
Mechanizing the Minimization of Deterministic
Generalized Büchi Automata

Souheib Baarir1,2 Alexandre Duret-Lutz3

1Université Paris Ouest Nanterre la Défense, Nanterre, France
2Sorbonne Universités, UPMC Univ. Paris 6, UMR 7606, LIP6, Paris, France

souheib.baarir@lip6.fr

3LRDE, EPITA, Le Kremlin-Bicêtre, France
adl@lrde.epita.fr

FORTE’14, 3–5 June 2014

1 / 14

Context

LTL→BAprop.
sys.

y/n

Model checking

LTL→DBAprop.
sys.

prob.

Prob. model checking

LTL→DBAprop.
sys. ctrl.

Synthesis

I Büchi Automata are used in
many formal methods, but
with different requirements.

I Small [D]BA helps
I Minimization (NP-comp.),
I Simulation-based

algorithms,
I generalized acceptance,
I transition-based

acceptance.

2 / 14

Context

LTL→BAprop.
sys.

y/n

Model checking

LTL→DBAprop.
sys.

prob.

Prob. model checking

LTL→DBAprop.
sys. ctrl.

Synthesis

I Büchi Automata are used in
many formal methods, but
with different requirements.

I Small [D]BA helps
I Minimization (NP-comp.),
I Simulation-based

algorithms,
I generalized acceptance,
I transition-based

acceptance.

2 / 14

Transion-based Generalized Acceptance

Minimal Büchi automaton for GFa ∧ GFb:

s2

s0

s1 ab

b̄

āb

b̄

ab
āb

ā
a

BA

s1

s0

ā

a

b̄

b

TBA

s0ab

ab̄

āb

āb̄

TGBA
with F = { , }

Using Transition-based and Generalized acceptance allows more
compact automata.

3 / 14

Transion-based Generalized Acceptance

Minimal automata for GFa ∧ GFb:

s2

s0

s1 ab

b̄

āb

b̄

ab
āb

ā
a

BA

s1

s0

ā

a

b̄

b

TBA

s0ab

ab̄

āb

āb̄

TGBA
with F = { , }

Using Transition-based and Generalized acceptance allows more
compact automata.

3 / 14

Transion-based Generalized Acceptance

Minimal automata for GFa ∧ GFb:

s2

s0

s1 ab

b̄

āb

b̄

ab
āb

ā
a

BA

s1

s0

ā

a

b̄

b

TBA

s0ab

ab̄

āb

āb̄

TGBA
with F = { , }

Using Transition-based and Generalized acceptance allows more
compact automata.

3 / 14

Objective

LTL→BAprop.
sys.

y/n

Model checking

LTL→DBAprop.
sys.

prob.

Prob. model checking

LTL→DBAprop.
sys. ctrl.

Synthesis

I Small [D]BA helps
I Minimization (NP-comp.),
I Simulation-based

algorithms,
I generalized acceptance,
I transition-based

acceptance.

I Our objective: building
minimal DTGBA

LTL→mDTGBA

I We tackle NP-completeness
via SAT solving

4 / 14

Objective

LTL→BAprop.
sys.

y/n

Model checking

LTL→DBAprop.
sys.

prob.

Prob. model checking

LTL→DBAprop.
sys. ctrl.

Synthesis

I Small [D]BA helps
I Minimization (NP-comp.),
I Simulation-based

algorithms,
I generalized acceptance,
I transition-based

acceptance.

I Our objective: building
minimal DTGBA

LTL→mDTGBA

I We tackle NP-completeness
via SAT solving

4 / 14

Objective

LTL→BAprop.
sys.

y/n

Model checking

LTL→DBAprop.
sys.

prob.

Prob. model checking

LTL→DBAprop.
sys. ctrl.

Synthesis

I Small [D]BA helps
I Minimization (NP-comp.),
I Simulation-based

algorithms,
I generalized acceptance,
I transition-based

acceptance.

