Compositional Approach to Suspension

and Other Improvements to LTL Translation

Tomas Babiak! Thomas Badie® Alexandre Duret-Lutz?
Mojmir Kfetinsky' Jan Strejéek’

Faculty of Informatics, Masaryk University, Brno, Czech Republic

2LRDE, EPITA, Le Kremlin-Bicétre, France

SPIN’13, 8-9 July 2013

From LTL to BA: The Big Picture

LTL form. Bichi
) automaton

b

From LTL to BA: The Big Picture

LTL form. LTL Biichi
@ rewritings automaton

b

From LTL to BA: The Big Picture

LTL form. LTL Core Blichi
@ rewritings translation automaton
ab
N
ab 3
ab
ab
TGBA: Transition-based

Generalized Blichi Automaton -

From LTL to BA: The Big Picture

LTL form. LTL Core Post- Bachi
® rewritings translation processings automaton
ab
N
ab 3
ab
ab
TGBA: Transition-based

Generalized Blichi Automaton -

From LTL to BA: The Big Picture

Our work

LTLform. LTL s Core Post . Bchi
® rewritings ¢ translation processings »/ automaton

s N s M

ab

N
ab

ab

ab
TGBA: Transition-based
Generalized Blichi Automaton -

J

From LTL to BA: More Details

» Generic workflow:
Trans. to Simplify Degen- Simplify

4 TGBA TGBA eralize BA =
s /k
» Dead SCCs removal [» Simulation-based reductions]

» Acceptance simplifications
» Simulation-based reductions

From LTL to BA: More Details

» Generic workflow:
Trans. to Simplify Degen- Simplify

4 TGBA TGBA eralize BA =
s /k
» Dead SCCs removal [» Simulation-based reductions]

» Acceptance simplifications
» Simulation-based reductions

» QObligation properties can be translated better!

Temporal Hierarchy

Deterministic
Blichi Automata

Weak Det. LReourrence

Blichi Automata

Reactivity

(WDBA)
T Obligation

Safety

A

Persistence

Guarantee

Weak Biichi
Automata

@ Z. Manna and A. Pnueli. A hierarchy of temporal properties. PODC’90 d

From LTL to BA: More Details

» Generic workflow:
Trans. to Simplify Degen- Simplify

4 TGBA TGBA eralize BA =
s /k
» Dead SCCs removal [» Simulation-based reductions]

» Acceptance simplifications
» Simulation-based reductions

» Obligation properties can be translated into
minimal Weak Deterministic Blichi Automata:

Trans. to e
7 TGBA WDBA minimization (WD)BA

@ C. Dax, J. Eisinger, and F. Klaedtke. Mechanizing the powerset construction
for restricted classes of w-automata. ATVA'07 ﬂ

Our Contributions

Better translation
of formulae that contains SCC-aware
suspendable subformulae | | degeneralization

Trans. to Simplify Degen- Simplify
TGBA TGBA eralize BA
\
» Better acceptance simplification
» BDD-based simulation-based reductions,
with determinism improvement

¥ BA

Our Contributions

This talk

W NN NN N BN BN BN N BN BN BN BN BN BN BN BN BN BN BN BN B B BN BN BN BN By

- Better translation :
! of formulae that contains SCC-aware |}
1| suspendable subformulae | | degeneralization :

‘--------\/-------------d\/h----p

Trans. to Simplify Degen- Simplify
TGBA TGBA eralize BA

l------------*------------\

1| » Better acceptance simplification

: » BDD-based simulation-based reductions,

1| with determinism improvement
'

¥ BA

only in the paper

Compositional Suspension

Better translation
of formulae that contains
suspendable subformulae

\
¢ Trans. to Simplify Degen- Simplify BA
TGBA TGBA eralize BA

Suspendable Formulae

Pure Eventuality Purely Universal
Fu=u Gv=v

[§ K. Etessami and G. J. Holzmann. Optimizing Biichi Automata. CONCUR'00 M

Suspendable Formulae

Pure Eventuality Suspendable Purely Universal
Fu=u GE=FE=XE=¢ Gr=vy

> Intuition: subspendable formulae have one F and one G in
each syntactic branch. E.g., all usual fairness constraints:
» GFp
» FGy — GFp
» GFp — GFp

@ T. Babiak, M. Kretinsky, V. Rehak, and J. Strejéek. LTL to Biichi automata
translation: Fast and more deterministic. TACAS’12 ﬂ

Suspendable Formulae

Pure Eventuality Suspendable Purely Universal

> Intuition: subspendable formulae have one F and one G in
each syntactic branch. E.g., all usual fairness constraints:
» GFp
» FGy — GFp
» GFp — GFp
» Key property: a suspendable formula either holds at all steps
of an execution, or it holds at none.
» Consequence: its verification can be “suspended” by any
finite number of steps.

