SH(BC"), we represent them using the orange points. Note that the
O-faces in SH(PE") which come from O-faces in O are depicted using big-
ger disks. Then, for any couple (a,b) € O such that a = b, it is clear that
a(a) N B(b) = {a,b}, and since p({a,b}) = 1, we depict it using an edge
(in yellow) linking {a} and {b}. Finally, for the couples (a,b) of elements of
O such that there exists a third element ¢ € O such that a > ¢ > b, then
a(a)Np(b) is of rank 2 in [SH(O)|, and then is depicted by a purple polygon.

After we have computed the hierarchical subdivision, we have the “cen-
ters” of the new cells, but we still need to draw the cells around these centers.
To this aim, we compute the chain complex of |[SH(O)|, which results in a
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Figure E.28: From the hierarchical subdivision of a polyhedral complex to
its chain complex.

___O0—1

Figure E.29: The cell complex resulting of the chain complex of the hierar-
chical subdivision: the geometry of the initial cells is preserved.

triangulation of SH(QO). On Figure E.28, this chain complex is depicted in
pink.

Now that we have drawn the triangulation of the hierarchical subdivision,
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Figure E.31: The propagation.

we are able to compute the dual cells of the orange vertices. For any element
A € SH(0O), its dual cell A* is the subcomplex resulting from the intersection
of the star in the chain complex of the vertices of A in the hierarchical

subdivision:
A= () alBesno ({{z}))).

{z}cA
By grouping all these subcomplexes in one set, we obtain a cell complex
where the geometry of the cells has been preserved.

Figure E.30 shows that like for the AWC interpolation we presented be-
fore, we value each face of the face of the cell complex by the span of the
values of the image on the star neighborhood of the face, which makes U.

Then, we transpose the computed values on the sudivided domain, and we
obtain U’.

Then we are able to proceed to the front propagation, after having added
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Figure E.32: A self-dual interpolation of w.

the border valued at the median of the border of the initial image (see Fig-
ure E.31).

According to us, the resulting image uawc on the cell complex is well-com-
posed in the sense of Alexandrov, continuous well-composed, and self-dual,
since we use the median of the border of the initial image to intialize the
outer border before the propagation (as shown on Figure E.32 where the
median is equal to 1).

Conjecture 12 (A second AWC/CWC interpolation). Let n be a finite in-
teger such that n > 2, and let u be a real-valued image defined on the n-
dimensional convex polyhedral domains of a polyhedral domain, which is a
n-surface (with or without border). Then, any image uawc valued on the cell
complex computed like it 1s described in this section is well-composed in the
sense of Alexandrov and continuous well-composed. This method is self-dual.
Furthermore, the geometry of the cells in the initial domain s preserved.

E.4.3 Mathematical properties of the hierarchical sub-
division

In this section, we denote some remarkable properties of our hierarchical
subdivision.

276



Property 14. Let |O] = (O, «) be a partially ordered set which is connected.
Then, its hierarchical subdivision is also connected.

Proof: Let |O] be a connected poset, and let |[SH(O)| be its hierarchical
subdivision. Now, let z,y be two elements of |SH(O)| and let show that
they are connected. x belongs to SH(O) and this way there exist a,, b, in
O such that x = a(a,) N G(b,) # 0. For the same reason, there exist ay, b,
in O such that y = a(a,) N B(b,) # 0. Obviously, a(a,) N B(b,) is connected
to {b,} into |SH(O)|, and a(a,) N B(by,) is connected to {b,} into [SH(O)].
It is clear that b, and b, are connected by hypothesis. Then there exists a
path m = (¢ = b,,...,q" = b,) such that for any i € [0,r — 1], ¢'* € 05(¢")
joining x and y into O. From this path, we can deduce the following sequence:

™ =({¢"} = {b.}, (" V)N B Ng), {d'}, ... {d"} = {b,}),

which is clearly a path in |[SH(O)|. The existence of this path implies that
x and y are connected into |[SH(O)|. The proof is done. O

Conjecture 13. Let |O| be a non-empty, closed order of finite rank, and let
SH(O) be its hierarchical subdivision. Then p(|[SH(O)|) = p(O).

Conjecture 14. Let |O| be a non-empty, closed order of finite rank, and let
SH(O) be its hierarchical subdivision. Then, if |O] is a n-surface, |SH(O)|
is a n-surface too.

Note that this property is easy to verify for the cases n = 0 and n = 1
by observing the Hasse diagrams of these n-surfaces and their respective
hierarchical subdivision.

Apllied to a convex linear cell complex, we obtain:

Conjecture 15. Let ['BPE"| be a convex linear cell complex of dimension
n supplied with the order relation O, and let |SH(PE™)| be its hierarchical
subdivision. Then, if 'BE"| is a n-surface (respectively a bordered n-surface),
|SH(PBE™)| is a n-surface (respectively a bordered n-surface).