I Our objective: building
minimal DTGBA

LTL→mDTGBA

I We tackle NP-completeness
via SAT solving

4 / 14

General Framework

1 Introduction

2 General Framework
LTL Hierarchy: Determinization & Minimization
Our Proposed Framework

3 SAT-based Minimization
Equivalence Check of Two DTGBA
SAT-Based Synthesis of Equivalent DTGBA
Minimization by Iterative Synthesis

4 Conclusion

5 / 14

LTL Hierarchy: Determinization & Minimization

Reactivity∧
GFpi ∨ FGqi

Recurrence
GFp

Persistence
FGp

Obligation∧
Gpi ∨ Fqi

Safety
Gp

Guarantee
Fp

DBA

Weak BA

Weak
DBA

BA

I Recurrence properties are
DBA-realizable. (E.g. via Rabin)

I WDBA can be minimized in
polynomial time.

I Some recurrences (the TCONG
class) can always be
determininized to DTBA by
powerset construction.

I So far, no technique for:
I Determinization of TGBA,
I Minimization of DTGBA.

Z. Manna and A. Pnueli. A hierarchy of temporal properties. PODC’90 6 / 14

LTL Hierarchy: Determinization & Minimization

Reactivity∧
GFpi ∨ FGqi

Recurrence
GFp

Persistence
FGp

Obligation∧
Gpi ∨ Fqi

Safety
Gp

Guarantee
Fp

DBA

Weak BA

Weak
DBA

BA

I Recurrence properties are
DBA-realizable. (E.g. via Rabin)

I WDBA can be minimized in
polynomial time.

I Some recurrences (the TCONG
class) can always be
determininized to DTBA by
powerset construction.

I So far, no technique for:
I Determinization of TGBA,
I Minimization of DTGBA.

Z. Manna and A. Pnueli. A hierarchy of temporal properties. PODC’90 6 / 14

LTL Hierarchy: Determinization & Minimization

Reactivity∧
GFpi ∨ FGqi

Recurrence
GFp

Persistence
FGp

Obligation∧
Gpi ∨ Fqi

Safety
Gp

Guarantee
Fp

DBA

Weak BA

Weak
DBA

BA

I Recurrence properties are
DBA-realizable. (E.g. via Rabin)

I WDBA can be minimized in
polynomial time.

I Some recurrences (the TCONG
class) can always be
determininized to DTBA by
powerset construction.

I So far, no technique for:
I Determinization of TGBA,
I Minimization of DTGBA.

Z. Manna and A. Pnueli. A hierarchy of temporal properties. PODC’90 6 / 14

LTL Hierarchy: Determinization & Minimization

Reactivity∧
GFpi ∨ FGqi

Recurrence
GFp

Persistence
FGp

Obligation∧
Gpi ∨ Fqi

Safety
Gp

Guarantee
Fp

DBA

Weak BA

Weak
DBA

BA

I Recurrence properties are
DBA-realizable. (E.g. via Rabin)

I WDBA can be minimized in
polynomial time.

I Some recurrences (the TCONG
class) can always be
determininized to DTBA by
powerset construction.

I So far, no technique for:
I Determinization of TGBA,
I Minimization of DTGBA.

C. Dax, J. Eisinger, and F. Klaedtke. Mechanizing the powerset construction
for restricted classes of ω-automata. ATVA’07 6 / 14

LTL Hierarchy: Determinization & Minimization

TCONG

Reactivity∧
GFpi ∨ FGqi

Recurrence
GFp

Persistence
FGp

Obligation∧
Gpi ∨ Fqi

Safety
Gp

Guarantee
Fp

DBA

Weak BA

Weak
DBA

BA

I Recurrence properties are
DBA-realizable. (E.g. via Rabin)

I WDBA can be minimized in
polynomial time.

I Some recurrences (the TCONG
class) can always be
determininized to DTBA by
powerset construction.

