On-the-fly Emptiness Checks for
Generalized Bichi Automata

Jean-Michel Couvrelr Alexandre Duret-LutZ and Denis Poitrenadd

I LaBRI, Université de Bordeaux I, Talence, France
2 LIP6, Université de Paris 6, France

Abstract. Emptiness chedk a key operation in the automata-theoretic approach
to LTL verification. However, it is usually done on Biichi aatata with a single
acceptance condition. We review existing on-the-fly engstsncheck algorithms
for generalizedBiichi automata (i.e., witimultiple acceptance conditionand
show how they compete favorably with emptiness-checks égederalized au-
tomata, especially in presence of weak fairness assungptile also introduce a
new emptiness-check algorithm, some heuristics to impexigting checks, and
propose algorithms to compute accepting runs in the caseutiiphe acceptance
conditions.

1 Introduction

The automata-theoretic approach to model-checking [28F witomata on infinite
words to represent a system as well as a formula to check ®sykiem. Both automata
are synchronized, and a key operation is to determine whé#tkeesulting automaton
is empty (i.e., contains no accepting run). This operatsoceiledemptiness checln
on-the-fly emptiness check allows the synchronized autanwabe constructed lazily
while it runs. This is a win if the emptiness check answer®igethe whole synchro-
nized product is completed.

We follow up on a paper by Schwoon and Esparza [17] who conagavre classes
of on-the-fly emptiness checks: those based on nested €legiteearches (NDFSs)
versus those computing strongly connected components {5dGeir measures for
Buchi automata with single acceptance conditions ledédalowing conclusions:

— Couvreur [3]'s algorithm is the best at computing accep®&Ls,

— Schwoon and Esparza [17]’s algorithm is the best of NDF&tabecks,

— for weak Buchi automata [1], a simple DFS is enough; otheev8CC-based algo-
rithms should be preferred to NDFSs unless bit-state hgdhinsed.

Here we explore these algorithms on Buchi automata withiplelacceptance condi-
tions (the so-calledeneralized Bchi automatato stress the advantages of generalized
emptiness checks over traditional algorithms.

Section 2 introduces the emptiness-check problem andirxiatgorithms. Sec-
tion 3 describes our experimental workbench. The later ®atisns present some con-
tributions to each class of algorithms as well as algoritfiongshe computation of ac-
cepting runs.

2 Emptiness Check

2.1 Transition-based Generalized Biichi Automata

A Transition-based GeneralizediBhi Automatorn(TGBA) over the alphabel’ is a
Buchi automaton with labels on transitions, and genegdliacceptance conditions on
transitions too. It can be defined as a tugle= (¥, Q, F, ¢°, §) where

— Yis an alphabet,

— Qs afinite set of elements callstiates

— Fis afinite set of elements calletceptance conditions

— ¢° € Qis adistinguished initial state,

-6 C Qx (2% \ {0}) x 27 x Qs the transition relation, where each transition is
labeled by a nonempty set of lettersBfand a set of acceptance conditionsFof

Arunof Ais aninfinite sequencgo, lo, fo.q1){q1, 11, f1,92)~{(qj, 15, [}, qj+1)-- Of
transitions ofy, starting atyy = ¢°. Such a run is said to becceptingf Vf € F, Vi >
0,dj > 4, such thatf € f;, i.e., if its transitions are labeled by each acceptance
condition infinitely often.

An emptiness chedk an algorithm that tells whether at least one acceptingexin
ists. On a TGBA, it amounts to testing whether there existecaitthat (1) is accessible
from ¢°, and (2) is labeled by all acceptance conditighs

Thel;s can be used to describe words recognized by a run, but fguuipose of
finding accepting runs we shall not be concerned;syandX’. Also note that we use
acceptance conditions as labels on transitions, rathehihe usual sets of transitions,
because that is how it is coded in practice.

Other Bichi automata in use for model-checking, have gecep conditions on
states rather than transitions, and are often not geneda(iz.,| 7| < 1). While the
benefit of TGBASs in the process of translating LTL formulee lieady quite clear [3,
10, 4], few people are actually using them for emptinessskhleecause mainstream
algorithms work on non-generalized, state-based, Budioraata.

A degeneralizationis the transformation of an automaton wjth| > 1 into an au-
tomaton with|F| = 1 [10]. This operation may multiply the size of the automatgn b
at most| | to produce a transition-based automaton, and by at (ffgst 1 to produce
a state-based automaton. Such a blowup is often disregasukea only the automaton
that represents the property needs to be degeneralizddast@mmata are usually small.
Acceptance conditions can also be used to express someotl&ésmess constraints
such asveak fairnessln Spin, weak fairness is handled using a degeneralizatigpo:
rithm [13, p. 182]. As we shall see in our measures, the degénation is much more
painful when applied to weak fairness.