@ T. Babiak, M. Kretinsky, V. Rehak, and J. Strejéek. LTL to Biichi automata
translation: Fast and more deterministic. TACAS’12 ﬂ

>
e
(@]
S
(4]
S
Q0
I
©
p -
o
(@}
S
=

Reactivity

Persistence

Recurrence

Obligation

Guarantee

Safety

Formulae with
suspendable
subformulae

Using Suspension During Translation (Intuition)

((aUb)Rc) A FGd

Using Suspension During Translation (Intuition)

((aUb)Rc) A FGd

bed

Using Suspension During Translation (Intuition)

((aUb)Rc) A FGd

A

[Suspendable!]

bed

Using Suspension During Translation (Intuition)

((aUb)Rc) A FGd

A

[Suspendable!]

Pointless!
No need to check
for FGd while

((aUb)Rc)
is notin an
accepting SCC.)

Using Suspension During Translation (Intuition)

((aUb)Rc) A FGd

bec
\ Reset transitions
_ to be synchronized
bc / | ab¢ with transitions out

of accepting SCCs.

Using Suspension During Translation (Intuition)

((aUb)Rc) A FGd

Using Suspension During Translation (Intuition)
[£] d¢]

- \% dfé] %
B . ((aUb)Rc) A FGd

bclé] be LI~ New atomic proposition|
= so that our special
synchronization can
- h - be implemented as a
[£]be ab b synchronous product.

Our Compositional Approach to Suspension

Given an LTL formula ¢: {((a Ub)Rc) A FGd]

Our Compositional Approach to Suspension

Given an LTL formula ¢: {((a Ub)Rc) A FGd]

© Rewrite all (maximal) suspendable
subformulae ¢&; of ¢ as G[¢]. Call this ¢'.

(¢’ = ((aUb)Rc) A G[¢]|[£ = FGd]

Our Compositional Approach to Suspension

\ bcl¢g] Givenan LTL formula ¢: [((a Ub)Rc) A FGd}

© Rewrite all (maximal) suspendable
subformulae ¢&; of ¢ as G[¢]. Call this ¢'.

[elbc / 4 30Ck] (¢ = ((aUb)Rc) A G[¢]|(£ = Fad]

abl¢]
C?D ® Translate ¢’ as a TGBA A,
bl¢]

[¢]

Our Compositional Approach to Suspension

Ebc

\ bcl¢g] Givenan LTL formula ¢: [((a Ub)Rc) A FGd}

abclé]
abl¢]
ibE

[¢]

© Rewrite all (maximal) suspendable
subformulae ¢&; of ¢ as G[¢]. Call this ¢'.

(¢ = ((aUb)Rc) A G[¢]|(£ = Fad]
® Translate ¢’ as a TGBA A,

® Remove [¢] from all transitions that are not in
accepting SCCs.

® Add [¢] to transitions that do not have [£]].

Our Compositional Approach to Suspension

\ bcl¢g] Givenan LTL formula ¢: [((a Ub)Rc) A FGd}

@ Reuwrite all (maximal) suspendable
abclg] subformulae ¢; of ¢ as G[j]. Call this ¢'.

(¢’ = ((aUb)Rc) A G[¢]|[£ = FGd]

abl¢]
® Translate ¢’ as a TGBA A,
b[¢] ® Remove [¢] from all transitions that are not in
accepting SCCs.
[€] ® Add [¢] to transitions that do not have [£]].

O Translate each &; into A
T d
OO

Ebc

Our Compositional Approach to Suspension

\ bcl¢g] Givenan LTL formula ¢: [((a Ub)Rc) A FGd}

@ Reuwrite all (maximal) suspendable
abclg] subformulae ¢; of ¢ as G[j]. Call this ¢'.

able |¢ =((aUb)Rc) AGl|(£ = FGd|
® Translate ¢’ as a TGBA A,
blé] ® Remove [¢] from all transitions that are not in
accepting SCCs.