I So far, no technique for:
I Determinization of TGBA,
I Minimization of DTGBA.

C. Dax, J. Eisinger, and F. Klaedtke. Mechanizing the powerset construction
for restricted classes of ω-automata. ATVA’07 6 / 14

LTL Hierarchy: Determinization & Minimization

Reactivity∧
GFpi ∨ FGqi

Recurrence
GFp

Persistence
FGp

Obligation∧
Gpi ∨ Fqi

Safety
Gp

Guarantee
Fp

DBA

Weak BA

Weak
DBA

BA

I Recurrence properties are
DBA-realizable. (E.g. via Rabin)

I WDBA can be minimized in
polynomial time.

I Some recurrences (the TCONG
class) can always be
determininized to DTBA by
powerset construction.

I So far, no technique for:
I Determinization of TGBA,
I Minimization of DTGBA.

C. Dax, J. Eisinger, and F. Klaedtke. Mechanizing the powerset construction
for restricted classes of ω-automata. ATVA’07 6 / 14

From LTL to Minimal D[T][G]BA
Output: DBA. (Ehlers’ setup.)

ltl2tgba

dstar2tgba

translate
to TGBA

attempt
WDBA
minim.

simplify
TGBA

fail

LTL
formula

degen
to TBA

|F | > 1
nondet. or
|F | > m = 1

else

attempt
powerset
to DTBA

not in
TCONG

fail

success

nondet.

det.

DTBA SAT
minimization

DTGBA SAT
minimization

minimal
DTGBA

minimal
DTBA

DBA SAT
minimization

minimal
DBA

minimal
WDBA

success

ltl2dstar

(DRA)

attempt
conversion

to DBA

attempt
WDBA
minim.

simplify
DBA

success fail

success

m = 1

m > 1

not a
recurrence

fail

su
cc

es
s

R. Ehlers. Minimising DBA precisely using SAT solving. SAT’10

S. C. Krishnan et al. Deterministic ω-automata vis-a-vis DBA. ISAAC’94 7 / 14

From LTL to Minimal D[T][G]BA
Output: DBA.

ltl2tgba

dstar2tgba

translate
to TGBA

attempt
WDBA
minim.

simplify
TGBA

fail

LTL
formula

degen
to TBA

|F | > 1
nondet. or
|F | > m = 1

else

attempt
powerset
to DTBA

not in
TCONG

fail

success

nondet.

det.

DTBA SAT
minimization

DTGBA SAT
minimization

minimal
DTGBA

minimal
DTBA

DBA SAT
minimization

minimal
DBA

minimal
WDBA

success

ltl2dstar

(DRA)

attempt
conversion

to DBA

attempt
WDBA
minim.

simplify
DBAsuccess fail

success

m = 1

m > 1

not a
recurrence

fail

su
cc

es
s

8 / 14

From LTL to Minimal D[T][G]BA
Output: DTBA.

ltl2tgba

dstar2tgba

translate
to TGBA

attempt
WDBA
minim.

simplify
TGBA

fail

LTL
formula

degen
to TBA

|F | > 1
nondet. or
|F | > m = 1

else

attempt
powerset
to DTBA

not in
TCONG

fail

success

nondet.

det.

DTBA SAT
minimization

DTGBA SAT
minimization

minimal
DTGBA

minimal
DTBA

DBA SAT
minimization

minimal
DBA

minimal
WDBA

success

ltl2dstar

(DRA)

attempt
conversion

to DBA

attempt
WDBA
minim.

simplify
DBAsuccess fail

success

m = 1

m > 1

not a
recurrence

fail

su
cc

es
s

8 / 14

From LTL to Minimal D[T][G]BA
Output: DTBA.

ltl2tgba

dstar2tgba

translate
to TGBA

attempt
WDBA
minim.

simplify
TGBA

fail

LTL
formula

degen
to TBA

|F | > 1

nondet. or
|F | > m = 1

else

attempt
powerset
to DTBA

not in
TCONG

fail

success

nondet.

det.

