A Rabin automaton for $\mathbf{GF} a \rightarrow \mathbf{GF} b$

An alternating co-Büchi automaton for $\mathbf{GF} a \rightarrow \mathbf{GF} b$

A transition-based Streett automaton for $\mathbf{GF} a \rightarrow \mathbf{GF} b$

The Hanoi Omega-Automata Format

Tomáš Babiak¹, František Blahoudek¹, Alexandre Duret-Lutz², Joachim Klein³, Jan Křetínský⁴, David Müller⁵, David Parker¹, and Jan Strejček¹

¹Faculty of Informatics, Masaryk University, Brno, Czech Republic
²LIRDE, EPITA, Le Kremlin-Bicêtre, France
³Technische Universität Dresden, Germany
⁴University of Birmingham, UK
⁵IST Austria

Generic acceptance

Acceptance: n. acc specifies the acceptance condition using the following grammar:

$$
\text{acc} ::= f \mid t \mid \text{Inf}(s) \mid \text{Inf}(s) \mid \text{Fin}(s) \mid \text{Fin}(s) \mid \text{acc} \& \text{acc} \mid \text{acc} \mid \text{acc} \mid \text{acc} \\
$$

Where s is an accepting set number smaller than n, $\neg s$ denotes the complement of that set. $\text{Fin}(\text{Inf})$ is satisfied when the set is visited finitely (resp. infinitely) often by a run.

For alternating automata all branches of a run-tree have to satisfy the condition.

Known acceptance conditions can be named with the optional acc-name: header.

Of course acceptance conditions can be created as needed, they do not require a name.

Batch processing

The --END-- marker allows multiple automata to be chained and be batch-processed by a pipe of several commands.

Trivia

Work on this format started during the ATVA'13 conference in Hanoi (Vietnam). Hence the name.

Open development

The format is developed on GitHub at https://github.com/adl/hoaf.

Feel free to make suggestions or report bugs on the issue tracker.

Tool support

ltl2dstar 0.5.3: creates deterministic automata from LTL or Büchi automata inputs BA, outputs DRA or DSA.

ltl2ba 1.1.2: creates automata from LTL inputs BA, TGBA, or VWAA.

ltl3dra 0.2.2: creates deterministic automata from (a subset of) LTL inputs DRA, TGMDA, or MMDA.

Rabinizer 3: creates deterministic automata from LTL outputs DRA, TGMDA, or MMDA.

PRISM 4.3: probabilistic LTL model checking using deterministic HOA automata; (generalized) Rabin for MDP, any acceptance for CTMC/DTMC; scripts for interfacing with the tools above.

Spot 1.99.1: tool suite for LTL/PILA and automata manipulation can input/output anything that is not alternating; translates between formats (like never claim or LBTT); has several automata transformations; to easily develop new consumer tools; jhoafparser/cpphoafparser: Java and C++ parser libraries with pretty printers, translators, and forwarding, to easily choreograph between formats.

If you implement HOA support, tell us so we can list your tool there.

Acc types

- **Buchi**
- **Rabin**
- **Streett**
- **Generalized-Buchi**
- **Generalized-Rabin**
- **Parity**
- **Monitor**
- **Automatic**

Known acceptance conditions

- **Buchi**
- **Rabin**
- **Streett**
- **Generalized-Buchi**
- **Generalized-Rabin**
- **Parity**
- **Monitor**
- **Automatic**

References

Chatterjee et al. (CAV'13) observed order of magnitude speedups replacing Rabin acceptance by generalized Rabin for probabilistic model checking with PRISM.

Contact

For questions, comments, or contributions, please contact us at babiak@fi.muni.cz, f.blahoudek@epita.fr, duret-lutz@irif.fr, joachim.klein@tu-dresden.de, david.muller@tu-dresden.de, david.parker@masaryk-university.cz, jan.strejcek@masaryk-university.cz.