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Abstract. Emptiness checkis a key operation in the automata-theoretic approach
to LTL verification. However, it is usually done on Büchi automata with a single
acceptance condition. We review existing on-the-fly emptiness-check algorithms
for generalizedBüchi automata (i.e., withmultiple acceptance conditions) and
show how they compete favorably with emptiness-checks for degeneralized au-
tomata, especially in presence of weak fairness assumptions. We also introduce a
new emptiness-check algorithm, some heuristics to improveexisting checks, and
propose algorithms to compute accepting runs in the case of multiple acceptance
conditions.

1 Introduction

The automata-theoretic approach to model-checking [22] uses automata on infinite
words to represent a system as well as a formula to check on this system. Both automata
are synchronized, and a key operation is to determine whether the resulting automaton
is empty (i.e., contains no accepting run). This operation is calledemptiness check. An
on-the-fly emptiness check allows the synchronized automata to be constructed lazily
while it runs. This is a win if the emptiness check answers before the whole synchro-
nized product is completed.

We follow up on a paper by Schwoon and Esparza [17] who compared two classes
of on-the-fly emptiness checks: those based on nested depth-first searches (NDFSs)
versus those computing strongly connected components (SCCs). Their measures for
Büchi automata with single acceptance conditions led to the following conclusions:

– Couvreur [3]’s algorithm is the best at computing acceptingSCCs,
– Schwoon and Esparza [17]’s algorithm is the best of NDFS-based checks,
– for weak Büchi automata [1], a simple DFS is enough; otherwise SCC-based algo-

rithms should be preferred to NDFSs unless bit-state hashing is used.

Here we explore these algorithms on Büchi automata with multiple acceptance condi-
tions (the so-calledgeneralized B̈uchi automata) to stress the advantages of generalized
emptiness checks over traditional algorithms.

Section 2 introduces the emptiness-check problem and existing algorithms. Sec-
tion 3 describes our experimental workbench. The later two sections present some con-
tributions to each class of algorithms as well as algorithmsfor the computation of ac-
cepting runs.



2 Emptiness Check

2.1 Transition-based Generalized Büchi Automata

A Transition-based Generalized Büchi Automaton(TGBA) over the alphabetΣ is a
Büchi automaton with labels on transitions, and generalized acceptance conditions on
transitions too. It can be defined as a tupleA = 〈Σ,Q,F , q0, δ〉 where

– Σ is an alphabet,
– Q is a finite set of elements calledstates,
– F is a finite set of elements calledacceptance conditions,
– q0 ∈ Q is a distinguished initial state,
– δ ⊆ Q × (2Σ \ {∅}) × 2F × Q is the transition relation, where each transition is

labeled by a nonempty set of letters ofΣ and a set of acceptance conditions ofF .

A run of A is an infinite sequence〈q0, l0, f0, q1〉〈q1, l1, f1, q2〉···〈qj , lj , fj , qj+1〉··· of
transitions ofδ, starting atq0 = q0. Such a run is said to beacceptingif ∀f ∈ F , ∀i >

0, ∃j > i, such thatf ∈ fj, i.e., if its transitions are labeled by each acceptance
condition infinitely often.

An emptiness checkis an algorithm that tells whether at least one accepting runex-
ists. On a TGBA, it amounts to testing whether there exists a circuit that (1) is accessible
from q0, and (2) is labeled by all acceptance conditionsF .

The lis can be used to describe words recognized by a run, but for thepurpose of
finding accepting runs we shall not be concerned bylis andΣ. Also note that we use
acceptance conditions as labels on transitions, rather than as the usual sets of transitions,
because that is how it is coded in practice.

Other Büchi automata in use for model-checking, have acceptance conditions on
states rather than transitions, and are often not generalized (i.e.,|F| 6 1). While the
benefit of TGBAs in the process of translating LTL formulæ is already quite clear [3,
10, 4], few people are actually using them for emptiness-check, because mainstream
algorithms work on non-generalized, state-based, Büchi automata.

A degeneralizationis the transformation of an automaton with|F| > 1 into an au-
tomaton with|F| = 1 [10]. This operation may multiply the size of the automaton by
at most|F| to produce a transition-based automaton, and by at most|F|+ 1 to produce
a state-based automaton. Such a blowup is often disregardedwhen only the automaton
that represents the property needs to be degeneralized: such automata are usually small.
Acceptance conditions can also be used to express some classof fairness constraints
such asweak fairness. In Spin, weak fairness is handled using a degeneralizationalgo-
rithm [13, p. 182]. As we shall see in our measures, the degeneralization is much more
painful when applied to weak fairness.

