
Compositional Approach to Suspension
and Other Improvements to LTL Translation

Tomáš Babiak1 Thomas Badie2 Alexandre Duret-Lutz2

Mojmı́r Křetı́nský1 Jan Strejček1

1Faculty of Informatics, Masaryk University, Brno, Czech Republic

2LRDE, EPITA, Le Kremlin-Bicêtre, France

SPIN’13, 8–9 July 2013

1 / 16



From LTL to BA: The Big Picture

LTL form.
ϕ

LTL
rewritings

Core
translation

Post-
processings

Büchi
automaton

Our work

GFa ∧ GFb

G(Fa ∧ Fb)
ab

ab̄

āb

āb̄

TGBA: Transition-based
Generalized Büchi Automaton

1

2

3
ab

b̄

āb

b̄

ab
āb

ā

a

2 / 16



From LTL to BA: The Big Picture

LTL form.
ϕ

LTL
rewritings

Core
translation

Post-
processings

Büchi
automaton

Our work

GFa ∧ GFb

G(Fa ∧ Fb)

ab

ab̄

āb

āb̄

TGBA: Transition-based
Generalized Büchi Automaton

1

2

3
ab

b̄

āb

b̄

ab
āb

ā

a

2 / 16



From LTL to BA: The Big Picture

LTL form.
ϕ

LTL
rewritings

Core
translation

Post-
processings

Büchi
automaton

Our work

GFa ∧ GFb

G(Fa ∧ Fb)
ab

ab̄

āb

āb̄

TGBA: Transition-based
Generalized Büchi Automaton

1

2

3
ab

b̄

āb

b̄

ab
āb

ā

a

2 / 16



From LTL to BA: The Big Picture

LTL form.
ϕ

LTL
rewritings

Core
translation

Post-
processings

Büchi
automaton

Our work

GFa ∧ GFb

G(Fa ∧ Fb)
ab

ab̄

āb

āb̄

TGBA: Transition-based
Generalized Büchi Automaton

1

2

3
ab

b̄

āb

b̄

ab
āb

ā

a

2 / 16



From LTL to BA: The Big Picture

LTL form.
ϕ

LTL
rewritings

Core
translation

Post-
processings

Büchi
automaton

Our work

GFa ∧ GFb

G(Fa ∧ Fb)
ab

ab̄

āb

āb̄

TGBA: Transition-based
Generalized Büchi Automaton

1

2

3
ab

b̄

āb

b̄

ab
āb

ā

a

2 / 16



From LTL to BA: More Details

I Generic workflow:

ϕ Trans. to
TGBA

Simplify
TGBA

Degen-
eralize

Simplify
BA

BA

I Dead SCCs removal
I Acceptance simplifications
I Simulation-based reductions

I Simulation-based reductions

I Obligation properties can be translated

into
minimal Weak Deterministic Büchi Automata:

ϕ Trans. to
TGBA

WDBA minimization (WD)BA

3 / 16



From LTL to BA: More Details

I Generic workflow:

ϕ Trans. to
TGBA

Simplify
TGBA

Degen-
eralize

Simplify
BA

BA

I Dead SCCs removal
I Acceptance simplifications
I Simulation-based reductions

I Simulation-based reductions

I Obligation properties can be translated better!

into
minimal Weak Deterministic Büchi Automata:

ϕ Trans. to
TGBA

WDBA minimization (WD)BA

3 / 16



Temporal Hierarchy

Reactivity

Recurrence Persistence

Obligation

Safety Guarantee

Deterministic
Büchi Automata

Weak Büchi
Automata

Weak Det.
Büchi Automata

(WDBA)

Z. Manna and A. Pnueli. A hierarchy of temporal properties. PODC’90 4 / 16



From LTL to BA: More Details

I Generic workflow:

ϕ Trans. to
TGBA

Simplify
TGBA

Degen-
eralize

Simplify
BA

BA

I Dead SCCs removal
I Acceptance simplifications
I Simulation-based reductions

I Simulation-based reductions

I Obligation properties can be translated into
minimal Weak Deterministic Büchi Automata:

