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From LTL to BA: More Details

» Generic workflow:
Trans. to  Simplify Degen-  Simplify

4 TGBA TGBA eralize BA =
s /k
» Dead SCCs removal [» Simulation-based reductions ]

» Acceptance simplifications
» Simulation-based reductions

» Obligation properties can be translated into
minimal Weak Deterministic Blichi Automata:

Trans. to e
7 TGBA WDBA minimization (WD)BA

@ C. Dax, J. Eisinger, and F. Klaedtke. Mechanizing the powerset construction
for restricted classes of w-automata. ATVA'07 ﬂ
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Compositional Suspension

Better translation
of formulae that contains
suspendable subformulae

\
¢ Trans. to  Simplify Degen-  Simplify BA
TGBA TGBA eralize BA



Suspendable Formulae

Pure Eventuality Purely Universal
Fu=u Gv=v
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> Intuition: subspendable formulae have one F and one G in
each syntactic branch. E.g., all usual fairness constraints:
» GFp
» FGy — GFp
» GFp — GFp

@ T. Babiak, M. Kretinsky, V. Rehak, and J. Strejéek. LTL to Biichi automata
translation: Fast and more deterministic. TACAS’12 ﬂ



Suspendable Formulae

Pure Eventuality Suspendable Purely Universal

> Intuition: subspendable formulae have one F and one G in
each syntactic branch. E.g., all usual fairness constraints:
» GFp
» FGy — GFp
» GFp — GFp
» Key property: a suspendable formula either holds at all steps
of an execution, or it holds at none.
» Consequence: its verification can be “suspended” by any
finite number of steps.

@ T. Babiak, M. Kretinsky, V. Rehak, and J. Strejéek. LTL to Biichi automata
translation: Fast and more deterministic. TACAS’12 ﬂ
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[Suspendable!]

Pointless!
No need to check
for FGd while

((aUb)Rc)
is notin an
accepting SCC. )
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Using Suspension During Translation (Intuition)
[£] d¢]

- \% dfé] %
B . ((aUb)Rc) A FGd

bclé] be LI~ New atomic proposition|
= so that our special
synchronization can
- h - be implemented as a
[£]be ab b synchronous product.
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\ bcl¢g] Givenan LTL formula ¢: [((a Ub)Rc) A FGd}

© Rewrite all (maximal) suspendable
@ abclé] subformulae ¢; of ¢ as G[¢]. Call this ¢'.

able  |¢ =((aUb)Rc) AGl|(£ = FGd|
® Translate ¢" as a TGBA A, and simplify it.
blé] ® Remove [¢] from all transitions that are not in
accepting SCCs.

[€] ® Add [¢] to transitions that do not have [£]].
O Translate each ¢&; into A;, and simplify them.

[ d¢] "
O Add [¢]] labels and reset transitions to each
Ny dfe] A
N — @ Build the product of all these automata. Strip
Ete ] [£] and [&] from the result.



Compositional Suspension Benefits

v

\ 2 4

Can work on top of any translator.

Largest reduction obtained when A, are big, and A, have a
lot of non-accepting SCCs.

Suspendable formulae include usual fairness constraints.

Intermediate automata can be simplified independently.

In particular, ¢’ could be an obligation and A, subjected to
WDBA-minimization.
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Some Results

100 random formulae of the form ¢; A (GFa — GFb) A (GFc — GFd)

Trans. to  Simplify Degen-  Simplify

Y TGBA  TGBA  eralize BA =2
/k
» Dead SCCs removal [» Simulation-based reductions ]

» Acceptance simplifications
» Simulation-based reductions

states transitions time

baseline 8207 3928868 114s
+ better acceptance simplification 8083 3876308 151 s
+ simulation 3488 782324 178 s
+ BA simulation 3371 699096 183 s
+ better degeneralization 3259 727416 181s

+ compositional suspension 3091 668768 53 sm



Conclusion

Better translation
of formulae that contains { SCC-aware }

suspendable subformulae | | degeneralization

\/ \/
@ Trans. to  Simplify Degen-  Simplify BA
TGBA TGBA eralize BA
/\

» Better acceptance simplification
» BDD-based simulation-based reductions,
with determinism improvement

» LTL-to-BA translators are already fairly well optimized.
We still managed some improvement.

> All these techniques are implemented in Spot 1.1.2.

» Compositional suspension can be tested on-line at
http://spot.lip6.fr/1tl2tgba.html @


http://spot.lip6.fr/ltl2tgba.html