2.2 Existing Algorithms

Two classes of on-the-fly emptiness-check algorithms exéstted depth-first searches
(NDFSs), and algorithms that compute strongly connectetpoments (SCCs). Fig. 1
shows how the algorithms we cite relate to each other.

1972

1973

1985

1990

1993

1994

1996

1999

2003

2004

2005

Depth-first search and
linear graph algorithmg
Tarjan, 1972

Dijkstra, 1973

Finding the maximunm
strong components ir)
a directed graph

Legend: ‘ Buichi automata with accepting stat}as

‘ Generalized Biichi automata with accepting st%xtes

[16] Checking That Finite Stat
Concurrent Programs Satisfy
Their Linear Specification
Lichtenstein and Pnueli, 198

[3] On-the-fly Verification of
Linear Temporal Logic

Couvreur, 1999

‘ Generalized Buchi automata with accepting tramsstif

Courcoubetis et

[2] Memory—Efficient Algorithms for the|
Verification of Temporal Properties

al., 1990

/

[11] On the Verification of
Temporal Properties
Godefroid & Holzmann, 199

Holzman

An Improvement in Formal Verificatio

n & Peled, 1994 ”

[14] On Nested Depth First Sear¢h
Holzmann et al., 1996

for GBA

[20] Nested Emptiness Sear

Tauriainen, 2003

h [19] On Translating LTL
into Alternating and

Tauriainen, 2003

[8] Tarjan's Algorithm
Makes On-the-Fly LTL

Verification More Efficient
Geldenhuys & Valmari, 2004

N

Nondeterministic Automata

[7] Minimization of
counterexamples in SPIN®
Gastin et al., 2004

[17] A Note on On-The-FI
Verification Algorithms
Schwoon & Esparza, 200

[12] Truly On-The-Fly
LTL Model Checking
Hammer et al., 2005

[9] More Efficient On-the-fly
LTL Verification with
Tarjan's Algorithm
Geldenhuys & Valmari, 2005

— X

Cou99 shy

This paper

»

Tau03 opt

Fig. 1. A family tree of emptiness-check algorithms.

cl

c2

c3

c4

c5

c6

c7

c8

c9

cl0

cll

cl2

c13

cl4

cl5

cl6

cl7

cl8

c19

c20

c21

IILet (¥, Q,6,q¢° F) be the 2 pushe C F,q € Q):

/I input automaton to check. c24 max — max + 1
todo: stack of (state € Q, succ C §) s H[q] — max
SCC: stack of (root € N,la C F, @ SCC.push(maz,a,,0))
acc C F,rem C Q) 27 todo.push(q, {(s,l,a,d) € 6|s = q}))
H:map of Q — N 28
max — 0 20 pop():
c30 (g, -) < todo.pop()
main(): ca1 SCC.top()rem.insertg)
push(, ¢°) c32 if H[q] = SCC.top()root
while —todo.empty() 33 forall s € SCC.top()rem
if todo.top() succ = () c34 H[s] <0
pop() c35 SCC.pop()
else c36
pick one (_, _, a, d) off todo.top()succ 7 merge@ C F,t € N):
ifd¢ H c38 r—10
pushg, d) c39 while (t < SCC'.top()root)
else ifH[d] > 0 c40 a « (aU SCC.top()acc
if merge@, H[d]) = F ca1 uscc.top()la)
return L ca2 r—rUJsScc.top()rem
return T c43 SCC.pop()

ca4 SCC.top()acec «— SCC.top()accU a
ca5 SCC.top()rem «— SCC.top()rem U r
c46 return SCC'.top()acc

Fig. 2. Another presentation of the algorithm of Couvreur [3] to chéhe emptiness of TGBAs.

a

Fig. 3. The meaning ofa andacc in SCC.

Nested Depth-First SearcheNDFSs were initially developed for Biichi automata with
only one acceptance condition for states [2]. BasicallyP&N will perform a first DFS
rooted atg” until it finds an accepting statg and from there starts a second DFS to
check whethegs is reachable from itself. This naive algorithm was thenHartrefined
so that both DFSs could share the same hash table [11], tea&kier and to support
partial order reductions [14].