DTBA SAT
minimization

DTGBA SAT
minimization

minimal
DTGBA

minimal
DTBA

DBA SAT
minimization

minimal
DBA

minimal
WDBA

success

ltl2dstar

(DRA)

attempt
conversion

to DBA

attempt
WDBA
minim.

simplify
DBAsuccess fail

success

m = 1

m > 1

not a
recurrence

fail

su
cc

es
s

8 / 14

From LTL to Minimal D[T][G]BA
Output: DTBA.

ltl2tgba

dstar2tgba

translate
to TGBA

attempt
WDBA
minim.

simplify
TGBA

fail

LTL
formula

degen
to TBA

|F | > 1

nondet. or
|F | > m = 1

else

attempt
powerset
to DTBA

not in
TCONG

fail

success

nondet.

det.

DTBA SAT
minimization

DTGBA SAT
minimization

minimal
DTGBA

minimal
DTBA

DBA SAT
minimization

minimal
DBA

minimal
WDBA

success

ltl2dstar

(DRA)

attempt
conversion

to DBA

attempt
WDBA
minim.

simplify
DBAsuccess fail

success

m = 1

m > 1

not a
recurrence

fail

su
cc

es
s

8 / 14

From LTL to Minimal D[T][G]BA
Output: DTBA.

ltl2tgba

dstar2tgba

translate
to TGBA

attempt
WDBA
minim.

simplify
TGBA

fail

LTL
formula

degen
to TBA

|F | > 1

nondet. or
|F | > m = 1

else

attempt
powerset
to DTBA

not in
TCONG

fail

success

nondet.

det.

DTBA SAT
minimization

DTGBA SAT
minimization

minimal
DTGBA

minimal
DTBA

DBA SAT
minimization

minimal
DBA

minimal
WDBA

success

ltl2dstar

(DRA)

attempt
conversion

to DBA

attempt
WDBA
minim.

simplify
DBAsuccess fail

success

m = 1

m > 1

not a
recurrence

fail

su
cc

es
s

8 / 14

From LTL to Minimal D[T][G]BA
Output: DTGBA (m > 1) or DTBA (m = 1).

ltl2tgba

dstar2tgba

translate
to TGBA

attempt
WDBA
minim.

simplify
TGBA

fail

LTL
formula

degen
to TBA

|F | > 1

nondet. or
|F | > m = 1

else

attempt
powerset
to DTBA

not in
TCONG

fail

success

nondet.

det.

DTBA SAT
minimization

DTGBA SAT
minimization

minimal
DTGBA

minimal
DTBA

DBA SAT
minimization

minimal
DBA

minimal
WDBA

success

ltl2dstar

(DRA)

attempt
conversion

to DBA

attempt
WDBA
minim.

simplify
DBAsuccess fail

success

m = 1

m > 1
not a

recurrence

fail

su
cc

es
s

8 / 14

From LTL to Minimal D[T][G]BA
Output: DTGBA (m > 1) or DTBA (m = 1). Our setup.

ltl2tgba

dstar2tgba

translate
to TGBA

attempt
WDBA
minim.

simplify
TGBA

fail

LTL
formula

degen
to TBA

|F | > 1

nondet. or
|F | > m = 1

else

attempt
powerset
to DTBA

not in
TCONG

fail

success

nondet.

det.

DTBA SAT
minimization

DTGBA SAT
minimization

minimal
DTGBA

minimal
DTBA

DBA SAT
minimization

minimal
DBA

minimal
WDBA

success

ltl2dstar

(DRA)

attempt
conversion

to DBA

attempt
WDBA
minim.

simplify
DBAsuccess fail

success

m = 1

m > 1
not a

recurrence

fail

su
cc

es
s

8 / 14

SAT-based Minimization

1 Introduction

2 General Framework
LTL Hierarchy: Determinization & Minimization
Our Proposed Framework

3 SAT-based Minimization
Equivalence Check of Two DTGBA
SAT-Based Synthesis of Equivalent DTGBA
Minimization by Iterative Synthesis

4 Conclusion

9 / 14

Equivalence Check of Two DTGBA

Two complete DTGBA A and B are equivalent iff:
for each elementary cycle c of A⊗ B,
c|A is accepting ⇐⇒ c|B is accepting.

