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āb
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From LTL to BA: More Details

I Generic workflow:

ϕ Trans. to
TGBA

Simplify
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eralize

Simplify
BA
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I Dead SCCs removal
I Acceptance simplifications
I Simulation-based reductions

I Simulation-based reductions

I Obligation properties can be translated

into
minimal Weak Deterministic Büchi Automata:

ϕ Trans. to
TGBA

WDBA minimization (WD)BA
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Temporal Hierarchy
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only in the paper
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with determinism improvement
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Suspendable Formulae

Pure Eventuality
Fµ ≡ µ

Purely Universal
Gν ≡ ν

Suspendable
Gξ ≡ Fξ ≡ Xξ ≡ ξ

I Intuition: subspendable formulae have one F and one G in
each syntactic branch. E.g., all usual fairness constraints:

I GFϕ
I FGϕ→ GFρ
I GFϕ→ GFρ

I Key property: a suspendable formula either holds at all steps
of an execution, or it holds at none.

I Consequence: its verification can be “suspended” by any
finite number of steps.

K. Etessami and G. J. Holzmann. Optimizing Büchi Automata. CONCUR’00 8 / 16
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Using Suspension During Translation (Intuition)
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Our Compositional Approach to Suspension
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Given an LTL formula ϕ: ((a U b) R c) ∧ FGd

1 Rewrite all (maximal) suspendable
subformulae ξi of ϕ as G[ξi]. Call this ϕ′.
ϕ′ = ((a U b) R c) ∧ G[ξ] ξ = FGd

2 Translate ϕ′ as a TGBA Aϕ′

and simplify it.

3 Remove [ξi] from all transitions that are not in
accepting SCCs.

4 Add [ξi] to transitions that do not have [ξi].
5 Translate each ξi into Aξi

and simplify them.

6 Add [ξi] labels and reset transitions to each
Aξi .

7 Build the product of all these automata. Strip
[ξi] and [ξi] from the result.
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Compositional Suspension Benefits

I Can work on top of any translator.
I Largest reduction obtained when Aξi are big, and Aϕ′ have a

lot of non-accepting SCCs.

I Suspendable formulae include usual fairness constraints.

I Intermediate automata can be simplified independently.
I In particular, ϕ′ could be an obligation and Aϕ′ subjected to

WDBA-minimization.

12 / 16



SCC-Aware Degeneralization

This talk

only in the paper

ϕ Trans. to
TGBA

Simplify
TGBA

Degen-
eralize

Simplify
BA

BA

Better translation
of formulae that contains
suspendable subformulae

SCC-aware
degeneralization

I Better acceptance simplification
I BDD-based simulation-based reductions,

with determinism improvement
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Classical Degeneralization (TGBA→ BA)

1 2

3

4

1,1 2,1

3,1

4,1

1,2 2,2

3,23,2

4,2

1 Order the m acceptance sets
F1,F2 . . . ,Fm

2 Duplicate m + 1 times
3 Level i < m redirects outputs from

Fi+1 ∩ Fi+2 ∩ . . . ∩ Fj to level j
4 Wire level m like level 0.
5 Mark level m as accepting.

We suggest two optimizations:
I Level Caching:

Upon entering an
accepting SCC (of the TGBA), reuse
any existing level.

I Level Reset:

Upon leaving an SCC,
reset the level to 0.
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SCC-Aware Degeneralization (TGBA→ BA)
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Some Results

100 random formulae of the form ϕi ∧ (GFa → GFb) ∧ (GFc → GFd)

ϕ Trans. to
TGBA

Simplify
TGBA

Degen-
eralize

Simplify
BA

BA

I Dead SCCs removal
I Acceptance simplifications

I Dead SCCs removal
I Acceptance simplifications
I Simulation-based reductions

I Simulation-based reductions

states transitions time

baseline 8207 3928868 114 s

+ better acceptance simplification 8083 3876308 151 s
+ simulation 3488 782324 178 s
+ BA simulation 3371 699096 183 s
+ better degeneralization 3259 727416 181 s
+ compositional suspension 3091 668768 53 s
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Conclusion

This talk

only in the paper

ϕ Trans. to
TGBA

Simplify
TGBA

Degen-
eralize

Simplify
BA

BA

Better translation
of formulae that contains
suspendable subformulae

SCC-aware
degeneralization

I Better acceptance simplification
I BDD-based simulation-based reductions,

with determinism improvement

I LTL-to-BA translators are already fairly well optimized.
We still managed some improvement.

I All these techniques are implemented in Spot 1.1.2.
I Compositional suspension can be tested on-line at
http://spot.lip6.fr/ltl2tgba.html
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