Holzmann et al. [14]'s algorithm has been refined by Gastal.d7] and Schwoon
and Esparza [17]. In parallel, Tauriainen generalized gupport multiple acceptance
conditions on states [20], or transitions [19]. Switchingrh states to transitions is easy;
the real challenge was to devise a way to handle generalizegptance conditions.
Tauriainen did this by repeating the inner DFS several ti(ags/orst|F| times).

Strongly Connected Componenfmother strategy is to compute the maximal strongly
connected components (MSCCs) of the automaton. Let us defigal SCC as a
single state without self-loop. If the union of all the acte conditions occurring

in a non-trivial SCC isF, and that SCC is accessible fraj¥, then one can assert the
existence of such an accepting run. This is the essence algbethms of Couvreur
[3], Geldenhuys and Valmari [8, 9], and Hammer et al. [12].

We present an iterative version of Couvreur [3]'s algorithmig. 2 in order to
introduce two heuristics in Section 4.1. This algorithm &séd on the fact that any
graph contains at least one MSCC without outgoing arc. TalisMSCCs, one should
find such a terminal MSCC, remove it from the graph, and th&rall MSCCs of the
resulting graph [16]. It turns out this requires to visit Ba@nsition only once.

To do so the algorithm explores the graph in depth-first ondep is a DFS stack,
on which each item contains a state and the set of its suasetbsd have yet to be
visited. (In practice this set of successors may not neeé tejoresented explicitly and
would be replaced by the necessary information to comp@e#xt successor of the
state.)H maps each state to its rank in the depth-first order,/dfid = 0 indicates that
q belongs to a removed MSCC.

During the DFS, a chain of SCCs is maintained as a stack’, depicted on
Fig. 3. To each SCC is associated the rank of the first stateeoSICC (oot), the
union of acceptance conditions in the SGfd), the acceptance conditions labeling
the transition coming from the previous SC()(and the list of states of the SCC
that have been fully explored-¢m). (SCC[0].la = § by convention and is never
used.) Using this structure, two visited statgsand ¢, belong to the same SCC if
max{r | SCC[r].root < H|q1]} = max{r|SCC|r].root < H|gs]}.

Initially, each new state is pushed on the stack as a triv@al Svith an emptyuce
(line c26). When the DFS reaches a succegdbiat has already been visited and has
not been removed (line ¢18), all SCCs between the SCC to wiethongs and the top
SCC (source of the transition) are merged into a single SGCh® example of Fig. 3
where a back arc is found betwe&it’C[3] and SCC[1], the last three SCCs would
be merged into a single one with acceptance condit®@€’'[1].acc U SCC2].la U
SCC[2).acc U SCC[3].la U SCCI3].acc U a. If that union isF, then an accessible,
non-trivial, and accepting SCC exists, and the algorithpores | (the automaton is
not empty).

When the root of an SCC is popped (tested line c32), the SCQadsvk to be
maximal and not accepting, so it can be discarded. The usenofine c31 to remove
the states of the MSCC line ¢33 could be avoided because viteie33 is reached,
rem contains all the states accessible frony (ignoring those withH|[s] = 0), as
the original algorithm did [3]. The current implementatitavors run-time to memory
consumption, indeed a concern from Schwoon and Esparzana3lthat computing
transitions can be expensive. To be fair we will account far size ofrem in our
measures of the stack size. (Geldenhuys and Valmari [9]igecsdternative structures
that address the same problem.)

Another SCC-based algorithm, Geldenhuys and Valmari [8i&s a similar han-
dling of its stack: it keeps all states of partial SCCs, soaih cemove them easily.
However it also stores an additional integer for each statel{nk) that we will not
account for in our measures. This algorithm works only onetiegalized automata.

Hammer et al. [12]'s algorithm is presented as an emptiniesslcfor Linear Weak
Alternating Automata (LWAA). However their algorithm tralates an LWAA into a

generalized Biichi automata on-the-fly during the empsicbgck. The translation from
LWAA could be coupled with any other emptiness-check alonipresented here. The
real part of their emptiness check follows the same logic@as/@=ur’s algorithm except
it merges SCCs one by one while popping instead of immedgiatieén a loop is found.
It will therefore find an accepting SCC later than the aldoritof Fig. 2, only when this
SCC is popped.

3 Experimentations

In this section we introduce the experimental framework imicli we compare the
aforementioned algorithms, and comment on the resultsthglalgorithms we use
are implemented in the Spot library [4]. The random graph @mdlom LTL formulee
generation algorithms are comparable to those presentdadinyainen [21]. Of the 8
emptiness-check algorithms we compare, the first 4 are S&3€ebCou99, is the al-
gorithm of Fig. 2,Cou99 shy- andCou99 shy are two variants o€ou99 described in
Section 4.1, an®V04 is the algorithm of Geldenhuys and Valmari [8]. The otherd ar
NDFS algorithmsCVWY90 [2], SEO5 [17], Tau03 [19], andTau03 opt (a variant
of Tau03 presented Section 4.2). In tables™indicates new algorithms that will be
discussed in Section 4.