2.2 Existing Algorithms

Two classes of on-the-fly emptiness-check algorithms exist: nested depth-first searches
(NDFSs), and algorithms that compute strongly connected components (SCCs). Fig. 1
shows how the algorithms we cite relate to each other.
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Fig. 1. A family tree of emptiness-check algorithms.



c1 // Let 〈Σ,Q, δ, q0,F〉 be the
c2 // input automaton to check.
c3 todo: stack of 〈state ∈ Q, succ ⊆ δ〉
c4 SCC: stack of 〈root ∈ N, la ⊆ F ,

c5 acc ⊆ F , rem ⊆ Q〉
c6 H: map ofQ 7→ N

c7 max← 0
c8

c9 main():
c10 push(∅, q0)
c11 while ¬todo.empty()
c12 if todo.top().succ = ∅
c13 pop()
c14 else
c15 pick one 〈 , , a, d〉 off todo.top().succ

c16 if d 6∈ H

c17 push(a, d)
c18 else ifH [d] > 0
c19 if merge(a, H [d]) = F
c20 return ⊥
c21 return ⊤

c23 push(a ⊆ F , q ∈ Q):
c24 max←max + 1
c25 H [q]←max

c26 SCC.push(〈max, a, ∅, ∅〉)
c27 todo.push(〈q, {〈s, l, a, d〉 ∈ δ | s = q}〉)
c28

c29 pop():
c30 〈q, 〉 ← todo.pop()
c31 SCC.top().rem.insert(q)
c32 if H [q] = SCC.top().root
c33 forall s ∈ SCC.top().rem
c34 H [s]← 0
c35 SCC.pop()
c36

c37 merge(a ⊆ F , t ∈ N):
c38 r← ∅
c39 while (t < SCC.top().root)
c40 a← (a ∪ SCC.top().acc

c41 ∪SCC.top().la)
c42 r← r ∪ SCC.top().rem
c43 SCC.pop()
c44 SCC.top().acc← SCC.top().acc ∪ a

c45 SCC.top().rem← SCC.top().rem ∪ r

c46 return SCC.top().acc

Fig. 2.Another presentation of the algorithm of Couvreur [3] to check the emptiness of TGBAs.

SCC[0].la// onmlhijkSCC[0].acc
SCC[1].la // onmlhijkSCC[1].acc

SCC[2].la // onmlhijkSCC[2].acc
SCC[3].la // onmlhijkSCC[3].acc

a

xx

Fig. 3. The meaning ofla andacc in SCC.

Nested Depth-First Searches.NDFSs were initially developed for Büchi automata with
only one acceptance condition for states [2]. Basically, a NDFS will perform a first DFS
rooted atq0 until it finds an accepting states, and from there starts a second DFS to
check whethers is reachable from itself. This naive algorithm was then further refined
so that both DFSs could share the same hash table [11], to exitearlier and to support
partial order reductions [14].

Holzmann et al. [14]’s algorithm has been refined by Gastin etal. [7] and Schwoon
and Esparza [17]. In parallel, Tauriainen generalized it tosupport multiple acceptance
conditions on states [20], or transitions [19]. Switching from states to transitions is easy;
the real challenge was to devise a way to handle generalized acceptance conditions.
Tauriainen did this by repeating the inner DFS several times(at worst|F| times).

Strongly Connected Components.Another strategy is to compute the maximal strongly
connected components (MSCCs) of the automaton. Let us definea trivial SCC as a
single state without self-loop. If the union of all the acceptance conditions occurring



in a non-trivial SCC isF , and that SCC is accessible fromq0, then one can assert the
existence of such an accepting run. This is the essence of thealgorithms of Couvreur
[3], Geldenhuys and Valmari [8, 9], and Hammer et al. [12].

We present an iterative version of Couvreur [3]’s algorithmin Fig. 2 in order to
introduce two heuristics in Section 4.1. This algorithm is based on the fact that any
graph contains at least one MSCC without outgoing arc. To list all MSCCs, one should
find such a terminal MSCC, remove it from the graph, and then list all MSCCs of the
resulting graph [16]. It turns out this requires to visit each transition only once.

To do so the algorithm explores the graph in depth-first order. todo is a DFS stack,
on which each item contains a state and the set of its successors that have yet to be
visited. (In practice this set of successors may not need to be represented explicitly and
would be replaced by the necessary information to compute the next successor of the
state.)H maps each state to its rank in the depth-first order, andH [q] = 0 indicates that
q belongs to a removed MSCC.

During the DFS, a chain of SCCs is maintained as a stack,SCC, depicted on
Fig. 3. To each SCC is associated the rank of the first state of the SCC (root), the
union of acceptance conditions in the SCC (acc), the acceptance conditions labeling
the transition coming from the previous SCC (la), and the list of states of the SCC
that have been fully explored (rem). (SCC[0].la = ∅ by convention and is never
used.) Using this structure, two visited statesq1 and q2 belong to the same SCC if
max{r |SCC[r].root 6 H [q1]} = max{r |SCC[r].root 6 H [q2]}.

Initially, each new state is pushed on the stack as a trivial SCC with an emptyacc

(line c26). When the DFS reaches a successorq that has already been visited and has
not been removed (line c18), all SCCs between the SCC to whichq belongs and the top
SCC (source of the transition) are merged into a single SCC. On the example of Fig. 3
where a back arc is found betweenSCC[3] andSCC[1], the last three SCCs would
be merged into a single one with acceptance conditionsSCC[1].acc ∪ SCC[2].la ∪
SCC[2].acc ∪ SCC[3].la ∪ SCC[3].acc ∪ a. If that union isF , then an accessible,
non-trivial, and accepting SCC exists, and the algorithm reports⊥ (the automaton is
not empty).