ā

a

b̄

b

A

ab

ab̄

āb

āb̄

B

āb āb̄

ab̄ab

ab̄ āb̄

ab āb

A⊗ B
(acceptance marks omitted)

Now, given a reference A, does a smaller equivalent B exist?

10 / 14

Equivalence Check of Two DTGBA

Two complete DTGBA A and B are equivalent iff:
for each elementary cycle c of A⊗ B,
c|A is accepting ⇐⇒ c|B is accepting.

ā

a

b̄

b

A

ab

ab̄

āb

āb̄

B

āb āb̄

ab̄ab

ab̄ āb̄

ab āb

A⊗ B
(acceptance marks omitted)

Now, given a reference A, does a smaller equivalent B exist?

10 / 14

Equivalence Check of Two DTGBA

Two complete DTGBA A and B are equivalent iff:
for each elementary cycle c of A⊗ B,
c|A is accepting ⇐⇒ c|B is accepting.

ā

a

b̄

b

A

ab

ab̄

āb

āb̄

B

āb āb̄

ab̄ab

ab̄ āb̄

ab āb

A⊗ B
(acceptance marks omitted)

Now, given a reference A, does a smaller equivalent B exist?

10 / 14

Equivalence Check of Two DTGBA

Two complete DTGBA A and B are equivalent iff:
for each elementary cycle c of A⊗ B,
c|A is accepting ⇐⇒ c|B is accepting.

ā

a

b̄

b

A

ab

ab̄

āb

āb̄

B

āb āb̄

ab̄ab

ab̄ āb̄

ab āb

A⊗ B
(acceptance marks omitted)

Now, given a reference A, does a smaller equivalent B exist?

10 / 14

Equivalence Check of Two DTGBA

Two complete DTGBA A and B are equivalent iff:
for each elementary cycle c of A⊗ B,
c|A is accepting ⇐⇒ c|B is accepting.

ā

a

b̄

b

A

ab

ab̄

āb

āb̄

B

āb āb̄

ab̄ab

ab̄ āb̄

ab āb

A⊗ B
(acceptance marks omitted)

Now, given a reference A, does a smaller equivalent B exist?

10 / 14

Equivalence Check of Two DTGBA

Two complete DTGBA A and B are equivalent iff:
for each elementary cycle c of A⊗ B,
c|A is accepting ⇐⇒ c|B is accepting.

ā

a

b̄

b

A

ab

ab̄

āb

āb̄

B

āb āb̄

ab̄ab

ab̄ āb̄

ab āb

A⊗ B
(acceptance marks omitted)

Now, given a reference A, does a smaller equivalent B exist?
10 / 14

SAT-Based Synthesis of Equivalent DTGBA
We look for an automaton B equivalent to A, but with |A| − 1 states
and m acceptance sets.

1 Encode as a SAT problem:
I Some Boolean variables represent all possible transitions in B.
I More Boolean variables represent all possible cycles in the

product A⊗ B.
I Constraints ensure that transitions in the product are

letter-compatible, and the elementary cycle acceptance
condition is fulfilled.

Differs from Ehlers’ approach in the support
for generalized acceptance, and some
SCC-based encoding optimizations.

2 Run a SAT solver:
I If the problem is UNSAT, then a smaller DTGBA does not exist.
I Otherwise the solution contains an encoding of B.

11 / 14

SAT-Based Synthesis of Equivalent DTGBA
We look for an automaton B equivalent to A, but with |A| − 1 states
and m acceptance sets.