Because all our tests use TGBAs as input, we had to agjus¥Y90, GV04, and
SEO05 to handle transition-based automata (this is straightfodyvand because they
will not handle generalized acceptance conditions we adsitd degeneralize the input
automata for these 3 algorithms. (Hence the input cagfthéimes larger.)

We exercised these algorithms on random graphs and comoratels, following
a pattern similar to that of Geldenhuys and Valmari [8]. Fi® use them to check
random graphs against LTL formulae. Then we try them on twbmealels (the first of
which also comes from Geldenhuys and Valmari [8]).

Table 1 presents our results when checking random graplsaNitlgorithms in
12 different setups. Each setup differs in how the graph anchdilee are generated.
The random graphs have 1024 states and are generated witler&nli densities! of
transitions (all 1024 states are accessible and the arigaci state follows a normal
distribution with mearl +1023d and varianc&023d(1—d)). In columns headed “fair”,
transitions in the graph are additionally randomly labeigith 3 acceptance conditions
to mimic weak fairness constraints; in the other columnsatt@eptance conditions, if
any, will come only from the LTL formulee.

The values presented for each experiment are means. Thag whmputed by
running each emptiness check on a set of 1300-3000 prodertsated as follows.

For each setup we consider 15 random graphs. On setups widomaformulae,
each graph is checked against 200 LTL formulae (converted3BAS using the al-
gorithm of Couvreur [3]), yielding 3000 different product3n setups with “Human-
generated formulee”, each graph is checked against 94 feenfaihd their negation)
selected from the literature [5, 6, 18], yielding 2820 protsu

In this first test we discarded all products without acceptim (i.e., keeping those
where algorithms need not visit the whole automaton). Fohesetup the number of
non-empty products remaining is written in italics on thensdine as the density. For

Random formulee Human-generated formulee

|Algorithm [formula’s cond] fair formula’s cond| fair
d = 0.001 2328 (1318) 2188 2308 (2127) 19515
Cou99 6.8 45 45181 11.11387.4 51 4.016.3 10.6 10.4 §
- x|Cou99shy-| 54 58 7.516.5 17.725.66.5 6.8 7.715.2 15.7 19.56(<
ﬁ x|Cou99shy | 5.4 5.8 7.415.6 16.723.56.3 6.5 7.0145 15.0 18.)}8
T (|GV04 6.8 45 45284 17121675 51 4.0259 16516.1jwn
% {CVWYQO 6.8 7.1 6.461.7 7396667.7 7.9 5.253.6 65.049.3 0
2 SEO05 6.8 5.7 4.5%59.4 39.13847.6 6.8 3.950.9 34.7 28.1 é
T |Tau03 9.916.1 10.864.7 295.949.69.517.4 8.153.9 265.5 36.2(=
x|TauO3 opt | 6.8 5.2 4.%185 27.115474 8.1 3.816.4 31.811.38
d =0.002 2716 (1488 2695 2569 (2304) 2548
Cou99 48 22 31175 8511445 26 24137 74 7.6
x|Cou99 shy-| 3.4 3.4 6.9154 15830.13.6 3.8 6.1125 12.119.8
x|Cou99shy | 3.4 3.4 6.814.3 14626534 3.6 54119 114178
GV04 48 2.2 3.129.1 14118546 2.8 24232 128119
CVWY90 49 3.6 4.%60.3 58.059.54.8 4.2 34451 43.9 35.6
SEO05 48 2.8 3.156.8 30.23294.7 35 24420 24.319.8
Tau03 8.5125 9.161.3 265.546.p7.112.5 6.340.9 185.4 27.3
x|TauO3 opt | 4.8 2.7 3.117.8 23912y 45 45 24139 26.3 8.3
d=10.01 2978 (1569 2979 2766 (2441) 2765
Cou99 35 0.7 24123 19 8126 07 1478 15 44§
x|Cou99shy-| 1.7 15 11.Y8.2 8.366.61.6 1.6 10.6 56 5.439.2
x|Cou99shy | 1.6 1.5 10.Y69 7.053.014 13 7.7148 44299
GV04 3.5 0.7 2420.7 3513226 08 14135 28 7.7
CVWY90 3.6 1.1 3.344.7 15649827 1.0 2.130.8 13.030.9
SEO05 3.6 09 23398 7.025426 09 1%264 57155
Tau03 16.9 20.6 19./58.1 221.8 57.811.2 14.9 12.}35.5 140.2 32.3
x|TauO3opt | 3.5 1.0 2.3124 110 9626 16 1478 102 57

Table 1. Comparison of algorithms for random graphs and random aald_fid- formulee.