ϕ Trans. to
TGBA

WDBA minimization (WD)BA

C. Dax, J. Eisinger, and F. Klaedtke. Mechanizing the powerset construction
for restricted classes of ω-automata. ATVA’07 5 / 16



Our Contributions

This talk

only in the paper

ϕ Trans. to
TGBA

Simplify
TGBA

Degen-
eralize

Simplify
BA

BA

Better translation
of formulae that contains
suspendable subformulae

SCC-aware
degeneralization

I Better acceptance simplification
I BDD-based simulation-based reductions,

with determinism improvement

6 / 16



Our Contributions

This talk

only in the paper

ϕ Trans. to
TGBA

Simplify
TGBA

Degen-
eralize

Simplify
BA

BA

Better translation
of formulae that contains
suspendable subformulae

SCC-aware
degeneralization

I Better acceptance simplification
I BDD-based simulation-based reductions,

with determinism improvement

6 / 16



Compositional Suspension

This talk

only in the paper

ϕ Trans. to
TGBA

Simplify
TGBA

Degen-
eralize

Simplify
BA

BA

Better translation
of formulae that contains
suspendable subformulae

SCC-aware
degeneralization

I Better acceptance simplification
I BDD-based simulation-based reductions,

with determinism improvement

7 / 16



Suspendable Formulae

Pure Eventuality
Fµ ≡ µ

Purely Universal
Gν ≡ ν

Suspendable
Gξ ≡ Fξ ≡ Xξ ≡ ξ

I Intuition: subspendable formulae have one F and one G in
each syntactic branch. E.g., all usual fairness constraints:

I GFϕ
I FGϕ→ GFρ
I GFϕ→ GFρ

I Key property: a suspendable formula either holds at all steps
of an execution, or it holds at none.

I Consequence: its verification can be “suspended” by any
finite number of steps.

K. Etessami and G. J. Holzmann. Optimizing Büchi Automata. CONCUR’00 8 / 16



Suspendable Formulae

Pure Eventuality
Fµ ≡ µ

Purely Universal
Gν ≡ ν

Suspendable
Gξ ≡ Fξ ≡ Xξ ≡ ξ

I Intuition: subspendable formulae have one F and one G in
each syntactic branch. E.g., all usual fairness constraints:

I GFϕ
I FGϕ→ GFρ
I GFϕ→ GFρ

I Key property: a suspendable formula either holds at all steps
of an execution, or it holds at none.

I Consequence: its verification can be “suspended” by any
finite number of steps.

T. Babiak, M. Křetı́nský, V. Řehák, and J. Strejček. LTL to Büchi automata
translation: Fast and more deterministic. TACAS’12 8 / 16



Suspendable Formulae

Pure Eventuality
Fµ ≡ µ

Purely Universal
Gν ≡ ν

Suspendable
Gξ ≡ Fξ ≡ Xξ ≡ ξ

I Intuition: subspendable formulae have one F and one G in
each syntactic branch. E.g., all usual fairness constraints:

I GFϕ
I FGϕ→ GFρ
I GFϕ→ GFρ

I Key property: a suspendable formula either holds at all steps
of an execution, or it holds at none.

I Consequence: its verification can be “suspended” by any
finite number of steps.

T. Babiak, M. Křetı́nský, V. Řehák, and J. Strejček. LTL to Büchi automata
translation: Fast and more deterministic. TACAS’12 8 / 16



Temporal Hierarchy

Reactivity

Recurrence Persistence

Obligation

Safety Guarantee

Deterministic
Büchi Automata

Weak Büchi
Automata

Weak Det.
Büchi Automata

(WDBA)

Formulae with
suspendable
subformulae

9 / 16



Using Suspension During Translation (Intuition)

((a U b) R c) ∧ FGd

1

2

3

b̄c

ab̄c

[ξ][ξ]

bc

>

b

[ξ]

ab̄

[ξ]

4 5

>

d

d

[ξ]

[ξ]

b̄c

bc
ab̄c

b̄cd

>

d

ab̄
b

b̄cd

d

bcd

bd

ab̄cd

bcd

ab̄d
bd

ab̄c
bc

Suspendable!

Pointless!
No need to check

for FGd while

((a U b) R c)
is not in an

accepting SCC.

