Generic Emptiness Check for Fun and Profit

Christel Baier Franti8ek Blahoudek Alexandre Duret-Lutz
Joachim Klein David Miiller Jan Strejéek

ATVA 2019

Is there a cycle whose set of marks satisfies this formula?

((ﬂ(D/\G) V(= AO)) A (-OVO) A (-OVO)

2/19

Is there a cycle whose set of marks satisfies this formula?

((—'0/\0) v (-@/\9)) A (-OVO) A (-OVO)

2/19

B generic emptiness problem
m the algorithm

m solution of the puzzle
m applications and experimental results

emptiness check for w-automata
probabilistic model checking

3/19

Generic emptiness problem

acceptance marks: 0,00,...

acceptance formulae: ¢ =t |f | Inf(@) | Fin(@) | p A | oV

Let G = (V, E) be a finite directed graph where edges are labelled
with finite sets of acceptance marks, and let ¢ be an acceptance
formula. The graph is empty iff there is no cycle satisfying .

- Fin(®) @ is not on any
a cycle satisfies — edge of the cycle

Inf(@®) ® is on some

4/19

Generic emptiness problem

acceptance marks: 0,00,...

acceptance formulae: ¢ =t |f | Inf(@) | Fin(@) | p A | oV

Let G = (V, E) be a finite directed graph where edges are labelled
with finite sets of acceptance marks, and let ¢ be an acceptance
formula. The graph is empty iff there is no cycle satisfying .

- Fin(®) @ is not on any
a cycle satisfies — edge of the cycle

Inf(@®) ® is on some

The problem whether G is not empty for ¢ is NP-complete
m given a cycle, one can check in P that it satisfies ¢
m NP-hardness by reduction from SAT

4/19

Naive solutions

Idea 1
m enumerate all cycles of G and evaluate ¢ on each
= runs in O(2/E1 - |yp))

5/19

Naive solutions

Idea 1

m enumerate all cycles of G and evaluate ¢ on each
= runs in O(2/E1 - |yp))

Idea 2

m enumerate all models m of ¢ and check whether G has a
cycle satisfying m

m given a model m = {Fin(@), Fin(@®), Inf(@), Inf(©)}, we
remove edges marked with @ and @, decompose the graph to
SCCs, and check for an SCC containing both @ and ©

m runs in O(2!%l . n- |E|), nis the number of distinct marks

5/19

The algorithm

IS_LEMPTY(graph G, acceptance condition)
foreach non-trivial S € sccs_0F(G) do 1S_SCC_EMPTY(S, ¢)

1S_.SCC_EMPTY(SCC S, acceptance condition ¢)
Moccur $— MARKS_OF(S)
@ — @[V@® ¢ Moceur : Inf(@) + f,Fin(@) « t]
if © =f then return
if o[V@® € Moceyr @ Inf(@®) < t] =t then raise NONEMPTY
foreach disjunct ¢; of ¢ do
if pj=¢' A A@cy Fin(@) then
IS_.EMPTY(REMOVE(S, M), ¢')
else
pick some @ such that Fin(@®) occurs in ¢;

IS_EMPTY (REMOVE(S, {@}), ¢;[Fin(®) <« t])
1S_SCC_EMPTY(S, ¢;[Fin(@®) < f])

6/19

Solving the puzzle

((Fin(@)/\lnf(o))\/(Fin()/\Inf(@)))/\(Fin(e)\/lnf(@))/\(Fin()VInf(@))

7/19

Solving the puzzle

((Fin(@)/\lnf(@)) v (Fin()/\Inf(@))) A(Fin(@)VInf(@)) A (Fin()\/I}f(e))

6 ¢ Moccur -
replacing Inf(@) by f

7/19

Solving the puzzle

7/19

Solving the puzzle

(Fin(@)AInf(@) v (Fin(@)AInf(@)) A (Fin(@)VInf(®) A Fin(©)

7/19

Solving the puzzle

((Fin(@)/\lnf(o)) v (Fin()/\Inf(@))) A(Fin(@)VInf(®))

7/19

Solving the puzzle

((Fin(@)/\lnf(o)) v (Fin()/\Inf(@))) A(Fin(@)VInf(®))