Tau03 we also discarded products with no acceptance conditicell &ecausdau03
is not designed to handle them; the resulting number of ptsds put in parentheses.

For each check of a non-empty product, we compute the ratbsden (1) the
number of distinct states visited and the number of statésemproduct TGBA, (2) the
number of traversed transitions (a same transition cand&musted more than once) and
the number of transitions of the product TGBA, and (3) the ima size of the stack
and the number of states of the product. For all algorithmenéf a degeneralization
is required, ratios are computed against the product befoyedegeneralization. The
table displays the means of each of these three ratios in %.

Our computation of the stack size deserves more explarsagignot all algorithms
use similar stacks. For all NDFS algorithms, we simply cedrthe number of states in
the DFS stack. Fo€ou99, we counted the number of entriestinio (its DFS stack),
plus the size ofem for each of entry or6C'C (this is becauseucc can be represented
as an iterator of constant size, and if you omitits field the size ofSCC is bounded
by that oftodo). For GV04 we counted all items ostack [8] (this is proportional to
all states that are in the currefiC'C' chain).

A(287922, 1221437, 1) |B(287922, 1222805, 1) |C (47887, 134916, O

Cou99 365 365 365 365 365 365 47887 134916 115
x|Cou99 shy-| 365 1356 1358 365 1356 135847887 134916 226
x |Cou99 shy 365 1356 1358 365 1356 13547887 134916 226

GV04 365 365 365 365 365 365 47887 134916 115

CVWY90 | 17693 91145 902 448 789 787 47887 269831 115

SEOQ5 17693 90803 564 448 449 449 47887 269831 115

Tau03 17702 187964 911 448 1876 787

b

x| Tau03 opt 365 365 36 365 365 366 47887 134916 115
D (289812, 1232783, L) |E (145400, 413351, O)) |F(289812, 1225799, B)
Cou99 289812 1232783 145172 365 365 365289812 1225799 145172
x |Cou99 shy-|289812 1232783 145666 365 706 708289812 1225799 145666
x |Cou99 shy 289812 1232783 145304 365 706 708289812 1225799 145304

GV04 289812 1232783 14512 365 365 365289812 1225799 145172
CVWYOQ0 |289812 1642497 1145 365 703 704289812 1635513 1145
SEO5 289812 1642497 1145 365 365 366289812 1635513 1145
Tau03 289812 2875280 1145 289812 2861312 1145

x|Tau03 opt |289812 1642497 1145 365 365 366289812 1635513 1145
G (241808, 687630, 1)) |H(728132, 2080615, 4) | (728132, 2076619, 43
Coud9 557 557 557145847 413799 14517228132 2076619 145172
x|Cou99shy-| 557 1087 108145847 414229 14530328132 2076619 145307
x|Cou99shy | 557 1087 1080145847 414229 14525728132 2076619 145257

GV04 557 557 557145847 413799 14517228132 2076619 145172
CVWY90 557 895 896178543 511930 138828132 2489217 1172
SEOQ5 557 557 558178543 504468 114328132 2489217 1172
Tau03 566 1249 905178551 1604336 145428132 6631906 14%4
x| Tau03 opt 557 557 558145847 827149 145428132 4555287 14%4

Table 2. Leader election algorithm in an arbitrary network.

The algorithms presented here have a runtime proportiendde number of tran-
sitions explored. So the second value of each triplet allmvsompare the runtimes.
Also, for a fixed|F|, the memory consumption of the algorithm is a linear comtidme
of the number of states explored (first value) and of the sizlbeostack (second value).