Reset transitions
to be synchronized
with transitions out
of accepting SCCs.

New atomic proposition
so that our special

synchronization can
be implemented as a
synchronous product.

10 / 16



Using Suspension During Translation (Intuition)

((a U b) R c) ∧ FGd

1

2

3

b̄c

ab̄c

[ξ][ξ]

bc

>

b

[ξ]

ab̄

[ξ]

4 5

>

d

d

[ξ]

[ξ]

14

24

34

15

35

b̄c

bc
ab̄c

b̄cd

>

d

ab̄
b

b̄cd

d

25

bcd

bd

ab̄cd

bcd

ab̄d
bd

ab̄c
bc

Suspendable!

Pointless!
No need to check

for FGd while

((a U b) R c)
is not in an

accepting SCC.

Reset transitions
to be synchronized
with transitions out
of accepting SCCs.

New atomic proposition
so that our special

synchronization can
be implemented as a
synchronous product.

10 / 16



Using Suspension During Translation (Intuition)

((a U b) R c) ∧ FGd

1

2

3

b̄c

ab̄c

[ξ][ξ]

bc

>

b

[ξ]

ab̄

[ξ]

4 5

>

d

d

[ξ]

[ξ]

14

24

34

15

35

b̄c

bc
ab̄c

b̄cd

>

d

ab̄
b

b̄cd

d

25

bcd

bd

ab̄cd

bcd

ab̄d
bd

ab̄c
bc

Suspendable!

Pointless!
No need to check

for FGd while

((a U b) R c)
is not in an

accepting SCC.

Reset transitions
to be synchronized
with transitions out
of accepting SCCs.

New atomic proposition
so that our special

synchronization can
be implemented as a
synchronous product.

10 / 16



Using Suspension During Translation (Intuition)

((a U b) R c) ∧ FGd

1

2

3

b̄c

ab̄c

[ξ][ξ]

bc

>

b

[ξ]

ab̄

[ξ]

4 5

>

d

d

[ξ]

[ξ]

14

24

34

15

35

b̄c

bc
ab̄c

b̄cd

>

d

ab̄
b

b̄cd

d

25

bcd

bd

ab̄cd

bcd

ab̄d
bd

ab̄c
bc

Suspendable!

Pointless!
No need to check

for FGd while

((a U b) R c)
is not in an

accepting SCC.

Reset transitions
to be synchronized
with transitions out
of accepting SCCs.

New atomic proposition
so that our special

synchronization can
be implemented as a
synchronous product.

10 / 16



Using Suspension During Translation (Intuition)

((a U b) R c) ∧ FGd

1

2

3

b̄c

ab̄c

[ξ][ξ]

bc

>

b

[ξ]

ab̄

[ξ]

4 5

>

d

d

[ξ]

[ξ]

14

24

34

15

35

b̄c

bc
ab̄c

b̄cd

>

d

ab̄
b

b̄cd

d

25

bcd

bd

ab̄cd

bcd

ab̄d
bd

ab̄c
bc

Suspendable!

Pointless!
No need to check

for FGd while

((a U b) R c)
is not in an

accepting SCC.

Reset transitions
to be synchronized
with transitions out
of accepting SCCs.

New atomic proposition
so that our special

synchronization can
be implemented as a
synchronous product.

10 / 16



Using Suspension During Translation (Intuition)

((a U b) R c) ∧ FGd

1

2

3

b̄c

ab̄c

[ξ][ξ]

bc

>

b

[ξ]

ab̄

[ξ]

4 5

>

d

d

[ξ]

[ξ]

14

24

34

15

35

b̄c

bc
ab̄c

b̄cd

>

d

ab̄
b

b̄cd

d

25

bcd

bd

ab̄cd

bcd

ab̄d
bd

ab̄c
bc

Suspendable!

Pointless!
No need to check

for FGd while

((a U b) R c)
is not in an

accepting SCC.

Reset transitions
to be synchronized
with transitions out
of accepting SCCs.

New atomic proposition
so that our special

synchronization can
be implemented as a
synchronous product.