1 Encode as a SAT problem:
I Some Boolean variables represent all possible transitions in B.
I More Boolean variables represent all possible cycles in the

product A⊗ B.
I Constraints ensure that transitions in the product are

letter-compatible, and the elementary cycle acceptance
condition is fulfilled.

Differs from Ehlers’ approach in the support
for generalized acceptance, and some
SCC-based encoding optimizations.

2 Run a SAT solver:
I If the problem is UNSAT, then a smaller DTGBA does not exist.
I Otherwise the solution contains an encoding of B.

R. Ehlers. Minimising DBA precisely using SAT solving. SAT’10 11 / 14

Minimization by Iterative Synthesis

Minimize(A,m = A.nb acc()):
repeat:
n ← A.nb states()
B ← Synthesize(A, n−1,m)
if B does not exists:

return A
A ← B

6

10

14

18

22

0 10 20 30
time (minutes)

st
at

es

DBA DTBA DTGBA
Input automaton has 24
states. Encode synthesis
of a 23-state automaton
with m = 2 .

Output automaton has 22
reachable states instead
of 23.

Encode synthesis of a
21-state automaton. Etc.

Synthesis of a 6-state
DTGBA failed, the mini-
mal one has 7 states.

11-state DBA found instanta-
neously, but it takes >30min
to prove the 10-state problem
UNSAT.

12 / 14

Minimization by Iterative Synthesis

Minimize(A,m = A.nb acc()):
repeat:
n ← A.nb states()
B ← Synthesize(A, n−1,m)
if B does not exists:

return A
A ← B

6

10

14

18

22

0 10 20 30
time (minutes)

st
at

es

DBA DTBA DTGBA
Input automaton has 24
states. Encode synthesis
of a 23-state automaton
with m = 2 .

Output automaton has 22
reachable states instead
of 23.

Encode synthesis of a
21-state automaton. Etc.

Synthesis of a 6-state
DTGBA failed, the mini-
mal one has 7 states.

11-state DBA found instanta-
neously, but it takes >30min
to prove the 10-state problem
UNSAT.

12 / 14

Minimization by Iterative Synthesis

Minimize(A,m = A.nb acc()):
repeat:
n ← A.nb states()
B ← Synthesize(A, n−1,m)
if B does not exists:

return A
A ← B

6

10

14

18

22

0 10 20 30
time (minutes)

st
at

es

DBA DTBA DTGBA

Input automaton has 24
states. Encode synthesis
of a 23-state automaton
with m = 2 .

Output automaton has 22
reachable states instead
of 23.

Encode synthesis of a
21-state automaton. Etc.

Synthesis of a 6-state
DTGBA failed, the mini-
mal one has 7 states.

11-state DBA found instanta-
neously, but it takes >30min
to prove the 10-state problem
UNSAT.

12 / 14

Minimization by Iterative Synthesis

Minimize(A,m = A.nb acc()):
repeat:
n ← A.nb states()
B ← Synthesize(A, n−1,m)
if B does not exists:

return A
A ← B

6

10

14

18

22

0 10 20 30
time (minutes)

st
at

es

DBA DTBA DTGBA
Input automaton has 24
states. Encode synthesis
of a 23-state automaton
with m = 2 .

Output automaton has 22
reachable states instead
of 23.

Encode synthesis of a
21-state automaton. Etc.

Synthesis of a 6-state
DTGBA failed, the mini-
mal one has 7 states.

11-state DBA found instanta-
neously, but it takes >30min
to prove the 10-state problem
UNSAT.

12 / 14

Minimization by Iterative Synthesis

Minimize(A,m = A.nb acc()):
repeat:
n ← A.nb states()
B ← Synthesize(A, n−1,m)
if B does not exists:

return A
A ← B

6

10

14

18

22

0 10 20 30
time (minutes)

st
at

es

DBA DTBA DTGBA
Input automaton has 24
states. Encode synthesis
of a 23-state automaton
with m = 2 .