A first remark concerns the results presented by Geldenhuy&/almari [8], who
compared their implementations V04 andCVWY90 using the same procedure (at
the exception of the “fair” columns). We could not reprodtleeimportant contrast they
show between these two algorithms (neither could Hammelr §2). For example,
the 94 formulee (and their negation) from the literature hlamen checked against 15
random graphs with a transition probability of 0.001. 230&e 2820 generated prod-
ucts are non-empty ar@V04 has reported an accepting run after exploring an average
of 7.5% of the states whe®dVWY90 needs to visit 7.7%. Geldenhuys and Valmari [8]
report a rate of 8.99% faBV04 against 40.21% foEVWY90. These discrepancies are
likely due to different parameters of the random graph gatoer

The results for setups with randomly-generated formulaecarsparable to those
with non-random formulee; if anything, this only shows thandom formulee are not
biased. Similarly, the densitydoes not seem to affect the algorithms much. Therefore
itis much more interesting to compare the behaviors of therthms when acceptance
conditions comes only from the formulae or when additionakptance conditions have

been injected into the random graphs. In the former most T&B#Ave few acceptance
conditions (e.qg., for formulee from the literature, 40% ofBA&s have 0 or 1 acceptance
condition, 40% have 2, and 20% have between 3 and 6), constiytree difference be-
tweenCVWY90, GV04, SE05 (which require degeneralized automata) and the other
algorithms are not striking. However on the “fair” setup§Gbased algorithms often
outrank NDFS ones. The poor resultslaiu03 are mostly due to the logic of the origi-
nal algorithm [19]; informally, it visits all the successauf a state even if it could have
answered after having visited the first.

Experiments based only on random graphs can be misleadingmphasize the
advantage of TGBAs and SCC-based emptiness checks, we &afied/concrete for-
mulee against concrete models. For this purpose, we haveedreme example pre-
sented by Geldenhuys and Valmari [8] modeling an algoritfiglextion in an arbitrary
network (this model is also experimented by Schwoon and iZaga 7]). Among the
three variations they presented [8], Table 2 collects osmlte only for the second one,
checked against their 9 formulee (labeled from A to I). Valiseshe other, less signifi-
cant variations can be computed using the benchmark sdigitibuted with Spot.

Each square corresponds to a given formula. At the top of arega indicated the
label of the formula as well as the product size (in terms ohbar of states, transitions
and acceptance conditions). Moreover, a symbol indicétke product is emptyd) or
if an accepting run exists{). For each algorithm we give the number of distinct states
visited, traversed transitions, and the maximal size osthek. No measures have been
done forTau03 on TGBAs without acceptance condition.

The complete reachability graph (i.e., without partial@rdeduction—the conclu-
sion for the reduced graphs are similar, only with smalleurés) of the model has
been generated from its Promela specification using Spij Tt&n the corresponding
TGBA has been introduced in Spot and the formulee translatedliGBAs using also
Spot. Though this is not generally the case, on this exarplsizes of the degeneral-
ized product and of the generalized one are identical. Bhighy Cou99 and GV04
perform equally well. The original implementation ©bu99 [3] would have used far
less stack, but visited twice as many transitions (for ims¢aon formula F the results
for the implementation o€ou99 withoutrem are (289812, 2451598, 1145)).

These runs confirm the conclusions of Schwoon and Espara$EDS5 always
performs better tha@VWY90 (formulee A, B, E, G and H); and SCC-based algorithms
Cou99 andGV04 perform better than NDFS ones (formulae A and H).

To conclude our experimentation and focus on multiple atzsege conditions, we
present complementary measures for a simple client-sexa&mple where: clients
communicate withs servers via a duplex channel. Any client can send a requnest, t
some server will answer that client. The property we chethasif the first client sends
arequestit will get an answer. This property is only satisfa 1 client and is otherwise
false unless weak fairness is assumed. Table 3 shows theiraea®ne can indeed see
that the property is not satisfied in the case of 3 clientsauittiairness. The interesting
point is that the additional acceptance conditions usethforess constraints comes at
no cost forCou99 while the cost is high for other algorithms. This is obvioustbe
cases with 1 client (and can be generalized), however weotatirectly compare the
product sizes for 3 clients as the fair case is empty whilauttfair case is not.

3cl, 1lserv. @|3cl, 1serv., fair (%)
Cou99 a 783237151 783 2371 511
x|Cou99 shy-la 783 2371 71 783 2371 71D
x|Cou99 shy |a 783237151 783 2371 51P
GV04 a 783 237151b’ 2005 6627 550
CVWY90 |a 7832897 23[b’ 2005 7771 25]|sizes of products
SEO05 a 7832897 23[b’ 2005 7771 250|ref.| #st| #tr.|#cond
Tau03 a 7835268 23 783 10143 264|a 783 2371 1
x|Tau03 opt |a 783 2897 23}b 783 8200 264|b 783 2371 5
3cl,3serv. O|3cl.,3serv, fair gl b’ | 2005 6627 1
Cou99 c 631 839 158d 21394 85387 11468¢c (21394 85387 1
x|Cou99 shy-|c 631 1153 48[t1 21394 85387 17133d |21394 85387 7
x|Cou99 shy |c 1170 1914 40/ 21394 85387 11469d’ |77979339874 1
GV04 c 631 839 158 77979 339876 11521
CVWY90 |c 631 1513 158" 77979 410877 5632
SEO05 Cc 631 1499 158" 77979 410877 5632
Tau03 c 899 3373 19{d 21394 415551 5099
x|Tau03 opt |c 631 1499 1581 21394 331587 5060

Table 3. Client-server algorithm.