10 / 16



Using Suspension During Translation (Intuition)

((a U b) R c) ∧ FGd

1

2

3

b̄c[ξ]

ab̄c[ξ][ξ]bc

[ξ]

b[ξ]

ab̄[ξ]

4 5

[ξ]

d[ξ]

d[ξ]

[ξ]

[ξ]

14

24

34

15

35

b̄c

bc
ab̄c

b̄cd

>

d

ab̄
b

b̄cd

d

25

bcd

bd

ab̄cd

bcd

ab̄d
bd

ab̄c
bc

Suspendable!

Pointless!
No need to check

for FGd while

((a U b) R c)
is not in an

accepting SCC.

Reset transitions
to be synchronized
with transitions out
of accepting SCCs.

New atomic proposition
so that our special

synchronization can
be implemented as a
synchronous product.

10 / 16



Our Compositional Approach to Suspension

1

2

3

b̄c[ξ]

ab̄c[ξ][ξ]bc

[ξ]

b[ξ]

ab̄[ξ]

4 5

>

d

d

Given an LTL formula ϕ: ((a U b) R c) ∧ FGd

1 Rewrite all (maximal) suspendable
subformulae ξi of ϕ as G[ξi]. Call this ϕ′.
ϕ′ = ((a U b) R c) ∧ G[ξ] ξ = FGd

2 Translate ϕ′ as a TGBA Aϕ′

and simplify it.

3 Remove [ξi] from all transitions that are not in
accepting SCCs.

4 Add [ξi] to transitions that do not have [ξi].
5 Translate each ξi into Aξi

and simplify them.

6 Add [ξi] labels and reset transitions to each
Aξi .

7 Build the product of all these automata. Strip
[ξi] and [ξi] from the result.

11 / 16



Our Compositional Approach to Suspension

1

2

3

b̄c[ξ]

ab̄c[ξ][ξ]bc

[ξ]

b[ξ]

ab̄[ξ]

4 5

>

d

d

Given an LTL formula ϕ: ((a U b) R c) ∧ FGd

1 Rewrite all (maximal) suspendable
subformulae ξi of ϕ as G[ξi]. Call this ϕ′.
ϕ′ = ((a U b) R c) ∧ G[ξ] ξ = FGd

2 Translate ϕ′ as a TGBA Aϕ′

and simplify it.

3 Remove [ξi] from all transitions that are not in
accepting SCCs.

4 Add [ξi] to transitions that do not have [ξi].
5 Translate each ξi into Aξi

and simplify them.

6 Add [ξi] labels and reset transitions to each
Aξi .

7 Build the product of all these automata. Strip
[ξi] and [ξi] from the result.

11 / 16



Our Compositional Approach to Suspension

1

2

3

b̄c[ξ]

ab̄c[ξ][ξ]bc

[ξ]

b[ξ]

ab̄[ξ]

4 5

>

d

d

Given an LTL formula ϕ: ((a U b) R c) ∧ FGd

1 Rewrite all (maximal) suspendable
subformulae ξi of ϕ as G[ξi]. Call this ϕ′.
ϕ′ = ((a U b) R c) ∧ G[ξ] ξ = FGd

2 Translate ϕ′ as a TGBA Aϕ′

and simplify it.
3 Remove [ξi] from all transitions that are not in

accepting SCCs.

4 Add [ξi] to transitions that do not have [ξi].
5 Translate each ξi into Aξi

and simplify them.

6 Add [ξi] labels and reset transitions to each
Aξi .

7 Build the product of all these automata. Strip
[ξi] and [ξi] from the result.

11 / 16



Our Compositional Approach to Suspension

1

2

3

b̄c[ξ]

ab̄c[ξ][ξ]bc

[ξ]

b[ξ]

ab̄[ξ]

4 5

>

d

d

[ξ] [ξ]

Given an LTL formula ϕ: ((a U b) R c) ∧ FGd

1 Rewrite all (maximal) suspendable
subformulae ξi of ϕ as G[ξi]. Call this ϕ′.
ϕ′ = ((a U b) R c) ∧ G[ξ] ξ = FGd

2 Translate ϕ′ as a TGBA Aϕ′

and simplify it.