€] O Add E to transitions that do not have [£]].
] d] O Translate each &; into A

0O Add |£] labels and reset transitions to each
Ny dfe] % Ae. e

Ebc

Our Compositional Approach to Suspension

\ bcl¢g] Givenan LTL formula ¢: [((a Ub)Rc) A FGd}

@ Reuwrite all (maximal) suspendable
abclg] subformulae ¢; of ¢ as G[j]. Call this ¢'.

able |¢ =((aUb)Rc) AGl|(£ = FGd|
® Translate ¢’ as a TGBA A,
blé] ® Remove [¢] from all transitions that are not in
accepting SCCs.

[€] @ Add [£] to transitions that do not have [£].
O Translate each &; into A

Ebc

[d¢] "
O Add [¢]] labels and reset transitions to each
Ny dfe] A
N — @ Build the product of all these automata. Strip
Ete] [£] and [&] from the result.

Our Compositional Approach to Suspension

\ bcl¢g] Givenan LTL formula ¢: [((a Ub)Rc) A FGd}

© Rewrite all (maximal) suspendable
@ abclé] subformulae ¢; of ¢ as G[¢]. Call this ¢'.

able |¢ =((aUb)Rc) AGl|(£ = FGd|
® Translate ¢" as a TGBA A, and simplify it.
blé] ® Remove [¢] from all transitions that are not in
accepting SCCs.

[€] ® Add [¢] to transitions that do not have [£]].
O Translate each ¢&; into A;, and simplify them.

[d¢] "
O Add [¢]] labels and reset transitions to each
Ny dfe] A
N — @ Build the product of all these automata. Strip
Ete] [£] and [&] from the result.

Compositional Suspension Benefits

v

\ 2 4

Can work on top of any translator.

Largest reduction obtained when A, are big, and A, have a
lot of non-accepting SCCs.

Suspendable formulae include usual fairness constraints.

Intermediate automata can be simplified independently.

In particular, ¢’ could be an obligation and A, subjected to
WDBA-minimization.

SCC-Aware Degeneralization

SCC-aware
degeneralization
\f
¢ Trans. to Simplify Degen- Simplify BA
TGBA TGBA eralize BA

Classical Degeneralization (TGBA — BA)

.) © Order the m acceptance sets
S Fi,Fo...,Fn

Classical Degeneralization (TGBA — BA)

© Order the m acceptance sets
—>
‘ Fi,Fs..

(2] Dupllcate m + 1 times

Classical Degenerallzatlon (TGBA — BA)

_) © Order the m acceptance sets
Fi,Fo...,Fn
(2] Dupllcate m + 1 times

® Level i < m redirects outputs from
Fiz1 N Fiion...N Fjto level j

Classical Degeneralization (TGBA — BA)

&

b

© Order the m acceptance sets
Fi,Fo....Fn

® Duplicate m + 1 times

® Level i < m redirects outputs from
Fi+1 ﬂl:,-+gﬂ...ﬂtho |eve|j

O Wire level m like level 0.

Classical Degeneralization (TGBA — BA)

© Order the m acceptance sets
Fi,Fo....Fn

® Duplicate m + 1 times

® Level i < m redirects outputs from
Fi+1 ﬂF,-+gﬂ...ﬂtho |eve|j

O Wire level m like level 0.
©® Mark level m as accepting.

SCC-Aware Degeneralization (TGBA — BA)

© Order the m acceptance sets
Fi,Fo....Fn

® Duplicate m + 1 times

® Level i < m redirects outputs from
Fi+1 ﬂF,-+gﬂ...ﬂtho |eve|j

O Wire level m like level 0.
©® Mark level m as accepting.

We suggest two optimizations:
> Level Caching:

> Level Reset:

SCC-Aware Degeneralization (TGBA — BA)

© Order the m acceptance sets
Fi,Fo....Fn
® Duplicate m + 1 times

® Level i < m redirects outputs from
Fi+1 ﬂF,-+gﬂ...ﬂtho |eve|j

O Wire level m like level 0.
©® Mark level m as accepting.

We suggest two optimizations:

» Level Caching: Upon entering an
accepting SCC (of the TGBA), reuse
any existing level.

> Level Reset:

SCC-Aware Degeneralization (TGBA — BA)

© Order the m acceptance sets
Fi,Fo....Fn
® Duplicate m + 1 times

® Level i < m redirects outputs from
Fi+1 ﬂF,-+gﬂ...ﬂtho |eve|j

O Wire level m like level 0.
©® Mark level m as accepting.