4 Heuristics and Optimizations

4.1 Heuristics for SCC-Based Algorithms

The two shy variants o€ou99 measured in these tables use the fact that line ¢15 in
Fig. 2 does not enforce any order on the succes€mg99 will simply use the physical
order of the successors in memory, so thec member oftodo items can be efficiently
represented as an iterator. TR®U99 shy- variant orders successors to visit those
that are already itf first before visiting new states. Doing so sounds naturahbse

it favors merges of SCCs upon pusi@u99 shy works similarly, but it considers
the successors of the whole top SCC instead of selectingaessmr only among the
successors of the state at the toga@fo (in practicetodo is merged likeSCC).

Because€Cou99 shy- andCou99 shy have to reorder the successors before execut-
ing line c15, thesucc field of todo entries cannot be represented as an iterator. To be
fair our measures of the stack size of these two variantsaasount for the number of
states of eachucc field. Also, whileCou99 makes it possible to compute successors
of a state one by one on-the-fly, this is not possible for shiamnés who neeall suc-
cessors to reorder them. This difference is apparent inthagoer of transitions visited:
shy variants compute more transitions than plagu99.

These heuristics have a controversial effect on performaBtten, they will indeed
visit less states, but in counterpart they compute moresitians and require more stack
space. On non-empty automata, it is possible to find caggs lfettom left of Table 3)
where the variants visit more states. One issue with mezgum-the-fly emptiness
checks is that they exit as soon as they can: a more complexitaly may exit before
an efficient one if it luckily picks successors in the righder. (Apart from these two
shy variants, all the other algorithms implemented heré sistes in the same DFS
order; this ensures equitable measurements.) This confilbservations of Geldenhuys
and Valmari [8] who tested other heuristics, none of whichegred better either.

@

@
g;/

Large subgrap

Fig. 4. Problematic case f@E05. Fig. 5. Computing an accepting run for a TGBA.
4.2 A New Nested DFS Algorithm

Fig. 4 illustrates a case whe®t05 could be improved. Arcs are labeled by their depth-
first order.SEOS is defined on Biichi automata with accepting states. In g BFS, if
eitherqg or g7 are accepting, theBEO5 can report a violation. Ifjs is accepting, the
accepting cyclégs, g9, g7, gs) cannot be detected by the first DFS: it will only be found
by the second DFS performadter the large subgraph have been explored.

The first DFS could detect an accepting cycle when visitirgthtird arc if it knew
whether an accepting state exists betwgeandgy. We propose to associate each state
q in the DFS stack with the numb@r[¢] of accepting states in the DFS path frgfito
q. Therefore checking the existence of an accepting stateeeet;; andgy, amounts
to testing whetheW [go] — Wq7] > 0.

This technique can be generalized to multiple acceptaneeitons using a vector
of counters. We implemented it ifau03 opt. Its effect can be observed on TGBAs
with a single acceptance condition, wh&€05 andTau03 opt differ only on this last
optimization. For instance see formulae A and B in Table 2.

Fig. 6 present§au03 opt. This new algorithm uses the techniqueT@u03 to
handle multiple acceptance conditions, but simplifiesdtgd and also implements all
the optimizations introduced ByEOS.

On Table 1 the reason whau03 opt outperformsGV04 in terms of visited states
is that the latter works on a degeneralized automaton @lusnfirmed when comparing
Cou99 with Tau03 opt); however the wayfau03 opt nests multiple DFSs to handle
multiple acceptance conditions causes more transitiohs tasited tharGV04.

5 Computing Accepting Runs for Generalized Automata

When a product space is foundtto be empty, it means the system does not verify the
formula it is checked against. An important step is to prewtte user with a counterex-
ample, showing an actual faulty execution of the systemhSucounterexample is an
accepting run of the product automata. It can often be predias a side-effect of the
emptiness check, or afterwards by reusing some data of #ekch

In emptiness-check algorithms that work on degeneralizédnaata, exhibiting an
accepting run if one exists is straightforward. In NDFSdzhalgorithms CVWY90,
SEO05) that run is the contents of the stack. F&¥04, Geldenhuys and Valmari [9]
showed how to use an extra integer per stack state to produsecapting run.

ws dfsbluei € Q):
wa H|s] < (cyan, ()

25 W s] < weight

126 forall (l,a,t) suchthat(s,l,a,t) € ¢

et (X, Q,6,q¢°, F) be the

/I input automaton to check.