7/19

Solving the puzzle
6
>008

((Fin(@) A Inf(@)) v (Fin(@) A |nf((=)))) A (Fin(@) V Inf(@®))

((Fln) A Inf(@)) V (Fin(@) A Inf(9) (Fin(@) Vv Inf(@

8/19

Solving the puzzle
6
>008

((Fin(@) AInf(@)) v (Fin(®) A |nf(9))) A (Fin(g) v Inf(@))

e ¢ Moccur :>
replacing Fin(@®) by t

((Fln) A Inf(@)) V (Fin(@) A Inf(9) (Fin(@) Vv Inf(@

8/19

Solving the puzzle
6

((Fin(@) A 1nf(@)) v (Fin(®) A Inf(®))

((Fln) A Inf(@)) V (Fin(@) A Inf(9) (Fin(@) Vv Inf(@

8/19

Solving the puzzle

Fin(®) A Inf() Fin(@) A Inf(©)

((Fln) A Inf(@)) V (Fin(@) A Inf(9) (Fin(@) Vv Inf(@

8/19

Solving the puzzle

Fin(®) A Inf() Fin(@) A Inf(©)

((Fln) A Inf(@)) V (Fin(@) A Inf(9) (Fin(@) Vv Inf(@

8/19

Solving the puzzle

Inf(@) Fin(@) A Inf(©)

((Fln) A Inf(@)) V (Fin(@) A Inf(9) (Fin(@) v Inf(@

8/19

Solving the puzzle

Inf(@) Fin(@) A Inf(©)

((Fln) A Inf(@)) V (Fin(@) A Inf(9) (Fin(@) v Inf(@

8/19

Solving the puzzle
@
>0 0

Fin(@) A Inf(©)

((Fln) A Inf(@)) V (Fin(@) A Inf(9) (Fin(@) Vv Inf(@

8/19

Solving the puzzle

((Fln) A Inf(@)) V (Fin(@) A Inf(9) (Fin(@) v Inf(@

8/19

Solving the puzzle

((Fln) A Inf(@)) V (Fin(@) A Inf(9) (Fin(@) v Inf(@

8/19

Solving the puzzle

((Fln) A Inf(@)) V (Fin(@) A Inf(9) (Fin(@) v Inf(@
N
[Fin(@) is either true or false]

8/19

Solving the puzzle

((Fln \z/\\lnf Vv (Fin(®) A Inf(@)) (Fin(@) v Inf(@

[replace Fin(®) by t and remove edges with @

((Fln A Inf(@)) v (Fin(@) A Inf(@) (Fin(@) Vv Inf(@
\

[replace Fin(®) by f]

9/19

Solving the puzzle

Vv (Fin(®) A Inf(@)) (Fin(@) v Inf(@

Fin(@) A Inf(®) A (Fin(®) V Inf(®

9/19

Solving the puzzle

V (Fin(®) A Inf(© (Fin(@) v Inf(@

evaluates to t after replacmg
Inf(@), Inf(®), Inf(@) by t =— NoONEwmMPTY

Fin(@) A Inf(®) A (Fin(®) V Inf(®

9/19

Correctness and complexity

Given a graph G = (V, E) and an acceptance condition p, the
algorithm is correct and runs in time O(2" - n - |o| - |E|), where

m f is the number of distinct marks in Fin(@) terms of ¢,

m n is the number of distinct marks in .

10/19

Application 1:
Emptiness check for w-automata

11/19

Emptiness check for w-automata

Transition-based Emerson-Lei automata (TELA)
® w-automata with acceptance conditions as considered before
® a run satisfies Fin(@®) iff it visits @ only finitely often
m a run satisfies Inf(@) iff it visits @ infinitely often
L]

a run is accepting iff it satisfies the acceptance condition

12/19

Emptiness check for w-automata

Transition-based Emerson-Lei automata (TELA)
® w-automata with acceptance conditions as considered before
® a run satisfies Fin(@®) iff it visits @ only finitely often
m a run satisfies Inf(@) iff it visits @ infinitely often
L]

a run is accepting iff it satisfies the acceptance condition

TELA represents a non-empty language iff it contains a
reachable cycle satisfying the acceptance condition

to decide emptiness, we remove unreachable states and run
the algorithm

12/19

Complexity of the emptiness check on classical w-automata

Emerson-Lei arbitrary ¢ O(Qf -n-|pl-|E|)
Buchi Inf(®)

generalized Biichi A, Inf(@)