3 Remove [ξi] from all transitions that are not in
accepting SCCs.

4 Add [ξi] to transitions that do not have [ξi].

5 Translate each ξi into Aξi

and simplify them.

6 Add [ξi] labels and reset transitions to each
Aξi .

7 Build the product of all these automata. Strip
[ξi] and [ξi] from the result.

11 / 16



Our Compositional Approach to Suspension

1

2

3

b̄c[ξ]

ab̄c[ξ][ξ]bc

[ξ]

b[ξ]

ab̄[ξ]

4 5

>

d

d

[ξ] [ξ]

Given an LTL formula ϕ: ((a U b) R c) ∧ FGd

1 Rewrite all (maximal) suspendable
subformulae ξi of ϕ as G[ξi]. Call this ϕ′.
ϕ′ = ((a U b) R c) ∧ G[ξ] ξ = FGd

2 Translate ϕ′ as a TGBA Aϕ′

and simplify it.

3 Remove [ξi] from all transitions that are not in
accepting SCCs.

4 Add [ξi] to transitions that do not have [ξi].
5 Translate each ξi into Aξi

and simplify them.
6 Add [ξi] labels and reset transitions to each

Aξi .
7 Build the product of all these automata. Strip

[ξi] and [ξi] from the result.

11 / 16



Our Compositional Approach to Suspension

1

2

3

b̄c[ξ]

ab̄c[ξ][ξ]bc

[ξ]

b[ξ]

ab̄[ξ]

4 5

[ξ]

d[ξ]

d[ξ]

[ξ] [ξ]

Given an LTL formula ϕ: ((a U b) R c) ∧ FGd

1 Rewrite all (maximal) suspendable
subformulae ξi of ϕ as G[ξi]. Call this ϕ′.
ϕ′ = ((a U b) R c) ∧ G[ξ] ξ = FGd

2 Translate ϕ′ as a TGBA Aϕ′

and simplify it.

3 Remove [ξi] from all transitions that are not in
accepting SCCs.

4 Add [ξi] to transitions that do not have [ξi].
5 Translate each ξi into Aξi

and simplify them.

6 Add [ξi] labels and reset transitions to each
Aξi .

7 Build the product of all these automata. Strip
[ξi] and [ξi] from the result.

11 / 16



Our Compositional Approach to Suspension

1

2

3

b̄c[ξ]

ab̄c[ξ][ξ]bc

[ξ]

b[ξ]

ab̄[ξ]

4 5

[ξ]

d[ξ]

d[ξ]

[ξ] [ξ]

Given an LTL formula ϕ: ((a U b) R c) ∧ FGd

1 Rewrite all (maximal) suspendable
subformulae ξi of ϕ as G[ξi]. Call this ϕ′.
ϕ′ = ((a U b) R c) ∧ G[ξ] ξ = FGd

2 Translate ϕ′ as a TGBA Aϕ′

and simplify it.

3 Remove [ξi] from all transitions that are not in
accepting SCCs.

4 Add [ξi] to transitions that do not have [ξi].
5 Translate each ξi into Aξi

and simplify them.

6 Add [ξi] labels and reset transitions to each
Aξi .

7 Build the product of all these automata. Strip
[ξi] and [ξi] from the result.

11 / 16



Our Compositional Approach to Suspension

1

2

3

b̄c[ξ]

ab̄c[ξ][ξ]bc

[ξ]

b[ξ]

ab̄[ξ]

4 5

[ξ]

d[ξ]

d[ξ]

[ξ] [ξ]

Given an LTL formula ϕ: ((a U b) R c) ∧ FGd

1 Rewrite all (maximal) suspendable
subformulae ξi of ϕ as G[ξi]. Call this ϕ′.
ϕ′ = ((a U b) R c) ∧ G[ξ] ξ = FGd

2 Translate ϕ′ as a TGBA Aϕ′ and simplify it.
3 Remove [ξi] from all transitions that are not in

accepting SCCs.

4 Add [ξi] to transitions that do not have [ξi].
5 Translate each ξi into Aξi and simplify them.
6 Add [ξi] labels and reset transitions to each

Aξi .
7 Build the product of all these automata. Strip

[ξi] and [ξi] from the result.
11 / 16



Compositional Suspension Benefits

I Can work on top of any translator.
I Largest reduction obtained when Aξi are big, and Aϕ′ have a

lot of non-accepting SCCs.

