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The reactive synthesis problems
Given a specification relating input signals and output signals over time:

realizability: decide if a controller exist,
synthesis: construct it.
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Reactive Synthesis in a Nutshell
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A reactive controller produces output as a reaction to its input
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The reactive synthesis problems

Given a specification relating input signals and output signals over time:
realizability: decide if a controller exist,
synthesis: construct it.

Our setup (from SYNTCOMP)

» the specification is an LTL formula, over w-words such as “abxy; abxy; abxy; ...”
> the controller should be an And-Inverter Graph
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1. LTL Spec.
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Reactive Synthesis Example
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1. LTL Spec. 3. Parity Game 5. S|mpl Mealy M.
a < F(x) F|n v Inf(©

2. DPA
Fin(®) v Inf(©)

@ Renkin et al. Effective reductions of Mealy machines. FORTE 22. M


https://www.lrde.epita.fr/~adl/dl/adl/renkin.22.forte.pdf

Reactive Synthesis Example

1. LTL Spec.
a o F(x)

: s SRR L
3. Parity Game 5. Simpl. Mealy M.

Parity games:
» have memory-less
strategies
» can be solved in near

Determinism is
po\ynomia\ time

required, soO we
cannot use Blchi

acceptance
N2
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How to turn an LTL formula into a DPA?
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How to turn an LTL formula into a DPA?

degen.
NGBA —> NBA

many tools/v

LTL

@ Gastin and Oddoux. Fast LTL to Blichi automata translation. CAV01.
@ Babiak et al. Compositional approach to suspension and other improvements to LTL translation.

SPIN'13. B


http://dx.doi.org/10.1007/3-540-44585-4_6
http://dx.doi.org/10.1007/978-3-642-39176-7_6

How to turn an LTL formula into a DPA?

|

degen.
NGBA —> NBA

many tools/v

LTL

L

@ Safra. On the complexity of w-automata. FOCS'88. d


http://dx.doi.org/10.1109/SFCS.1988.21948

How to turn an LTL formula into a DPA?

|

degen.
NGBA —> NBA

many tools
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IAR
LTL DRA — DPA

@ Kretinsky et al. Index appearance record with preorders. Acta Informatica, 2021. d


http://dx.doi.org/10.1007/s00236-021-00412-y

degen.
NGBA — NBA det.

many tools
/ \\ciet.

LTL DRA — DPA

@ Piterman. From nondeterministic Bichi and Streett automata to deterministic parity automata. LICS.d


http://dx.doi.org/10.1109/LICS.2006.28
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LTL > DRA —— DPA

@ Komarkova and Kretinsky. Rabinizer 3: Safraless translation of LTL to small deterministic automata.

ATVA’14. ..


http://dx.doi.org/10.1007/978-3-319-11936-6_17

How to turn an LTL formula into a DPA?
i, T TR SR TR \
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degen.
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Rabinizer 3
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@ Esparza et al. From LTL and limit-deterministic Biichi automata to deterministic parity automata.

TACAS'17. B


http://dx.doi.org/10.1007/978-3-662-54577-5_25

How to turn an LTL formula into a DPA?
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degen.
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many tools/v \\ci t :
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Rabinizer 3 IAR
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\F}abinizer /
delag LDBA

ltl3tela -D1
1tl2tgba -GD DELA

@ Major et al. ItI3tela: LTL to small deterministic or nondeterministic Emerson-Lei automata. ATVA’19.
@ Muller and Sickert. LTL to deterministic Emerson-Lei automata. GandALF'17.


http://dx.doi.org/10.1007/978-3-030-31784-3_21
http://dx.doi.org/10.4204/EPTCS.256.13

How to turn an LTL formula into a DPA?
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degen.
NGBA — NBA det.

many tools/v -
et.
Rabinizer 3 IAR

LTL > DRA —— DPA

\Fiabinizer 4
delag LDBA LAR
1t13tela -D1 to_parity

1tl2tgba -GD DELA

@ Léding. Optimal bounds for transformations of w-automata. FSTTCS 99.
[ Renkin, Duret-Lutz, and Pommellet. Practical “paritizing” of Emerson-Lei automata. ATVA'20. d


http://dx.doi.org/10.1007/3-540-46691-6_8
http://dx.doi.org/10.1007/978-3-030-59152-6_7

degen.
NGBA —> NBA det

many tools g
/ \\det
Rabinizer 3 IAR

LTL > DRA ———> DPA

\F}abinizer 4
delag LDBA LAR
ltl3tela -D1 to_parity

1tl2tgba -GD DELA

These paritization
procedures are all
improved by ACD!




Practical Applications of the

Alternating Cycle Decomposition

Antonio Casares Alexandre Duret-Lutz
Klara J. Meyer  Florian Renkin ~ Salomon Sickert

TACAS’22



https://www.lrde.epita.fr/~adl/dl/adl/casares.22.tacas.pdf
https://zenodo.org/record/5572614

Alternating Cycle Decomposition
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Optimal Transformations of Games and Automata
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——— Abstract

We consider the following question: given an automaton or a game with a Muller condition, how
can we efficiently construct an equivalent one with a parity condition? There are several examples
of such transformations in the literature, including in the determinisation of Biichi automata-

We define a new transformation called the alternating cycle decomposition, inspired and extending
Ziclonka's construction. Our transformation operates on transition systems, encompassing both
automata and games, and preserves semantic properties through the existence of a locally bijective
morphism. We show a strong optimality result: the obtained parity ¢ransition system is minimal
both in number of states and. number of priorities with respect to Jocally bijective morphisms.

