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(Souheib.Baarir,Jean-Michel.Ilie, Alexandre.Duret-Lutz@lip6.fr)
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Introduction
The coloured Petri nets formalism is an expressive model ex-
tending the representation of concurrency by Petri nets with a
data management via coloured domains and functions. How-
ever this expressiveness leads in practice to huge state graphs
considerably restricting their use for the reachability and the
model checking problems.

Therefore, a recurrent research topic is the building of a
reduced graph equivalent to the original one w.r.t. some set
of properties. Among the proposed approaches, the symme-
try based method builds a symbolic reachability graph (SRG)
where a node corresponds to a set of states leading to an
equivalent behaviour up to some “admissible” colour permu-
tation. In order to be applicable, such a method must detect
the admissible permutations by a syntactical examination of
the net. This requirement has motivated the introduction of
the well-formed nets model which is expressively equivalent
to the coloured Petri net model but with a restricted syntax
allowing the automatic computation of the SRG (Chiolaet
al. 1993). On this reduced graph, one solves the reachability
problem.

However, the above approach suffers from a major limita-
tion. It is well-known that without process identities, many
distributed problems do not have solutions. Indeed in dis-
tributed algorithms, identity comparisons break deadlocksit-
uations. Modelling such algorithms produces nets whose be-
haviour is symmetric with the exception of a small set of tran-
sitions. Symmetry-based methods are not able to efficiently
handle partial symmetries since they require a symmetry upon
the whole model.

Here, we present the design and evaluation of a method
for partially symmetric systems expressed with well-formed
nets. It concentrates on the reachability problem and refines
the concepts presented in (Haddadet al.2000) and (Capraet
al. 1999).

Description of the DSRG method
Our approach may be summarized as follows: (1) The asym-
metric system is modelled as the synchronized product of
a symmetrical model SYM, which represents the potential
behaviour of the system but does not abstract some situa-
tions which are actually prohibited, and a control automaton
CTRL that restricts the former potential behaviour up to ob-
tain the real one; (2) a compact structure called Dynamical
SRG (DSRG) is built, in particular by means of original sym-
bolic operations like the symbolic refinement, grouping and
inclusion test.

The modelling stage
In the standard WN modelling approach, the control policy is
strongly coupled with the nominal description of the system.
This often leads to complex nets hard to read and analyze.
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Figure 1: Modelling of a distributed algorithm with priorities
for a critical section

In Figure 1, a distributed critical section algorithm is mod-
elled in WN. The critical section accesses correspond to the
firings of thet4 transition, however, to bypass possible con-
flict situations, a control policy is modelled by several ele-
ments : theSl place, thet6 transition (immediate then priv-
ileged) and thet7 transition. Moreover, the selection of a
colour in theSl place is based on the identities of colours due
to guard[x < y] attached to thet6 transition (This guard en-
sures that the highest colour will be put inSl, among the can-
didates). Beyond the modelling difficulty, the analysis prob-
lem comes from the fact that in WN, the former guard does
not allow any colour permutation, so none set of markings
could be considered as symmetric!
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Figure 2: A symmetrical WN (SYM)for the DCS algorithm
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Figure 3: A control automaton (CTRL)

By decoupling the control policy and representing it by
means of anexternal component, the WN modelling is re-
duced to the nominal behaviour of the system. As we can
see in Figure 2, the net is less complex than the one of Fig-
ure 1 and there is no more distinction between the colours
(We say that thenet is symmetric). The aim of the exter-
nal component is to obtain the real behaviour of the system,
once composed with the symmetrical WN. In this paper, we
propose to use an event-based automaton, namely control au-
tomaton, to control the firings of the transitions by means of
synchronization operations. Each arc of the automaton is la-
belled by a boolean expression made of atomic propositions
being predicates controlling the WN actions. In Figure 3, the
arc labelled byt4[max(x)] means that among a given set of
possible events for thet4 transition, only the event that corre-
sponds to the highest value for the variablex is allowed.

The symbolic representation
Let us recall that in standard WN, each colour class is parti-
tion in subsets called static-subclasses, such that the colours
within each subset can be permuted.

The symbolic reachability graph (SRG) lies on a com-
pact representation for a set of equivalent ordinary markings,
called a symbolic marking (noted̂m). To specify a symbolic
marking, each static-subclass is divided into dynamic sub-
classes (further, the function that associates to each dynamic
subclass the corresponding static subclass is denotedd). A
dynamic subclass is only specified by its size (cardinality),
thus each consistent choice of colours for the dynamical sub-
classes leads to an ordinary marking. The colours implicitly
represented by a dynamic subclass are assumed to bein the
same state. Consequently, the marking of the places in the net
is defined w.r.t. to dynamical subclasses instead of colours.