I Suspendable formulae include usual fairness constraints.

I Intermediate automata can be simplified independently.
I In particular, ϕ′ could be an obligation and Aϕ′ subjected to

WDBA-minimization.

12 / 16



SCC-Aware Degeneralization

This talk

only in the paper

ϕ Trans. to
TGBA

Simplify
TGBA

Degen-
eralize

Simplify
BA

BA

Better translation
of formulae that contains
suspendable subformulae

SCC-aware
degeneralization

I Better acceptance simplification
I BDD-based simulation-based reductions,

with determinism improvement

13 / 16



Classical Degeneralization (TGBA→ BA)

1 2

3

4

1,1 2,1

3,1

4,1

1,2 2,2

3,23,2

4,2

1 Order the m acceptance sets
F1,F2 . . . ,Fm

2 Duplicate m + 1 times
3 Level i < m redirects outputs from

Fi+1 ∩ Fi+2 ∩ . . . ∩ Fj to level j
4 Wire level m like level 0.
5 Mark level m as accepting.

We suggest two optimizations:
I Level Caching:

Upon entering an
accepting SCC (of the TGBA), reuse
any existing level.

I Level Reset:

Upon leaving an SCC,
reset the level to 0.

14 / 16



Classical Degeneralization (TGBA→ BA)

1,0 2,0

3,0

4,0

1,1 2,1

3,1

4,1

1,2 2,2

3,23,2

4,2

1 Order the m acceptance sets
F1,F2 . . . ,Fm

2 Duplicate m + 1 times

3 Level i < m redirects outputs from
Fi+1 ∩ Fi+2 ∩ . . . ∩ Fj to level j

4 Wire level m like level 0.
5 Mark level m as accepting.

We suggest two optimizations:
I Level Caching:

Upon entering an
accepting SCC (of the TGBA), reuse
any existing level.

I Level Reset:

Upon leaving an SCC,
reset the level to 0.

14 / 16



Classical Degeneralization (TGBA→ BA)

1,0 2,0

3,0

4,0

1,1 2,1

3,1

4,1

1,2 2,2

3,23,2

4,2

1 Order the m acceptance sets
F1,F2 . . . ,Fm

2 Duplicate m + 1 times
3 Level i < m redirects outputs from

Fi+1 ∩ Fi+2 ∩ . . . ∩ Fj to level j

4 Wire level m like level 0.
5 Mark level m as accepting.

We suggest two optimizations:
I Level Caching:

Upon entering an
accepting SCC (of the TGBA), reuse
any existing level.

I Level Reset:

Upon leaving an SCC,
reset the level to 0.

14 / 16



Classical Degeneralization (TGBA→ BA)

1,0 2,0

3,0

4,0

1,1 2,1

3,1

4,1

1,2 2,2

3,23,2

4,2

1 Order the m acceptance sets
F1,F2 . . . ,Fm

2 Duplicate m + 1 times
3 Level i < m redirects outputs from

Fi+1 ∩ Fi+2 ∩ . . . ∩ Fj to level j
4 Wire level m like level 0.

5 Mark level m as accepting.

We suggest two optimizations:
I Level Caching:

Upon entering an
accepting SCC (of the TGBA), reuse
any existing level.

I Level Reset:

Upon leaving an SCC,
reset the level to 0.

14 / 16



Classical Degeneralization (TGBA→ BA)

1,0 2,0

3,0

4,0

1,1 2,1

3,1

4,1

1,2 2,2

3,23,2

4,2

1 Order the m acceptance sets
F1,F2 . . . ,Fm

2 Duplicate m + 1 times
3 Level i < m redirects outputs from

Fi+1 ∩ Fi+2 ∩ . . . ∩ Fj to level j
4 Wire level m like level 0.
5 Mark level m as accepting.

We suggest two optimizations:
I Level Caching:

Upon entering an
accepting SCC (of the TGBA), reuse
any existing level.

I Level Reset:

Upon leaving an SCC,
reset the level to 0.