We give tw applications: the first is related to the determinisation of Biichi automata, and the
second is to give crisp characterisations on the possibility of relabelling automata with different

acceptance conditions.

2012 ACM Subject Classification Theory of computation = Automata over infinite objects

 Automata over infinite words, Omega regular languages, Determinisation of

> .
Defines the ACD structure

of Muller automata
> Hoyv' to use ACD to
pv?lrltlze an automaton.
R ,(_1 ith an optimality result.)
' Oow to use ACD to check
utomaton types.
> Purgly theoretical
(no implementation).


http://dx.doi.org/10.4230/LIPIcs.ICALP.2021.123
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But is this ACD construction
practical?
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This Paper

» Adaptation of the definition of ACD and acd_transform() to TELA
(Transition-based Emerson-Lei Automata, as supported by the HOA format.)

> Implementation in two tools:

&, Oowl21.0 @ Spot 2.10
owl .model.in.tum.de spot.lrde.epita.fr

Motivation is LTL synthesis with: LTL—-DTELA— DPA—game—controller

paritization


http://adl.github.io/hoaf/
owl.model.in.tum.de
spot.lrde.epita.fr

This Paper

» Adaptation of the definition of ACD and acd_transform() to TELA
(Transition-based Emerson-Lei Automata, as supported by the HOA format.)

> Implementation in two tools:
&, Oowl21.0 @ Spot 2.10
owl .model.in.tum.de spot.lrde.epita.fr
Motivation is LTL synthesis with: LTL—-DTELA— DPA—game—controller
» Comparison to other existing paritization procedures
> State-based version of acd_transform()

» Comparison to degeneralization procedures
(transition-based generalized Biichi — state-based Buichi)


http://adl.github.io/hoaf/
owl.model.in.tum.de
spot.lrde.epita.fr

Emerson-Lei Automata (Using the HOA Syntax)

Acceptance condition = any positive Boolean combination of Inf(n) or Fin(n) terms.

Biichi Inf(®)

generalized Buchi Inf(®@) A Inf(@) A Inf(@) A

co-Buchi Fin(®)

generalized co-Bichi Fin(@®) v Fin(@) v Fin(®) v

Rabin (Fin(@) A Inf(@)) v (Fin(@ ) Inf((t))) %

Streett (Inf(®) v Fin(@)) A (Inf(®) v Fin(@)) A ...

parity min even Inf(®@) v (Fin(@) A (Inf(@) v (Fin(®) A...)))

parity min odd Fin(®) A (Inf(@) v (Fin(@) A (Inf(®) v ...)))
transition-based acceptance (TELA): state-based acceptance:

a a
—> 0 —



TELA

(Inf(®) v Fin(@) Vv Inf() v Inf(®)) A Inf(®) A Inf(@)

Automaton labels/alphabet
hidden for simplicity.
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ACD for TELA
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ACD for TELA

(Inf(®) v Fin(@) Vv Inf() v Inf(®)) A Inf(®) A Inf(@) ﬁ
{0,0,0.0,0,0)
- & T

{0,0.0.0.0}




Paritization of a TELA _ priorities for
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Other Paritization Procedures

e S: original state
Many paritization procedures create states (s, m) where
m: memory

Latest Appearance Record (LAR) works on any TELA,
m is an order of all colors

[§ Lading. Optimal bounds for transformations of w-automata. FSTTCS'99. M


http://dx.doi.org/10.1007/3-540-46691-6_8

Other Paritization Procedures

e S: original state
Many paritization procedures create states (s, m) where
m: memory

Latest Appearance Record (LAR) works on any TELA,
m is an order of all colors
Index Appearance Record (IAR) take Rabin or Streett as input,
m is an order of the acceptance pairs

@ Kretinsky et al. Index appearance record with preorders. Acta Informatica, 2021. M


http://dx.doi.org/10.1007/s00236-021-00412-y

Other Paritization Procedures

s: original state
m: memory

Many paritization procedures create states (s, m) where

Latest Appearance Record (LAR) works on any TELA,

m is an order of all colors
Index Appearance Record (IAR) take Rabin or Streett as input,

m is an order of the acceptance pairs
Degeneralization takes generalized Blchi as input,
m is a color number

[§ Gastin and Oddoux. Fast LTL to Biichi automata translation. CAV'01. M


http://dx.doi.org/10.1007/3-540-44585-4_6
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m: memory