When the root of an SCC is popped (tested line c32), the SCC is known to be
maximal and not accepting, so it can be discarded. The use ofrem line c31 to remove
the states of the MSCC line c33 could be avoided because when line c33 is reached,
rem contains all the statess accessible fromq (ignoring those withH [s] = 0), as
the original algorithm did [3]. The current implementationfavors run-time to memory
consumption, indeed a concern from Schwoon and Esparza [17]was that computing
transitions can be expensive. To be fair we will account for the size ofrem in our
measures of the stack size. (Geldenhuys and Valmari [9] provide alternative structures
that address the same problem.)

Another SCC-based algorithm, Geldenhuys and Valmari [8]’s, has a similar han-
dling of its stack: it keeps all states of partial SCCs, so it can remove them easily.
However it also stores an additional integer for each state (lowlink ) that we will not
account for in our measures. This algorithm works only on degeneralized automata.

Hammer et al. [12]’s algorithm is presented as an emptiness check for Linear Weak
Alternating Automata (LWAA). However their algorithm translates an LWAA into a



generalized Büchi automata on-the-fly during the emptiness check. The translation from
LWAA could be coupled with any other emptiness-check algorithm presented here. The
real part of their emptiness check follows the same logic as Couvreur’s algorithm except
it merges SCCs one by one while popping instead of immediately when a loop is found.
It will therefore find an accepting SCC later than the algorithm of Fig. 2, only when this
SCC is popped.

3 Experimentations

In this section we introduce the experimental framework in which we compare the
aforementioned algorithms, and comment on the results. Allthe algorithms we use
are implemented in the Spot library [4]. The random graph andrandom LTL formulæ
generation algorithms are comparable to those presented byTauriainen [21]. Of the 8
emptiness-check algorithms we compare, the first 4 are SCC-based:Cou99, is the al-
gorithm of Fig. 2,Cou99 shy- andCou99 shy are two variants ofCou99 described in
Section 4.1, andGV04 is the algorithm of Geldenhuys and Valmari [8]. The other 4 are
NDFS algorithms:CVWY90 [2], SE05 [17], Tau03 [19], andTau03 opt (a variant
of Tau03 presented Section 4.2). In tables, “×” indicates new algorithms that will be
discussed in Section 4.

Because all our tests use TGBAs as input, we had to adjustCVWY90, GV04, and
SE05 to handle transition-based automata (this is straightforward) and because they
will not handle generalized acceptance conditions we also had to degeneralize the input
automata for these 3 algorithms. (Hence the input can be|F| times larger.)

We exercised these algorithms on random graphs and concretemodels, following
a pattern similar to that of Geldenhuys and Valmari [8]. First we use them to check
random graphs against LTL formulæ. Then we try them on two real models (the first of
which also comes from Geldenhuys and Valmari [8]).

Table 1 presents our results when checking random graphs with all algorithms in
12 different setups. Each setup differs in how the graph and formulæ are generated.
The random graphs have 1024 states and are generated with 3 different densitiesd of
transitions (all 1024 states are accessible and the arity ofeach state follows a normal
distribution with mean1+1023d and variance1023d(1−d)). In columns headed “fair”,
transitions in the graph are additionally randomly labeledwith 3 acceptance conditions
to mimic weak fairness constraints; in the other columns theacceptance conditions, if
any, will come only from the LTL formulæ.

The values presented for each experiment are means. They where computed by
running each emptiness check on a set of 1300–3000 products generated as follows.

For each setup we consider 15 random graphs. On setups with random formulæ,
each graph is checked against 200 LTL formulæ (converted to TGBAs using the al-
gorithm of Couvreur [3]), yielding 3000 different products. On setups with “Human-
generated formulæ”, each graph is checked against 94 formulæ (and their negation)
selected from the literature [5, 6, 18], yielding 2820 products.

In this first test we discarded all products without accepting run (i.e., keeping those
where algorithms need not visit the whole automaton). For each setup the number of
non-empty products remaining is written in italics on the same line as the density. For



Random formulæ Human-generated formulæ
Algorithm formula’s cond. fair formula’s cond. fair
d = 0.001 2328 (1318) 2188 2308 (2127) 1951
Cou99 6.8 4.5 4.518.1 11.1 13.8 7.4 5.1 4.016.3 10.6 10.4
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GV04 6.8 4.5 4.528.4 17.1 21.6 7.5 5.1 4.025.9 16.5 16.1
CVWY90 6.8 7.1 6.461.7 73.9 66.6 7.7 7.9 5.253.6 65.0 49.3
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>
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SE05 6.8 5.7 4.559.4 39.1 38.4 7.6 6.8 3.950.9 34.7 28.1
Tau03 9.9 16.1 10.864.7 295.9 49.6 9.5 17.4 8.153.9 265.5 36.2