Rabin V; (Fin(@®) A Inf(@))

Streett A; (Inf(@) V Fin(©))

13/19

Complexity of the emptiness check on classical w-automata

Emerson-Lei arbitrary ¢ o2 - n-lo|-|E|)

Biichi Inf(@®) O(|E|)

generalized Biichi A; Inf(@) O(n-|E|+ el |V])
Rabin V; (Fin(@) A Inf(@)) O(n-|¢| - |E|)

Streett A; (Inf(@) vV Fin(@)) O(f - (n- |E| + |¢| - |V]))

m polynomial also for generalized Rabin, parity, hyper-Rabin, ...

m often the same complexity as the best known algorithms
(does not hold for Streett automata)

13/19

Experimental evaluation

m implemented in Spot 2.7

m Spot 2.0-2.6 decides emptiness of TELA by transformation to
automata with Fin-less acceptance and an SCC-decomposition
of these automata (we call it 01ld is empty)

m comparison on 5 sets of random automata and automata
translated from random LTL formulae

14/19

Comparison with the old emptiness check

random 4 random-rep ® Rabin -+ Streett @ parity-like

dataset
non-empty empty
100000 -
B> a4
i) A A &%
8 100- A N2
q)l % A.A.-- [|
@ s
9 i
'6' 0.1- §+ +
+
4
0.01 1 100 0.01 1 100

is_empty

(Runtime in ms)
15/19

Application 2:
Probabilistic model checking

16/19

Probabilistic model checking

The problem: decide whether a given MDP P satisfies a path
property given as an LTL formula ¢ with a positive probability.

Standard approach

translate ¢ into a deterministic Rabin or generalized Rabin
automaton A

make a product of P and A

search for maximal end-components (SCCs closed under
probabilistic choice) satisfying the accepting condition of A.

m implemented e.g. in PRISM

m we modified PRISM 4.4 to handle deterministic (state-based)
Emerson-Lei automata using the generic emptiness algorithm
(just instead SCCs, it considers maximal end-components)

17/19

Experimental evaluation

m model of mutual exclusion protocol (27600 st.) and 6 formulas

m deterministic automata produced by [tl2dstar (Rabin),
Rabinizer 4 (generalized Rabin), and Spot (Emerson-Lei).

m time (in seconds) of generalized Rabin emptiness check
(tRabin)
m n is the number of acceptance marks

generalized Rabin Rabin

Property tRabin N tRabin n
Prm'"(qbl) 130.7 4 - 14
Prm®(¢,) 234.3 6 - 8
Prmax(¢3) 100.1 5 — 6
Prm'"(¢4) 251.9 6 1.6 6
Prmax(¢5) — 12 — —

m'”((bﬁ 355.3 10 549 6

18/19

Experimental evaluation

m model of mutual exclusion protocol (27600 st.) and 6 formulas

m deterministic automata produced by [tl2dstar (Rabin),
Rabinizer 4 (generalized Rabin), and Spot (Emerson-Lei).

m time (in seconds) of generalized Rabin emptiness check
(trabin) and our algorithm (tg)

m n is the number of acceptance marks

Em.-Lei generalized Rabin Rabin
Property teL N tRabin teL N tRabin ter N
Prmm(qbl) 109.8 4 130.7 121.1 4 — — 14
Prm™(¢,) 04 3 2343 07 6 — 58.9 8
Pr™*(¢3) 04 3 1001 06 5 — 851 6
Prmin(¢s) 0.6 4 251.9 1190 6 16 06 6
PrmaX(¢5) _ 4 - 1 - -
Prm"(gs) 1070 6 3553 1273 10 549 96 6

18/19

Conclusion

Contributions

m generic emptiness check that unifies various emptiness checks
for simpler classes

m polynomial on common acceptance conditions
m exponential (in the number of Fin terms) in the worst case

m implemented in Spot and PRISM, with very clear
improvements

Possible improvements
m parallelization

m heuristics for non-deterministic choices

19/19