We also observed that the borders of each cells in the new cell complex
were 1-surfaces in the 2D case, and we think it can be generalized in n-
D. Effectively, starting from a convex linear cell complex such that it is a
n-surface, its hierarchical subdivision is also a n-surface. Then, when we
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Figure E.33: The dual cell resulting from the chain complex of the hierarchi-
cal subdivision.

compute the dual cell of a vertex {x} of the hierarchical subidivision, we
obtain its dual cell A* such that:

A" = a(Besumen ({{z}})),

which is equal to the simplicial neighborhood of {{z}} into CS™*¥") which
we assume to be a n-surface and a simplicial complex. For this reason, we
think that computing the border of this cell has the same properties as the
border of a derived neighborhood, and then is a (n — 1)-surface.

Conjecture 16. Let |PE"| be a convex linear cell complex of dimension
n supplied with the order relation 2O, and let |SH(PE")| be its hierarchical
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subdivision. Then, if |'BE"| is a n-surface (with or without border), then
the border of the dual cells of the vertices of the hierarchical subdivision are
(n — 1)-surfaces (in the chain complex of the hierarchical subdivision).

Figure E.33 shows in the raster scan order a convex cell that is a tetra-
hedron, its hierarchical subdivision, the chain complex of the hierarchical
subdivision, and (a part of) the dual cell. The final cell preverves the geom-
etry of the original cell, and its boundary is a (n — 1))-surface.

E.5 A self-dual continuous representation on
polyhedral complexes

As seen in Section 5.2, we can easily obtain a self-dual plain map (see Sec-
tion C.19) representing a given image u defined on the n-faces of a cubical
complex. This is also true on polyhedral complexes, as depicted on Fig-
ure E.34.

Conjecture 17. Let u : P& — R be a real-valued image defined on the
n-faces of a polyhedral complex. Using the numerical scheme described in
Figure FE.34, the image Upawc @ €€" — R defined on a cell complex and re-
sulting from a span-based immersion of one of our two self-dual interpolations
uawe : €€ — R is an AWC plain map.
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Figure E.34: Our self-dual representation on cell complexes.
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Abstract Digitization of the real world using real sensors has many drawbacks; in
particular, we loose “well-composedness” in the sense that two digitized objects can be
connected or not depending on the connectivity we choose in the digital image, leading
then to ambiguities. Furthermore, digitized images are arrays of numerical values, and
then do not own any topology by nature, contrary to our usual modeling of the real world in
mathematics and in physics. Loosing all these properties makes difficult the development
of algorithms which are “topologically correct” in image processing: e.g., the computation
of the tree of shapes needs the representation of a given image to be continuous and well-
composed; in the contrary case, we can obtain abnormalities in the final result. Some
well-composed continuous representations already exist, but they are not in the same time
n-dimensional and self-dual. n-dimensionality is crucial since usual signals are more and
more 3-dimensional (like 2D videos) or 4-dimensional (like 4D Computerized Tomography-
scans), and self-duality is necessary when a same image can contain different objects with
different contrasts. We developed then a new way to make images well-composed by
interpolation in a self-dual way and in n-D; followed with a span-based immersion, this
interpolation becomes a self-dual continuous well-composed representation of the initial n-
D signal. This representation benefits from many strong topological properties: it verifies
the intermediate value theorem, the boundaries of any threshold set of the representation
are disjoint union of discrete surfaces, and so on.

Résumé Le processus de discrétisation faisant inévitablement appel a des capteurs, et
ceux-ci étant limités de par leur nature, de nombreux effets secondaires apparaissent alors
lors de ce processus; en particulier, nous perdons la propriété d’étre ”bien-composé” dans le
sens ou deux objects discrétisés peuvent étre connectés ou non en fonction de la connexité
utilisée dans I'image discrete, ce qui peut amener a des ambigiiités. De plus, les images
discrétisées sont des tableaux de valeurs numériques, et donc ne possedent pas de topolo-
gie par nature, contrairement a notre modélisation usuelle du monde en mathématiques
et en physique. Perdre toutes ces propriétés rend difficile ’élaboration d’algorithmes
topologiquement corrects en traitement d’images: par exemple, le calcul de I'arbre des
formes nécessite que la representation d’une image donnée soit continue et bien-composée;
dans le cas contraire, nous risquons d’obtenir des anomalies dans le résultat final. Quelques
representations continues et bien-composées existent déja, mais elles ne sont pas simul-
tanément n-dimensionnelles et auto-duales. La n-dimensionalité est cruciale sachant que
les signaux usuels sont de plus en plus tridimensionnels (comme les vidéos 2D) ou 4-
dimensionnels (comme les CT-scans). L’auto-dualité est nécéssaire lorsqu’une méme image
contient des objets a contrastes divers. Nous avons donc développé une nouvelle fagon de
rendre les images bien-composées par interpolation de facon auto-duale et en n-D; suivie
d’une immersion par ’opérateur span, cette interpolation devient une représentation auto-
duale continue et bien-composée du signal initial n-D. Cette représentation bénéficie de
plusieurs propriétés topologiques fortes: elle vérifie le théoreme de la valeur intermédiaire,
les contours de chaque coupe de la représentation sont déterminés par une union disjointe
de surfaces discretes, et ainsi de suite.
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