× Tau03 opt 6.8 5.2 4.518.5 27.1 15.4 7.4 8.1 3.816.4 31.8 11.3
d = 0.002 2716 (1488) 2695 2569 (2304) 2548
Cou99 4.8 2.2 3.117.5 8.5 11.4 4.5 2.6 2.413.7 7.4 7.6

× Cou99 shy- 3.4 3.4 6.915.4 15.8 30.1 3.6 3.8 6.112.5 12.1 19.8
× Cou99 shy 3.4 3.4 6.814.3 14.6 26.5 3.4 3.6 5.411.9 11.4 17.3

GV04 4.8 2.2 3.129.1 14.1 18.5 4.6 2.8 2.423.2 12.8 11.9
CVWY90 4.9 3.6 4.560.3 58.0 59.5 4.8 4.2 3.445.1 43.9 35.6
SE05 4.8 2.8 3.156.8 30.2 32.9 4.7 3.5 2.442.0 24.3 19.8
Tau03 8.5 12.5 9.161.3 265.5 46.5 7.1 12.5 6.340.9 185.4 27.3

× Tau03 opt 4.8 2.7 3.117.8 23.9 12.7 4.5 4.5 2.413.9 26.3 8.3
d = 0.01 2978 (1569) 2979 2766 (2441) 2765
Cou99 3.5 0.7 2.412.3 1.9 8.1 2.6 0.7 1.4 7.8 1.5 4.8

× Cou99 shy- 1.7 1.5 11.7 8.2 8.3 66.6 1.6 1.6 10.6 5.6 5.4 39.2
× Cou99 shy 1.6 1.5 10.7 6.9 7.0 53.0 1.4 1.3 7.7 4.8 4.4 29.9

GV04 3.5 0.7 2.420.7 3.5 13.2 2.6 0.8 1.413.5 2.8 7.7
CVWY90 3.6 1.1 3.344.7 15.6 49.8 2.7 1.0 2.130.8 13.0 30.9
SE05 3.6 0.9 2.339.8 7.0 25.4 2.6 0.9 1.526.4 5.7 15.5
Tau03 16.9 20.6 19.758.1 221.8 57.811.2 14.9 12.735.5 140.2 32.3

× Tau03 opt 3.5 1.0 2.312.4 11.0 9.6 2.6 1.6 1.4 7.8 10.2 5.7

Table 1.Comparison of algorithms for random graphs and random and real LTL formulæ.

Tau03 we also discarded products with no acceptance conditions atall, becauseTau03
is not designed to handle them; the resulting number of products is put in parentheses.

For each check of a non-empty product, we compute the ratios between (1) the
number of distinct states visited and the number of states inthe product TGBA, (2) the
number of traversed transitions (a same transition can be accounted more than once) and
the number of transitions of the product TGBA, and (3) the maximal size of the stack
and the number of states of the product. For all algorithms, even if a degeneralization
is required, ratios are computed against the product beforeany degeneralization. The
table displays the means of each of these three ratios in %.

Our computation of the stack size deserves more explanations as not all algorithms
use similar stacks. For all NDFS algorithms, we simply counted the number of states in
the DFS stack. ForCou99, we counted the number of entries intodo (its DFS stack),
plus the size ofrem for each of entry onSCC (this is becausesucc can be represented
as an iterator of constant size, and if you omit itsrem field the size ofSCC is bounded
by that oftodo). For GV04 we counted all items onstack [8] (this is proportional to
all states that are in the currentSCC chain).



A(287922, 1221437, 1)" B(287922, 1222805, 1)" C (47887, 134916, 0)∅
Cou99 365 365 365 365 365 365 47887 134916 115

× Cou99 shy- 365 1356 1358 365 1356 1358 47887 134916 226
× Cou99 shy 365 1356 1358 365 1356 1358 47887 134916 226

GV04 365 365 365 365 365 365 47887 134916 115
CVWY90 17693 91145 902 448 789 787 47887 269831 115
SE05 17693 90803 564 448 449 449 47887 269831 115
Tau03 17702 187964 911 448 1876 787

× Tau03 opt 365 365 366 365 365 366 47887 134916 115
D(289812, 1232783, 1)∅ E (145400, 413351, 0)" F(289812, 1225799, 1)∅

Cou99 289812 1232783 145172 365 365 365289812 1225799 145172
× Cou99 shy- 289812 1232783 145666 365 706 708289812 1225799 145666
× Cou99 shy 289812 1232783 145304 365 706 708289812 1225799 145304

GV04 289812 1232783 145172 365 365 365289812 1225799 145172
CVWY90 289812 1642497 1145 365 703 704289812 1635513 1145
SE05 289812 1642497 1145 365 365 366289812 1635513 1145
Tau03 289812 2875280 1145 289812 2861312 1145

× Tau03 opt 289812 1642497 1145 365 365 366289812 1635513 1145
G (241808, 687630, 1)" H(728132, 2080615, 4)" I (728132, 2076619, 4)∅

Cou99 557 557 557145847 413799 145172728132 2076619 145172
× Cou99 shy- 557 1087 1089145847 414229 145303728132 2076619 145307
× Cou99 shy 557 1087 1089145847 414229 145257728132 2076619 145257

GV04 557 557 557145847 413799 145172728132 2076619 145172
CVWY90 557 895 896178543 511930 1388728132 2489217 1172
SE05 557 557 558178543 504468 1145728132 2489217 1172
Tau03 566 1249 905178551 1604336 1454728132 6631906 1454

× Tau03 opt 557 557 558145847 827149 1454728132 4555287 1454

Table 2.Leader election algorithm in an arbitrary network.