Latest Appearance Record (LAR) works on any TELA,
m is an order of all colors

Index Appearance Record (IAR) take Rabin or Streett as input,
m is an order of the acceptance pairs
Degeneralization takes generalized Blchi as input,
m is a color number
Spot’s to_parity() works on any TELA,

combines all the above + optimizations

[§ Renkin, Duret-Lutz, and Pommellet. Practical “paritizing” of Emerson-Lei automata. ATVA’20. M


http://dx.doi.org/10.1007/978-3-030-59152-6_7

Other Paritization Procedures

e S: original state
Many paritization procedures create states (s, m) where

m: memory
Latest Appearance Record (LAR) works on any TELA,
m is an order of all colors
Index Appearance Record (IAR) take Rabin or Streett as input,
m is an order of the acceptance pairs
Degeneralization takes generalized Blchi as input,
m is a color number
Spot's to_parity() works on any TELA,
combines all the above + optimizations
ACD-transform works on any TELA,
m denotes a node of the ACD
ACD-transform is optimal among algorithms that build states of shape (s, m).

@ Casares, Colcombet, and Fijalkow. Optimal transformations of games and automata using Muller
conditions. ICALP’21. a8


http://dx.doi.org/10.4230/LIPIcs.ICALP.2021.123

Comparison between to_parity() and acd_transform()

. AR 7 10° o
0 1 case . 37 cases /"?
E 10° Habove diag. w above diag. o Qs
1 ’
\m./ 2 10 %“?/OO
)] (o]
E ]_03 N 5 1 ®
+ 8 107 ~
D [
g : !
2 10" - : 8 1077 - o0 o
g 123 cases : n 1020 cases :
v ® below diag. : below diag. :
1 1 1 1 1
10* 103 10° 1072 10*

Spot to_parity (states) Spot to_parity (s)

Benchmarck of 1065 TELA generated from LTL formulas from SyntComp. These
TELA have between 2 and 55 colors (median 5) and up to 245761 states (median 20).



Producing State-Based Parity Automata (Intuition)
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Producing State-Based Parity Automata (Intuition)
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Producing State-Based Parity Automata (Intuition)
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Producing State-Based Parity Automata (Intuition)
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Producing State-Based Parity Automata (Intuition)
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Producin
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¥/ |east one \eftward
%1_ /\\ 1] jump in the ACD.
C
2 q A
= »
-§ E “ g > Not necessarily optimal
[ I il o order in ACD
® © w © » A heuristic i
E oo :di; *s'-", istic in the paper
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Application to Degeneralization (TGBA — SBA)
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Inf(®@) A Inf( ) A Inf(6) Inf(®

. 0 2 c _»
degenerahzatlon

state-based
Inf(®) Vv Fin(©) ACD transform
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Application to Degeneralization (TGBA — SBA)

Inf(®@) A Inf(D) A Inf(@) Inf(@) .
a b
—’ C degeneralization _’éfﬁ\/@
b
f d

state-based
Inf(®) v Fin(©) ACD transform Inf(®@)

e



Application to Degeneralization: Benchmark

Application of the state-based version of 15 298 cases 1 T 1 3 6
acd_transform() on 1000 random 14 4 above diag. 3 6 13
transition-based generalized Biichi = 137 1 22 f0) 1 S L
. S 12 1 4 9 8 2 420
automata, with 3—4 states and 2—3 colors. 8 11 3101411 7 6
< 10 - 1 8 11 15 28 28
Comparison with Spot 2.10’s best gcao g 7 g 144 ;g 15
- ; o g
degeneralization routine. 2 = 36
m 64 10378 1
o543 1430 2
443 38 2 9 cases
3411 below diag.
493 cases I I I I I I I I I I I

SBA.acd.heuristic (states)



Application to Degeneralization: Benchmark

Application of the state-based version of 15 298 cases 1 T 1 3 6
acd_transform() on 1000 random 14 4 above diag. 3 6 13
transition-based generalized Biichi n g’: i S 180 é j 210 15
automata, with 3—4 states and 2—3 colors. § 11 - 3101411 7 6
— 10 1 1 8 11 1528 28
Comparison with Spot 2.10’s best & 97 3 144 ég 15
. . o 8
degeneralization routine. 2 =l A 56 [
32 644 10 37jl 1
- ; 543 14[34 2
Compared to min. sizes (found via SAT); > 13 389 9 cases
ACD gives +0.17 states on avg., and 3 411 below diag.
493 cases I I I I I I I I I I I

) i on avg.
Spot's degen. gives +1.21 states 9- |43 diag. 3 456 7 8 910111213

SBA.acd.heuristic (states)



Conclusion

ACD is versatile, and can replace several existing algorithms:

> paritization of automata with arbitrary acceptance
(always better than LAR, IAR, and their combinations)

» degeneralization (better than traditional algorithms)
» minimization of the number of priorities in a parity automaton
» several typeness checks (looking at the shape of the ACD)

Two implementations can be a basis for further experiments:

% owl 21.0 @ Spot 2.10
owl.model.in.tum.de spot.lrde.epita. fr



owl.model.in.tum.de
https://spot-sandbox.lrde.epita.fr/notebooks/examples%20(read%20only)/zlktree.ipynb#Alternating-Cycle-Decomposition
spot.lrde.epita.fr
https://www.lrde.epita.fr/~adl/dl/adl/casares.22.tacas.pdf

