Difference between revisions of "Publications/baarir.15.lpar"

From LRDE

 
Line 15: Line 15:
 
| type = inproceedings
 
| type = inproceedings
 
| id = baarir.15.lpar
 
| id = baarir.15.lpar
  +
| identifier = doi:10.1007/978-3-662-48899-7_6
 
| bibtex =
 
| bibtex =
 
@InProceedings<nowiki>{</nowiki> baarir.15.lpar,
 
@InProceedings<nowiki>{</nowiki> baarir.15.lpar,
Line 27: Line 28:
 
pages = <nowiki>{</nowiki>79--87<nowiki>}</nowiki>,
 
pages = <nowiki>{</nowiki>79--87<nowiki>}</nowiki>,
 
publisher = <nowiki>{</nowiki>Springer<nowiki>}</nowiki>,
 
publisher = <nowiki>{</nowiki>Springer<nowiki>}</nowiki>,
  +
doi = <nowiki>{</nowiki>10.1007/978-3-662-48899-7_6<nowiki>}</nowiki>,
 
volume = <nowiki>{</nowiki>9450<nowiki>}</nowiki>,
 
volume = <nowiki>{</nowiki>9450<nowiki>}</nowiki>,
 
series = <nowiki>{</nowiki>Lecture Notes in Computer Science<nowiki>}</nowiki>,
 
series = <nowiki>{</nowiki>Lecture Notes in Computer Science<nowiki>}</nowiki>,

Latest revision as of 11:29, 1 April 2019

Abstract

We describe a tool that inputs a deterministic -automaton with any acceptance condition, and synthesizes an equivalent -automaton with another arbitrary acceptance condition and a given number of states, if such an automaton exists. This tool, that relies on a SAT-based encoding of the problem, can be used to provide minimal -automata equivalent to given properties, for different acceptance conditions.

Documents

Bibtex (lrde.bib)

@InProceedings{	  baarir.15.lpar,
  author	= {Souheib Baarir and Alexandre Duret-Lutz},
  booktitle	= {Proceedings of the 20th International Conference on Logic
		  for Programming, Artificial Intelligence, and Reasoning
		  (LPAR'15)},
  title		= {{SAT}-based Minimization of Deterministic
		  $\omega$-Automata},
  year		= {2015},
  month		= nov,
  pages		= {79--87},
  publisher	= {Springer},
  doi		= {10.1007/978-3-662-48899-7_6},
  volume	= {9450},
  series	= {Lecture Notes in Computer Science},
  abstract	= {We describe a tool that inputs a deterministic
		  $\omega$-automaton with any acceptance condition, and
		  synthesizes an equivalent $\omega$-automaton with another
		  arbitrary acceptance condition and a given number of
		  states, if such an automaton exists. This tool, that relies
		  on a SAT-based encoding of the problem, can be used to
		  provide minimal $\omega$-automata equivalent to given
		  properties, for different acceptance conditions.}
}