The algorithms presented here have a runtime proportional to the number of tran-
sitions explored. So the second value of each triplet allowsto compare the runtimes.
Also, for a fixed|F|, the memory consumption of the algorithm is a linear combination
of the number of states explored (first value) and of the size of the stack (second value).

A first remark concerns the results presented by Geldenhuys and Valmari [8], who
compared their implementations ofGV04 andCVWY90 using the same procedure (at
the exception of the “fair” columns). We could not reproducethe important contrast they
show between these two algorithms (neither could Hammer et al. [12]). For example,
the 94 formulæ (and their negation) from the literature havebeen checked against 15
random graphs with a transition probability of 0.001. 2308 of the 2820 generated prod-
ucts are non-empty andGV04 has reported an accepting run after exploring an average
of 7.5% of the states whenCVWY90 needs to visit 7.7%. Geldenhuys and Valmari [8]
report a rate of 8.99% forGV04 against 40.21% forCVWY90. These discrepancies are
likely due to different parameters of the random graph generator.

The results for setups with randomly-generated formulæ arecomparable to those
with non-random formulæ; if anything, this only shows that random formulæ are not
biased. Similarly, the densityd does not seem to affect the algorithms much. Therefore
it is much more interesting to compare the behaviors of the algorithms when acceptance
conditions comes only from the formulæ or when additional acceptance conditions have



been injected into the random graphs. In the former most TGBAs have few acceptance
conditions (e.g., for formulæ from the literature, 40% of TGBAs have 0 or 1 acceptance
condition, 40% have 2, and 20% have between 3 and 6), consequently the difference be-
tweenCVWY90, GV04, SE05 (which require degeneralized automata) and the other
algorithms are not striking. However on the “fair” setups, SCC-based algorithms often
outrank NDFS ones. The poor results ofTau03 are mostly due to the logic of the origi-
nal algorithm [19]; informally, it visits all the successors of a state even if it could have
answered after having visited the first.

Experiments based only on random graphs can be misleading. To emphasize the
advantage of TGBAs and SCC-based emptiness checks, we have verified concrete for-
mulæ against concrete models. For this purpose, we have treated one example pre-
sented by Geldenhuys and Valmari [8] modeling an algorithm of election in an arbitrary
network (this model is also experimented by Schwoon and Esparza [17]). Among the
three variations they presented [8], Table 2 collects our results only for the second one,
checked against their 9 formulæ (labeled from A to I). Valuesfor the other, less signifi-
cant variations can be computed using the benchmark scriptsdistributed with Spot.

Each square corresponds to a given formula. At the top of a square is indicated the
label of the formula as well as the product size (in terms of number of states, transitions
and acceptance conditions). Moreover, a symbol indicates if the product is empty (∅) or
if an accepting run exists ("). For each algorithm we give the number of distinct states
visited, traversed transitions, and the maximal size of thestack. No measures have been
done forTau03 on TGBAs without acceptance condition.

The complete reachability graph (i.e., without partial order reduction—the conclu-
sion for the reduced graphs are similar, only with smaller figures) of the model has
been generated from its Promela specification using Spin [13]. Then the corresponding
TGBA has been introduced in Spot and the formulæ translated into TGBAs using also
Spot. Though this is not generally the case, on this example the sizes of the degeneral-
ized product and of the generalized one are identical. This is why Cou99 andGV04
perform equally well. The original implementation ofCou99 [3] would have used far
less stack, but visited twice as many transitions (for instance on formula F the results
for the implementation ofCou99 withoutrem are〈289812, 2451598, 1145〉).

These runs confirm the conclusions of Schwoon and Esparza [17]. SE05 always
performs better thanCVWY90 (formulæ A, B, E, G and H); and SCC-based algorithms
Cou99 andGV04 perform better than NDFS ones (formulæ A and H).

To conclude our experimentation and focus on multiple acceptance conditions, we
present complementary measures for a simple client-serverexample wherec clients
communicate withs servers via a duplex channel. Any client can send a request, then
some server will answer that client. The property we check isthat if the first client sends
a request it will get an answer. This property is only satisfied for 1 client and is otherwise
false unless weak fairness is assumed. Table 3 shows the measures. One can indeed see
that the property is not satisfied in the case of 3 clients without fairness. The interesting
point is that the additional acceptance conditions used forfairness constraints comes at
no cost forCou99 while the cost is high for other algorithms. This is obvious on the
cases with 1 client (and can be generalized), however we cannot directly compare the
product sizes for 3 clients as the fair case is empty while theunfair case is not.