We suggest two optimizations:

» Level Caching: Upon entering an
accepting SCC (of the TGBA), reuse
any existing level.

> Level Reset:

SCC-Aware Degeneralization (TGBA — BA)

© Order the m acceptance sets
Fi,Fo....Fn

® Duplicate m + 1 times

® Level i < m redirects outputs from
Fi+1 ﬂF,-+gﬂ...ﬂtho |eve|j

O Wire level m like level 0.
©® Mark level m as accepting.

We suggest two optimizations:

» Level Caching: Upon entering an
accepting SCC (of the TGBA), reuse
any existing level.

> Level Reset: Upon leaving an SCC,
reset the level to 0. m

SCC-Aware Degeneralization (TGBA — BA)

© Order the m acceptance sets
Fi,Fo....Fn

@ ® Duplicate m + 1 times
® Level i < m redirects outputs from

Fii1NFip2N...N Fjtolevel j

O Wire level m like level 0.
©® Mark level m as accepting.

We suggest two optimizations:

» Level Caching: Upon entering an
accepting SCC (of the TGBA), reuse
any existing level.

> Level Reset: Upon leaving an SCC,
reset the level to 0. m

Some Results

100 random formulae of the form ¢; A (GFa — GFb) A (GFc — GFd)

Trans. to Simplify Degen-
TGBA TGBA eralize
7
» Dead SCCs removal
» Acceptance simplifications

¥ BA

states transitions time

baseline 8207 3928868 114 s

Some Results

100 random formulae of the form ¢; A (GFa — GFb) A (GFc — GFd)

Trans. to Simplify Degen-

Y TGBA TGBA eralize BA
T
» Dead SCCs removal
» Acceptance simplifications
states transitions time
baseline 8207 3928868 114 s

+ better acceptance simplification 8083 3876308 151 s

Some Results

100 random formulae of the form ¢; A (GFa — GFb) A (GFc — GFd)

Trans. to Simplify Degen-

Y - P i P

BA

» Dead SCCs removal
» Acceptance simplifications
» Simulation-based reductions

states transitions time

baseline 8207 3928868 114s
+ better acceptance simplification 8083 3876308 151 s
+ simulation 3488 782324 178 s

Some Results

100 random formulae of the form ¢; A (GFa — GFb) A (GFc — GFd)

Trans. to Simplify Degen- Simplify

Y TGBA TGBA eralize BA =2
/k
» Dead SCCs removal [» Simulation-based reductions]

» Acceptance simplifications
» Simulation-based reductions

states transitions time

baseline 8207 3928868 114s
+ better acceptance simplification 8083 3876308 151 s
+ simulation 3488 782324 178 s
+ BA simulation 3371 699096 183 s

Some Results

100 random formulae of the form ¢; A (GFa — GFb) A (GFc — GFd)

Trans. to Simplify Degen- Simplify

Y TGBA TGBA eralize BA =4
/k
» Dead SCCs removal [» Simulation-based reductions]

» Acceptance simplifications
» Simulation-based reductions

states transitions time

baseline 8207 3928868 114s
+ better acceptance simplification 8083 3876308 151 s
+ simulation 3488 782324 178 s
+ BA simulation 3371 699096 183 s
+ better degeneralization 3259 727416 181s

Some Results

100 random formulae of the form ¢; A (GFa — GFb) A (GFc — GFd)

Trans. to Simplify Degen- Simplify

Y TGBA TGBA eralize BA =2
/k
» Dead SCCs removal [» Simulation-based reductions]

» Acceptance simplifications
» Simulation-based reductions

states transitions time

baseline 8207 3928868 114s
+ better acceptance simplification 8083 3876308 151 s
+ simulation 3488 782324 178 s
+ BA simulation 3371 699096 183 s
+ better degeneralization 3259 727416 181s

+ compositional suspension 3091 668768 53 sm

Conclusion

Better translation
of formulae that contains { SCC-aware }

suspendable subformulae | | degeneralization

\/ \/
@ Trans. to Simplify Degen- Simplify BA
TGBA TGBA eralize BA
/\

» Better acceptance simplification
» BDD-based simulation-based reductions,
with determinism improvement

» LTL-to-BA translators are already fairly well optimized.
We still managed some improvement.

> All these techniques are implemented in Spot 1.1.2.

» Compositional suspension can be tested on-line at
http://spot.lip6.fr/1tl2tgba.html @

http://spot.lip6.fr/ltl2tgba.html