Output automaton has 22
reachable states instead
of 23.

Encode synthesis of a
21-state automaton. Etc.

Synthesis of a 6-state
DTGBA failed, the mini-
mal one has 7 states.

11-state DBA found instanta-
neously, but it takes >30min
to prove the 10-state problem
UNSAT.

12 / 14

Minimization by Iterative Synthesis

Minimize(A,m = A.nb acc()):
repeat:
n ← A.nb states()
B ← Synthesize(A, n−1,m)
if B does not exists:

return A
A ← B

6

10

14

18

22

0 10 20 30
time (minutes)

st
at

es

DBA DTBA DTGBA
Input automaton has 24
states. Encode synthesis
of a 23-state automaton
with m = 2 .

Output automaton has 22
reachable states instead
of 23.

Encode synthesis of a
21-state automaton. Etc.

Synthesis of a 6-state
DTGBA failed, the mini-
mal one has 7 states.

11-state DBA found instanta-
neously, but it takes >30min
to prove the 10-state problem
UNSAT.

12 / 14

Minimization by Iterative Synthesis

Minimize(A,m = A.nb acc()):
repeat:
n ← A.nb states()
B ← Synthesize(A, n−1,m)
if B does not exists:

return A
A ← B

6

10

14

18

22

0 10 20 30
time (minutes)

st
at

es

DBA DTBA DTGBA

Input automaton has 24
states. Encode synthesis
of a 23-state automaton
with m = 2 .

Output automaton has 22
reachable states instead
of 23.

Encode synthesis of a
21-state automaton. Etc.

Synthesis of a 6-state
DTGBA failed, the mini-
mal one has 7 states.

11-state DBA found instanta-
neously, but it takes >30min
to prove the 10-state problem
UNSAT.

12 / 14

Minimization by Iterative Synthesis

Minimize(A,m = A.nb acc()):
repeat:
n ← A.nb states()
B ← Synthesize(A, n−1,m)
if B does not exists:

return A
A ← B

6

10

14

18

22

0 10 20 30
time (minutes)

st
at

es

DBA DTBA DTGBA

Input automaton has 24
states. Encode synthesis
of a 23-state automaton
with m = 2 .

Output automaton has 22
reachable states instead
of 23.

Encode synthesis of a
21-state automaton. Etc.

Synthesis of a 6-state
DTGBA failed, the mini-
mal one has 7 states.

11-state DBA found instanta-
neously, but it takes >30min
to prove the 10-state problem
UNSAT.

12 / 14

Contributions

I We extended Ehlers’ approach with:
I support generalized and transition-based acceptance,
I SCC-based optimizations of the encoding (not discussed here)

I We integrated this minimization procedure in a more general
framework supporting different determinization procedures,
and a faster minimization procedure for weak automata.

I Our tool is integrated in Spot 1.2.3, available from
http://spot.lip6.fr/

I Instructions for building minimal D[T][G]BA are at
http://spot.lip6.fr/userdoc/satmin.html

I We ran a large benchmark exploring the effects of this
minimization on many DTGBA generated from LTL formulas.

13 / 14

http://spot.lip6.fr/
http://spot.lip6.fr/userdoc/satmin.html

Future Work

I Comparing the minimal automata computed in our benchmark
with automata produced by LTL→TGBA or LTL→BA translators
suggests that these tools could be improved in many cases.

I We can create minimal DTGBA with m acceptance conditions,
but it is not clear how to select the right m.

I We believe the technique can easily be extended to deal with
Rabin or Streett acceptance.

14 / 14

	Introduction
	General Framework
	LTL Hierarchy: Determinization & Minimization
	Our Proposed Framework

	SAT-based Minimization
	Equivalence Check of Two DTGBA
	SAT-Based Synthesis of Equivalent DTGBA
	Minimization by Iterative Synthesis

	Conclusion