For instance, assume that the WN of Figure 2 allows to
reach the following three markings:idle(〈1〉),Wt(〈2〉+ 〈3〉)
or idle(〈2〉),Wt(〈1〉+〈3〉) or idle(〈3〉),Wt(〈1〉+〈2〉). Each
one corresponds to the situation where one process is in its
idle state and the two others are waiting, attempting to ac-
cess the critical section. If we consider that all the colours
of the net can always be permutable, then there is no need
to partition the colour class of the net (the WN is symmetric)
and these three markings can be represented compactly by the
symbolic marking :idle(〈Z1〉),Wt(〈Z2〉) whereZ1 andZ2

are dynamic subclasses s.t.d(Z1) = d(Z2) = {1, 2, 3}, and
|Z1| = 1, |Z2| = 2 meaning that there is one process in its
idle state and two waiting processes.

In our context, we reuse the notion of symbolic marking
but the partition of colour classes is no more defined stat-
ically. Actually, the colour permutations that are declared
available must accord with both structures, the WN and the
control automaton. Our aim is to reevaluate them at each syn-
chronization operation in order to obtain for each symbolic
representation the roughest colour partition, thus enhancing

the possibility of marking symmetries. A symbolic marking
is now a pair〈L, m̂〉 whereL represents alocal partition of
colours used to build the symbolic representationm̂. We will
see in the next section how colour partitions are evaluated in
practise.

Computing the symbolic successors
One must definea symbolic synchronization operation
between a symbolic firing of the (SYM) WN of Figure 2 and
an arc of the CTRL automaton.
The first stage is to define a common set of symmetries
between the symbolic marking and the predicate associated
to the considered arc in the automaton. The symmetry
of a predicate corresponds to the existence of symmetric
atomic propositions within it. In our case, this is represented
by a partition of colours. For instance, predicate ”x > 2
and x ≤ 4” over 5 colours, produces a colour partition
{{1, 2}, {3, 4}, {5}}, predicate ”x < y” as well as predicate
”max(x)” produces a complete splitting in elementary parts
(the functionmax, returns the event with the highest priority
among the enabled ones). The predicates ”x = y” and
”x 6= y” produce no splitting at all. Once the common set of
symmetries is computed, the colour partition is sufficiently
refined to allow a symbolic satisfaction test.
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Figure 4: Symbolic refinement and firing w.r.t. an arc of
CTRL

According to a symbolic marking〈L, m̂〉 and the events
of a transition enabled from it, a symbolic synchronization
operation against an arc labelled by a predicateP of colour
partitionLP , is performed in the following three stages :

• A common colour partitionL′ is computed by intersecting
L andLP ;

• this requires torefinethe symbolic marking representation,
since some of the symmetries could now be prohibited;
a family {〈L′, m̂1〉, 〈L′, m̂2〉 , . . .} of symbolic markings
would be obtained.

• from each〈L′, m̂i〉, the set of enabled transitions (events)
is computed, and only those that satisfy the predicateP are



kept. Hence, a set of valid symbolic successorsSUCC is
obtained.

Assume that thet4 transition is a potential candidate for a
firing. In order to test the satisfaction of the predicatemax(x)
yielded by the control automaton (CTRL), a decomposition of
L in L′ = {{1}, {2}, {3}} is performed.

With respect to L′, the symbolic marking 〈L, m̂〉
is refined in the following three symbolic markings
〈L′, m̂1〉, 〈L

′, m̂2〉, 〈L
′, m̂3〉.

In fact, all these markings have the same general form
Rq(〈Z1〉) , Wt(〈Z2 + Z3〉) but their dynamic subclasses are
attached differently to the colour partition :
d(Z1) = {1}, d(Z2) = {2}, d(Z3) = {3} or
d(Z1) = {2}, d(Z2) = {1}, d(Z3) = {3} or
d(Z1) = {3}, d(Z2) = {1}, d(Z3) = {2}.

For each of these symbolic markings, a valid successor
is obtained by firing the transition, which corresponds each
time to take the highest colour in theWt place :〈L′, m̂′

1
〉 =

Rq(〈Z3〉) , Wt(〈Z1〉) , Cs(〈Z2〉).

〈L′, m̂′

2
〉 = Rq(〈Z1〉) , Wt(〈Z2〉) , Cs(〈Z3〉).

〈L′, m̂′

3
〉 = Rq(〈Z2〉) , Wt(〈Z1〉) , Cs(〈Z3〉).