3 cl., 1 serv. ∅ 3 cl., 1 serv., fair ∅

Cou99 a 783 2371 511b 783 2371 511
× Cou99 shy- a 783 2371 710b 783 2371 710
× Cou99 shy a 783 2371 519b 783 2371 519

GV04 a 783 2371 511b’ 2005 6627 550
CVWY90 a 783 2897 237b’ 2005 7771 251
SE05 a 783 2897 237b’ 2005 7771 251
Tau03 a 783 5268 238b 783 10143 264

× Tau03 opt a 783 2897 237b 783 8200 264
3 cl., 3 serv. " 3 cl., 3 serv., fair ∅

Cou99 c 631 839 159d 21394 85387 11465
× Cou99 shy- c 631 1153 487d 21394 85387 17133
× Cou99 shy c 1170 1914 401d 21394 85387 11469

GV04 c 631 839 159d’ 77979 339876 11521
CVWY90 c 631 1513 159d’ 77979 410877 5632
SE05 c 631 1499 159d’ 77979 410877 5632
Tau03 c 899 3373 191d 21394 415551 5099

× Tau03 opt c 631 1499 159d 21394 331587 5060

sizes of products
ref. # st. # tr. # cond.
a 783 2371 1
b 783 2371 5
b’ 2005 6627 1
c 21394 85387 1
d 21394 85387 7
d’ 77979339876 1

Table 3.Client-server algorithm.

4 Heuristics and Optimizations

4.1 Heuristics for SCC-Based Algorithms

The two shy variants ofCou99 measured in these tables use the fact that line c15 in
Fig. 2 does not enforce any order on the successors.Cou99 will simply use the physical
order of the successors in memory, so thesucc member oftodo items can be efficiently
represented as an iterator. TheCou99 shy- variant orders successors to visit those
that are already inH first before visiting new states. Doing so sounds natural because
it favors merges of SCCs upon pushs.Cou99 shy works similarly, but it considers
the successors of the whole top SCC instead of selecting a successor only among the
successors of the state at the top oftodo (in practicetodo is merged likeSCC).

BecauseCou99 shy- andCou99 shy have to reorder the successors before execut-
ing line c15, thesucc field of todo entries cannot be represented as an iterator. To be
fair our measures of the stack size of these two variants alsoaccount for the number of
states of eachsucc field. Also, whileCou99 makes it possible to compute successors
of a state one by one on-the-fly, this is not possible for shy variants who needall suc-
cessors to reorder them. This difference is apparent in the number of transitions visited:
shy variants compute more transitions than plainCou99.

These heuristics have a controversial effect on performance. Often, they will indeed
visit less states, but in counterpart they compute more transitions and require more stack
space. On non-empty automata, it is possible to find cases (e.g., bottom left of Table 3)
where the variants visit more states. One issue with measuring on-the-fly emptiness
checks is that they exit as soon as they can: a more complex algorithm may exit before
an efficient one if it luckily picks successors in the right order. (Apart from these two
shy variants, all the other algorithms implemented here visit states in the same DFS
order; this ensures equitable measurements.) This confirmsobservations of Geldenhuys
and Valmari [8] who tested other heuristics, none of which appeared better either.
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Fig. 5. Computing an accepting run for a TGBA.

4.2 A New Nested DFS Algorithm

Fig. 4 illustrates a case whereSE05 could be improved. Arcs are labeled by their depth-
first order.SE05 is defined on Büchi automata with accepting states. In its first DFS, if
eitherq9 or q7 are accepting, thenSE05 can report a violation. Ifq8 is accepting, the
accepting cycle(q8, q9, q7, q8) cannot be detected by the first DFS: it will only be found
by the second DFS performedafter the large subgraph have been explored.

The first DFS could detect an accepting cycle when visiting the third arc if it knew
whether an accepting state exists betweenq7 andq9. We propose to associate each state
q in the DFS stack with the numberW [q] of accepting states in the DFS path fromq0 to
q. Therefore checking the existence of an accepting state betweenq7 andq9, amounts
to testing whetherW [q9] − W [q7] > 0.

This technique can be generalized to multiple acceptance conditions using a vector
of counters. We implemented it inTau03 opt. Its effect can be observed on TGBAs
with a single acceptance condition, whereSE05 andTau03 opt differ only on this last
optimization. For instance see formulæ A and B in Table 2.

Fig. 6 presentsTau03 opt. This new algorithm uses the technique ofTau03 to
handle multiple acceptance conditions, but simplifies its logic and also implements all
the optimizations introduced bySE05.

On Table 1 the reason whyTau03 opt outperformsGV04 in terms of visited states
is that the latter works on a degeneralized automaton (this is confirmed when comparing
Cou99 with Tau03 opt); however the wayTau03 opt nests multiple DFSs to handle
multiple acceptance conditions causes more transitions tobe visited thanGV04.