14 / 16



SCC-Aware Degeneralization (TGBA→ BA)

1,0 2,0

3,0

4,0

1,1 2,1

3,1

4,1

1,2 2,2

3,23,2

4,2

1 Order the m acceptance sets
F1,F2 . . . ,Fm

2 Duplicate m + 1 times
3 Level i < m redirects outputs from

Fi+1 ∩ Fi+2 ∩ . . . ∩ Fj to level j
4 Wire level m like level 0.
5 Mark level m as accepting.

We suggest two optimizations:
I Level Caching:

Upon entering an
accepting SCC (of the TGBA), reuse
any existing level.

I Level Reset:

Upon leaving an SCC,
reset the level to 0.

14 / 16



SCC-Aware Degeneralization (TGBA→ BA)

1,0 2,0

3,0

4,0

1,1 2,1

3,1

4,1

1,2 2,2

3,23,2

4,2

1 Order the m acceptance sets
F1,F2 . . . ,Fm

2 Duplicate m + 1 times
3 Level i < m redirects outputs from

Fi+1 ∩ Fi+2 ∩ . . . ∩ Fj to level j
4 Wire level m like level 0.
5 Mark level m as accepting.

We suggest two optimizations:
I Level Caching: Upon entering an

accepting SCC (of the TGBA), reuse
any existing level.

I Level Reset:

Upon leaving an SCC,
reset the level to 0.

14 / 16



SCC-Aware Degeneralization (TGBA→ BA)

1,0 2,0

3,0

4,0

1,1 2,1

3,1

4,1

1,2 2,2

3,23,2

4,2

1 Order the m acceptance sets
F1,F2 . . . ,Fm

2 Duplicate m + 1 times
3 Level i < m redirects outputs from

Fi+1 ∩ Fi+2 ∩ . . . ∩ Fj to level j
4 Wire level m like level 0.
5 Mark level m as accepting.

We suggest two optimizations:
I Level Caching: Upon entering an

accepting SCC (of the TGBA), reuse
any existing level.

I Level Reset:

Upon leaving an SCC,
reset the level to 0.

14 / 16



SCC-Aware Degeneralization (TGBA→ BA)

1,0 2,0

3,0

4,0

1,1 2,1

3,1

4,1

1,2 2,2

3,23,2

4,2

1 Order the m acceptance sets
F1,F2 . . . ,Fm

2 Duplicate m + 1 times
3 Level i < m redirects outputs from

Fi+1 ∩ Fi+2 ∩ . . . ∩ Fj to level j
4 Wire level m like level 0.
5 Mark level m as accepting.

We suggest two optimizations:
I Level Caching: Upon entering an

accepting SCC (of the TGBA), reuse
any existing level.

I Level Reset: Upon leaving an SCC,
reset the level to 0.

14 / 16



SCC-Aware Degeneralization (TGBA→ BA)

1,0 2,0

3,0

4,0

1,1 2,1

3,1

4,1

1,2 2,2

3,23,2

4,2

1 Order the m acceptance sets
F1,F2 . . . ,Fm

2 Duplicate m + 1 times
3 Level i < m redirects outputs from

Fi+1 ∩ Fi+2 ∩ . . . ∩ Fj to level j
4 Wire level m like level 0.
5 Mark level m as accepting.

We suggest two optimizations:
I Level Caching: Upon entering an

accepting SCC (of the TGBA), reuse
any existing level.

I Level Reset: Upon leaving an SCC,
reset the level to 0.

14 / 16



Some Results

100 random formulae of the form ϕi ∧ (GFa → GFb) ∧ (GFc → GFd)

ϕ Trans. to
TGBA

Simplify
TGBA

Degen-
eralize

Simplify
BA

BA

I Dead SCCs removal
I Acceptance simplifications

I Dead SCCs removal
I Acceptance simplifications
I Simulation-based reductions

I Simulation-based reductions

states transitions time

baseline 8207 3928868 114 s

+ better acceptance simplification 8083 3876308 151 s
+ simulation 3488 782324 178 s
+ BA simulation 3371 699096 183 s
+ better degeneralization 3259 727416 181 s
+ compositional suspension 3091 668768 53 s