So, the building of the Dynamic Symbolic Reachability
Graph (DSRG) looks like a standard algorithm for a reach-
ability analysis but uses symbolic markings and symbolic
operations which act on symbolic markings directly.

Reduction of the symbolic structure
In order to make the symbolic structure compact, we intro-
duce two new operations : thegroupingand theinclusionof
symbolic markings.

In particular, each setSUCC of symbolic successors can
be reduced by grouping several elements in a single pair
〈L, m̂〉. Moreover, there may be some elements inSUCC
that have already been visited, then can be discarded. Since
each symbolic marking are now associated with a different
colour partition, the equality test between symbolic repre-
sentations must be replaced by a more complex inclusion
operation.

Below, we formalize the definitions of the grouping and the
inclusion operation test. Consider that[〈L, m̂〉] represents the
set of ordinary markings represented by〈L, m̂〉.

Definition 0.1 (grouping) the symbolic marking〈Lm̂, m̂〉
is a valid grouping for the set of symbolic markings
{〈L, m̂1〉, . . . , 〈L, m̂n〉} iff
∪i=1...n [〈L, m̂i〉] = [〈Lm̂, m̂〉].
Note that the refinement and the grouping operations are dual
operations.

Definition 0.2 (inclusion) The symbolic marking〈Lm̂, m̂〉 is
said to be included in the symbolic marking〈L

m̂′
, m̂′〉 iff

[〈Lm̂, m̂〉] ⊆ [〈L
m̂′

, m̂′〉].

In our approach, the symbolic inclusion does not bring out
new difficulty since it can be brought back to an equality test
by refining the symbolic markings to be compared on the
same colour partition. The two resulting sets of symbolic
markings can thus be compared using a standard symbolic

equality test.
The symbolic grouping requires more effort, since the equiv-
alence classes of markings that can be gathered must yield an
equivalence class with a symbolic representation. Fortunately
our algorithm works on the symbolic representation directly
to save computation time.
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Figure 5: An example of symbolic grouping

For instance, continuing our sample, one can note
that the three symbolic markings can be candidates for
a grouping since they all have the same form. How-
ever, only 〈L′, m̂′

2
〉 and 〈L′, m̂′

3
〉, can be replaced

by a unique symbolic representation〈L
m̂′′

, m̂′′〉 with
L

m̂′′
= {{1, 2}, {3}} and m̂′′ = Rq(〈Z1〉) , Wt(〈Z2〉) ,

Cs(〈Z3〉) andd(Z1) = d(Z2) = {1, 2} andd(Z3) = {3}.

Evaluation

We have implemented our symbolic methods by reusing the
core implementation of the GreatSPN software proposed for
qualitative analyses and performance evaluations. Great-
SPN is a well-known software which computes the SRG of
well formed nets, including the management of the symbolic
marking representation (Chiola and Gaeta 1995).

The DSRG module implements the main algorithm using
the DySy module, adynamic manager of symmetries, and the
Aut module which manages the control automaton and per-
forms the symbolic satisfaction test. The GreatSPN core is
reused to realize standard WN operations (e.g. the symbolic
firing).

We measure the time spent as well as the memory con-
sumed, in comparison with the SRG and ESRG methods. The
memory consumption is measured in number of nodes.
It is worth noting that we used a 2 Ghz Intel Pentium IV ma-
chine, with 775 Mbytes memory size and working on Linux
9.1 Operating System.

Table 1 shows how the DSRG and SRG behave, similarly
Table 2 compares the DSRG against the ESRG. The model
considered for the DSRG is the symmetrical model of Fig-
ure 2 synchronized with the CTRL automaton of Figure 3,
while the model for the SRG and the ESRG is the asymmet-
ric WN of Figure 1. For this last model, the SRG is the RG
due to the partition of the colours of classC in elementary
static subclasses.
We note on both tables, that there is an exponential gain in
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Figure 6: Architecture of the system

time. Also there is an exponential gain regarding the memory
consumption.

Table 1: DSRG vs SRG(RG).

#P. SRG(RG) DSRG Ratio
T. #N. T. #N. T. S.

3 0 139 0 28 0 5
5 2 2709 0 96 0 29
7 41 50159 3 253 14 199
9 1147 911017 45 559 26 1630
11 — 16378179 1830 1090 – 15026

Table 2: DSRG vs ESRG.

#P. ESRG DSRG Ratio
T. #N. T. #N. T. S.

3 0 54 0 28 0 2
5 1 441 0 96 0 5
7 25 4918 3 253 5 20
9 939 57211 45 559 21 102
11 54074 639056 1830 1090 30 586
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