5 Computing Accepting Runs for Generalized Automata

When a product space is foundnot to be empty, it means the system does not verify the
formula it is checked against. An important step is to provide the user with a counterex-
ample, showing an actual faulty execution of the system. Such a counterexample is an
accepting run of the product automata. It can often be produced as a side-effect of the
emptiness check, or afterwards by reusing some data of the check.

In emptiness-check algorithms that work on degeneralized automata, exhibiting an
accepting run if one exists is straightforward. In NDFS-based algorithms (CVWY90,
SE05) that run is the contents of the stack. ForGV04, Geldenhuys and Valmari [9]
showed how to use an extra integer per stack state to produce an accepting run.



t1 // Let 〈Σ,Q, δ, q0,F〉 be the
t2 // input automaton to check.
t3 H: map ofQ 7→ 〈color ∈ {cyan, blue},
t4 acc ⊆ F〉
t5 W : map ofQ 7→ map ofF 7→ N

t6 weight: map ofF 7→ N

t7

t8 main():
t9 forall f ∈ F , weight[f ]← 0

t10 return dfs blue(q0)
t11

t12 propagate(s ∈ Q, Acc ⊆ F , t ∈ Q):
t13 〈tcol, tacc〉 ← H [t]
t14 if tcol = cyan ∧ F = (H [s].acc ∪Acc∪
t15 tacc ∪ {f ∈ F |weight[f ] > W [t][f ]})
t16 return ⊥
t17 else ifAcc 6⊆ tacc

t18 H [t].acc← tacc ∪Acc

t19 if dfs red(t, Acc) = ⊥
t20 return ⊥
t21 return ⊤

t23 dfs blue(s ∈ Q):
t24 H [s]← 〈cyan, ∅〉
t25 W [s]← weight

t26 forall 〈l, a, t〉 such that 〈s, l, a, t〉 ∈ δ

t27 if t 6∈ H

t28 forall f ∈ a

t29 weight[f ]← weight[f ] + 1
t30 if dfs blue(t) = ⊥
t31 return ⊥
t32 forall f ∈ a

t33 weight[f ]← weight[f ]− 1
t34 if propagate(s, H [s].acc ∪ a, t) = ⊥
t35 return ⊥
t36 H [s].color← blue
t37 deleteW [s]
t38 return ⊤
t39

t40 dfs red(s ∈ Q, Acc ⊆ F):
t41 forall 〈l, a, t〉 such that 〈s, l, a, t〉 ∈ δ

t42 if t ∈ H ∧ propagate(s, Acc, t) = ⊥
t43 return ⊥
t44 return ⊤

Fig. 6. A variation on the emptiness-check algorithm of Tauriainen[19].

In this section we present two techniques to extract accepting runs from the data
structures of the algorithms that work on generalized automata:Cou99, Tau03, and
their variants. Both techniques try to compute a short accepting cycle using successive
breadth-first searches (BFSs) and then construct the shortest prefix leading to this cycle.

Accepting runs withCou99. WhenCou99 returns⊥ it means an accepting SCC is
reachable fromq0. Fig. 5 shows this SCC as a dotted circle. A states can easily be told
to belong to this SCC by checking whetherH [s] > SCC.top().root.

Because the SCC is accepting, from any of its states there exists a circuit labeled
by all acceptance conditions. This circuit may cross the same transitions several times.
Therefore, it is easier to construct an accepting cycle as a series of independent parts that
can each visit a transition at most once, and that each bringsnew acceptance conditions.

The algorithm thus works as follows. LetF0 be the set of all acceptance conditions.
From a statec0 of the SCC, start a BFS (restricted to the SCC) to construct a path to
the closest transitiont0 that has some acceptance conditionsF0 so thatF0 ∩ F0 6= ∅.
Let F1 = F0 \ F0 be the set of remaining acceptance conditions. Repeat the BFS
from c1 (the output oft0) until a transitiont1 is found with acceptance conditionsF1

that intersectF1. Iterate untilFn = ∅. Finally use a last BFS to compute the shortest
path fromcn back toc0, closing the cycle. This algorithm was presented by Latvala
and Heljanko [15] using the root of the SCC asc0. However the choice ofc0 can be
arbitrary because we are in a SCC. Since we know that the transition that causedCou99
to exit (the one corresponding to the last execution of line c15) is necessarily part of the
acceptance cycle, it seems wiser to use either its source or its destination asc0.



