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2Sorbonne Universités, UPMC Univ. Paris 6, UMR 7606, LIP6, Paris, France

souheib.baarir@lip6.fr

3LRDE, EPITA, Le Kremlin-Bicêtre, France
adl@lrde.epita.fr

FORTE’14, 3–5 June 2014

1 / 14



Context

LTL→BAprop.
sys.

y/n

Model checking

LTL→DBAprop.
sys.

prob.

Prob. model checking

LTL→DBAprop.
sys. ctrl.

Synthesis
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Transion-based Generalized Acceptance

Minimal Büchi automaton for GFa ∧ GFb:
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āb̄

TGBA
with F = { , }

Using Transition-based and Generalized acceptance allows more
compact automata.
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āb̄

TGBA
with F = { , }

Using Transition-based and Generalized acceptance allows more
compact automata.

3 / 14



Objective

LTL→BAprop.
sys.

y/n

Model checking

LTL→DBAprop.
sys.

prob.

Prob. model checking

LTL→DBAprop.
sys. ctrl.

Synthesis

I Small [D]BA helps
I Minimization (NP-comp.),
I Simulation-based

algorithms,
I generalized acceptance,
I transition-based

acceptance.

I Our objective: building
minimal DTGBA

LTL→mDTGBA

I We tackle NP-completeness
via SAT solving

4 / 14



Objective

LTL→BAprop.
sys.

y/n

Model checking

LTL→DBAprop.
sys.

prob.

Prob. model checking

LTL→DBAprop.
sys. ctrl.

Synthesis

I Small [D]BA helps
I Minimization (NP-comp.),
I Simulation-based

algorithms,
I generalized acceptance,
I transition-based

acceptance.

I Our objective: building
minimal DTGBA

LTL→mDTGBA

I We tackle NP-completeness
via SAT solving

4 / 14



Objective

LTL→BAprop.
sys.

y/n

Model checking

LTL→DBAprop.
sys.

prob.

Prob. model checking

LTL→DBAprop.
sys. ctrl.

Synthesis

I Small [D]BA helps
I Minimization (NP-comp.),
I Simulation-based

algorithms,
I generalized acceptance,
I transition-based

acceptance.

I Our objective: building
minimal DTGBA

LTL→mDTGBA

I We tackle NP-completeness
via SAT solving

4 / 14



General Framework

1 Introduction

2 General Framework
LTL Hierarchy: Determinization & Minimization
Our Proposed Framework

3 SAT-based Minimization
Equivalence Check of Two DTGBA
SAT-Based Synthesis of Equivalent DTGBA
Minimization by Iterative Synthesis

4 Conclusion

5 / 14



LTL Hierarchy: Determinization & Minimization

Reactivity∧
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GFp

Persistence
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I Recurrence properties are
DBA-realizable. (E.g. via Rabin)

I WDBA can be minimized in
polynomial time.

I Some recurrences (the TCONG
class) can always be
determininized to DTBA by
powerset construction.

I So far, no technique for:
I Determinization of TGBA,
I Minimization of DTGBA.

Z. Manna and A. Pnueli. A hierarchy of temporal properties. PODC’90 6 / 14
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From LTL to Minimal D[T][G]BA
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From LTL to Minimal D[T][G]BA
Output: DTGBA (m > 1) or DTBA (m = 1). Our setup.
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Equivalence Check of Two DTGBA

Two complete DTGBA A and B are equivalent iff:
for each elementary cycle c of A⊗ B,
c|A is accepting ⇐⇒ c|B is accepting.
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Now, given a reference A, does a smaller equivalent B exist?
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āb̄

B
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SAT-Based Synthesis of Equivalent DTGBA
We look for an automaton B equivalent to A, but with |A| − 1 states
and m acceptance sets.

1 Encode as a SAT problem:
I Some Boolean variables represent all possible transitions in B.
I More Boolean variables represent all possible cycles in the

product A⊗ B.
I Constraints ensure that transitions in the product are

letter-compatible, and the elementary cycle acceptance
condition is fulfilled.

Differs from Ehlers’ approach in the support
for generalized acceptance, and some
SCC-based encoding optimizations.

2 Run a SAT solver:
I If the problem is UNSAT, then a smaller DTGBA does not exist.
I Otherwise the solution contains an encoding of B.

11 / 14



SAT-Based Synthesis of Equivalent DTGBA
We look for an automaton B equivalent to A, but with |A| − 1 states
and m acceptance sets.

1 Encode as a SAT problem:
I Some Boolean variables represent all possible transitions in B.
I More Boolean variables represent all possible cycles in the

product A⊗ B.
I Constraints ensure that transitions in the product are

letter-compatible, and the elementary cycle acceptance
condition is fulfilled.

Differs from Ehlers’ approach in the support
for generalized acceptance, and some
SCC-based encoding optimizations.

2 Run a SAT solver:
I If the problem is UNSAT, then a smaller DTGBA does not exist.
I Otherwise the solution contains an encoding of B.

R. Ehlers. Minimising DBA precisely using SAT solving. SAT’10 11 / 14



Minimization by Iterative Synthesis

Minimize(A,m = A.nb acc()):
repeat:
n ← A.nb states()
B ← Synthesize(A, n−1,m)
if B does not exists:

return A
A ← B
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Encode synthesis of a
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Synthesis of a 6-state
DTGBA failed, the mini-
mal one has 7 states.

11-state DBA found instanta-
neously, but it takes >30min
to prove the 10-state problem
UNSAT.
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Synthesis of a 6-state
DTGBA failed, the mini-
mal one has 7 states.

11-state DBA found instanta-
neously, but it takes >30min
to prove the 10-state problem
UNSAT.
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Contributions

I We extended Ehlers’ approach with:
I support generalized and transition-based acceptance,
I SCC-based optimizations of the encoding (not discussed here)

I We integrated this minimization procedure in a more general
framework supporting different determinization procedures,
and a faster minimization procedure for weak automata.

I Our tool is integrated in Spot 1.2.3, available from
http://spot.lip6.fr/

I Instructions for building minimal D[T][G]BA are at
http://spot.lip6.fr/userdoc/satmin.html

I We ran a large benchmark exploring the effects of this
minimization on many DTGBA generated from LTL formulas.
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Future Work

I Comparing the minimal automata computed in our benchmark
with automata produced by LTL→TGBA or LTL→BA translators
suggests that these tools could be improved in many cases.

I We can create minimal DTGBA with m acceptance conditions,
but it is not clear how to select the right m.

I We believe the technique can easily be extended to deal with
Rabin or Streett acceptance.
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