15 / 16



Some Results

100 random formulae of the form ϕi ∧ (GFa → GFb) ∧ (GFc → GFd)

ϕ Trans. to
TGBA

Simplify
TGBA

Degen-
eralize

Simplify
BA

BA

I Dead SCCs removal
I Acceptance simplifications

I Dead SCCs removal
I Acceptance simplifications
I Simulation-based reductions

I Simulation-based reductions

states transitions time

baseline 8207 3928868 114 s
+ better acceptance simplification 8083 3876308 151 s

+ simulation 3488 782324 178 s
+ BA simulation 3371 699096 183 s
+ better degeneralization 3259 727416 181 s
+ compositional suspension 3091 668768 53 s

15 / 16



Some Results

100 random formulae of the form ϕi ∧ (GFa → GFb) ∧ (GFc → GFd)

ϕ Trans. to
TGBA

Simplify
TGBA

Degen-
eralize

Simplify
BA

BA

I Dead SCCs removal
I Acceptance simplifications

I Dead SCCs removal
I Acceptance simplifications
I Simulation-based reductions

I Simulation-based reductions

states transitions time

baseline 8207 3928868 114 s
+ better acceptance simplification 8083 3876308 151 s
+ simulation 3488 782324 178 s

+ BA simulation 3371 699096 183 s
+ better degeneralization 3259 727416 181 s
+ compositional suspension 3091 668768 53 s

15 / 16



Some Results

100 random formulae of the form ϕi ∧ (GFa → GFb) ∧ (GFc → GFd)

ϕ Trans. to
TGBA

Simplify
TGBA

Degen-
eralize

Simplify
BA

BA

I Dead SCCs removal
I Acceptance simplifications

I Dead SCCs removal
I Acceptance simplifications
I Simulation-based reductions

I Simulation-based reductions

states transitions time

baseline 8207 3928868 114 s
+ better acceptance simplification 8083 3876308 151 s
+ simulation 3488 782324 178 s
+ BA simulation 3371 699096 183 s

+ better degeneralization 3259 727416 181 s
+ compositional suspension 3091 668768 53 s

15 / 16



Some Results

100 random formulae of the form ϕi ∧ (GFa → GFb) ∧ (GFc → GFd)

ϕ Trans. to
TGBA

Simplify
TGBA

Degen-
eralize

Simplify
BA

BA

I Dead SCCs removal
I Acceptance simplifications

I Dead SCCs removal
I Acceptance simplifications
I Simulation-based reductions

I Simulation-based reductions

states transitions time

baseline 8207 3928868 114 s
+ better acceptance simplification 8083 3876308 151 s
+ simulation 3488 782324 178 s
+ BA simulation 3371 699096 183 s
+ better degeneralization 3259 727416 181 s

+ compositional suspension 3091 668768 53 s

15 / 16



Some Results

100 random formulae of the form ϕi ∧ (GFa → GFb) ∧ (GFc → GFd)

ϕ Trans. to
TGBA

Simplify
TGBA

Degen-
eralize

Simplify
BA

BA

I Dead SCCs removal
I Acceptance simplifications

I Dead SCCs removal
I Acceptance simplifications
I Simulation-based reductions

I Simulation-based reductions

states transitions time

baseline 8207 3928868 114 s
+ better acceptance simplification 8083 3876308 151 s
+ simulation 3488 782324 178 s
+ BA simulation 3371 699096 183 s
+ better degeneralization 3259 727416 181 s
+ compositional suspension 3091 668768 53 s

15 / 16



Conclusion

This talk

only in the paper

ϕ Trans. to
TGBA

Simplify
TGBA

Degen-
eralize

Simplify
BA

BA

Better translation
of formulae that contains
suspendable subformulae

SCC-aware
degeneralization

I Better acceptance simplification
I BDD-based simulation-based reductions,

with determinism improvement

I LTL-to-BA translators are already fairly well optimized.
We still managed some improvement.

I All these techniques are implemented in Spot 1.1.2.
I Compositional suspension can be tested on-line at
http://spot.lip6.fr/ltl2tgba.html

16 / 16

http://spot.lip6.fr/ltl2tgba.html