Random formulæ Human-generated formulæ
Algorithm formula’s cond. fair formula’s cond. fair
d = 0.001 2328 (1318) 2188 2308 (2127) 1951
Cou99 1.9 2.0 17.1 12.7 1.3 1.3 12.3 9.0
Cou99 shy- 1.5 1.5 15.7 11.7 1.0 1.0 11.6 8.4
Cou99 shy 1.5 1.5 15.0 11.0 1.0 1.0 11.0 7.9
Tau03 10.9 9.9237.6 64.7 8.7 9.5205.9 53.9
Tau03 opt 2.8 6.8 64.5 18.5 2.2 7.4 53.4 16.4
d = 0.002 2716 (1488) 2695 2569 (2304) 2548
Cou99 1.3 1.5 15.2 10.6 0.9 1.0 9.7 6.6
Cou99 shy- 0.9 0.9 14.0 9.4 0.6 0.7 8.8 5.9
Cou99 shy 0.9 0.9 13.3 8.6 0.6 0.6 8.5 5.6
Tau03 10.8 8.5225.1 61.3 7.7 7.1153.5 40.9
Tau03 opt 2.6 4.8 61.9 17.8 1.8 4.5 43.6 13.9
d = 0.01 2978 (1569) 2979 2766 (2441) 2765
Cou99 0.8 1.0 12.5 7.4 0.5 0.6 7.1 4.2
Cou99 shy- 0.4 0.4 9.8 4.9 0.2 0.2 5.5 2.9
Cou99 shy 0.4 0.4 9.2 4.1 0.2 0.2 5.1 2.5
Tau03 18.1 16.9210.0 58.112.6 11.2139.4 35.5
Tau03 opt 1.7 3.5 43.0 12.4 1.1 2.6 25.6 7.8

Table 4.Comparison of algorithms for computing accepting cycles.

As far as the prefix is concerned, a list of states fromq0 to c0 can be easily con-
structed while unwinding thetodo stack. However this prefix may not be the shortest
possible prefix leading to the accepting cycle, so a similar idea would be to use a BFS
to construct the shortest path betweenq0 and any state of the cycle, this path can be
constrained to visit the SCCs in increasing order to limit the scope of the BFS.

Accepting runs withTau03. Computing accepting runs for generalized NDFS algo-
rithms such asTau03 or Tau03 opt is more embarrassing, because the resulting data do
not provide structural information as useful as a SCC that would restrict our search.We
know that the lasts for which line t34 was executed belongs to an accepting cycle. From
this statec0 = s we first perform a nested DFS to collect a set of transitionsT that (1)
are each on a cycle back toc0, and (2) will, together, coverF .

This collection of cycles could be used to construct an accepting cycle, but since we
are trying to create short runs we decided to connect these collected transitions directly.
Therefore we perform a BFS to compute the shortest path fromc0 to a transitiont0 of
T , and from there another BFS to find the shortest path to another t1 of T , etc. Closing
the cycle and computing the prefix can be done like for SCC-based algorithms.

Table 4 uses the layout of Table 1. For each setup, the two values are the number of
states visited to construct the cycle part of the accepting run, and the size of the search
space for this cycle. They are expressed as a percentage of the number of states of the
input TGBA. ForCou99 the cycle’s search space is the top SCC, and forTau03 the
search space contains all states inH . (A state is counted as many times as it is visited.)

As the table shows, the absence of structural information inTau03 makes the com-
putation more costly, since the search space is larger. ForCou99, the search is contained
in a small subgraph (the top SCC), which justifies the use of BFSs. The “fair” columns



show that with more acceptance conditions in the system the algorithms need to traverse
the search space more times. Surprisingly, the size of the search space forCou99 shy
andCou99 shy- is smaller than that ofCou99; this is counter-intuitive because our
heuristics aim at favoring merges of SCCs.

During our experiments we observed that the size of accepting runs produced by
such BFS-based algorithms were significantly smaller than those obtained directly from
the stack of NDFS algorithms. A deeper study of existing algorithms, weighting mini-
mization against computational complexity still has to be done (Gastin et al. [7] provide
some initial clues).

6 Conclusion

In this paper we have stressed the importance of dealing withgeneralizedBüchi au-
tomata in emptiness-check algorithms. Our experiments on existing algorithms showed
that SCC-based ones clearly outrank NDFSs; this completes the results of Schwoon and
Esparza [17], who studied emptiness checks of standard Büchi automata.

Although we have not implemented it, the generalized algorithms presented here
can be used in conjunction with the bit-state hashing technique [13, p. 206] if done care-
fully. The bit-state hashing should not be applied to statesthat belong to the first-level
DFS: those states need to be perfectly hashed. The application to Tau03 is discussed
by Tauriainen [20]. In SCC-based algorithms the restriction extends to all states that
belong to SCCs in theSCC stack. In other words, bit-state hashing can only be applied
to states from removed MSCCs; this limits its usefulness.

To give NDFS-based algorithms a chance to compete with SCC-based ones, we
introduced (1) a new optimization to detect some accepting cycles earlier, and (2) a
new algorithm (Tau03 opt) that mixes all the optimizations ofSE05 with the multiple
acceptance condition capability ofTau03. AlthoughTau03 opt surpasses other NDFS
algorithms, our experiments still show that SCC-based algorithms perform better.

To complete our TGBA verification framework, we finally introduced algorithms to
extract accepting runs. Here again, our results are in favorof Cou99.

All the algorithms presented and measured here are implemented in our model-
checking library, Spot [4], available athttp://spot.lip6.fr. The distribution of
Spot includes the scripts we used for our experiments. They can be adjusted to different
configurations, and can output more statistics than we couldpresent in these pages. For
instance they also verify the reduced state spaces generated from the examples using
Spin’s partial-order reduction [13, p. 192].
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