H: map of Q — (color € {cyan, blue},
acc C F)

W:map of Q — map of F — N & Ifigllli
weight: map of F — N e orall f € a .
29 weight[f] < weight[f] + 1

main(): 0 if dfs blue) = L

forall f € F, weight[f] — 0 “ forrzltl“;”;a

0 t.
return dfs blue() 33 weight[f] < weight[f] — 1
. 34 if propagatef, H[s].accUa,t) = L

propagatef € Q, Acc C F,t € Q): e return L

(teol, tacc) — H|t]
if tcol = cyan A F = (H[s].accU AccU
tacc U{f € F|weight[f] > W[t][f]})
return L
else ifAcc Z tacc
Ht].acc « tacc U Acc
if dfs_red(, Acc) = L
return L
return T

36 H{s].color < blue
7 deleteWW|s]
138 return T

39

wo dfsred(s € Q, Acc C F):

1 forall (l,a,t) suchthat(s,l,a,t) € ¢
2 if t € H A propagatef, Acc, t) = L
3 return L

ta4 return T

Fig. 6. A variation on the emptiness-check algorithm of Tauriaifte3j.

In this section we present two techniques to extract acegptins from the data
structures of the algorithms that work on generalized aatanCou99, Tau03, and
their variants. Both techniques try to compute a short aotggycle using successive
breadth-first searches (BFSs) and then construct the shpredix leading to this cycle.

Accepting runs withtCou99. When Cou99 returns_L it means an accepting SCC is
reachable fromy°. Fig. 5 shows this SCC as a dotted circle. A staban easily be told
to belong to this SCC by checking whethéfs] > SCC .top()root.

Because the SCC is accepting, from any of its states thestsexicircuit labeled
by all acceptance conditions. This circuit may cross theesaansitions several times.
Therefore, itis easier to construct an accepting cycle asessof independent parts that
can each visit a transition at most once, and that each bmegs.cceptance conditions.

The algorithm thus works as follows. L&) be the set of all acceptance conditions.
From a state:, of the SCC, start a BFS (restricted to the SCC) to construcith @
the closest transitioty, that has some acceptance conditidysso thatFy N Fo # 0.

Let /1 = Fo \ Fo be the set of remaining acceptance conditions. Repeat ti8 BF
from ¢; (the output oftp) until a transitiont; is found with acceptance conditio$

that intersectF;. Iterate until.7,, = . Finally use a last BFS to compute the shortest
path frome,, back tocg, closing the cycle. This algorithm was presented by Latvala
and Heljanko [15] using the root of the SCC @s However the choice of, can be
arbitrary because we are in a SCC. Since we know that thetimthat cause€ou99

to exit (the one corresponding to the last execution of |it&)¢s necessarily part of the
acceptance cycle, it seems wiser to use either its sour¢g destination ag,.

Random formulee |Human-generated formulee
|Algorithm [formula’'s cond] fair [formula’s cond] fair
d = 0.001 2328 (1318) 2188 2308 (2127) 1951
Cou99 1.9 2.0 17.112.7 1.3 1.3 12.3 9.0
Cou99 shy-| 1.5 1.5 15.711.7 1.0 1. 11.6 8.4
Cou99shy | 1.5 1.5 15.011.0 1.0 1. 112.0 7.9
Tau03 10.9 9.9237.6 64.7 8.7 9.5205.9 53.9
TauO3opt | 2.8 6.4 64.5185 2.2 7.4 53.416.4
d = 0.002 2716 (1488) 2695 2569 (2304) 2548
Cou99 1.3 1.5 15.2 10.6 0.9 1. 9.7 6.9
Cou99 shy-| 0.9 0.9 14.0 94 0.6 0.7 8.8 5.9
Cou99shy | 0.9 0.9 13.3 8. 0.6 0. 85 5.6
Tau03 10.8 8.5225.161.3 7.7 7.1153.5 40.9
TauO3 opt | 2.6 44 61.917.8 1.8 4.5 43.6 13.9
d=001 2978 (1569) 2979 2766 (2441) 2765
Cou99 0.8 1. 125 7.4 05 0. 7.1 4.2
Cou99 shy-| 0.4 04 9.8 49 0.2 0.2 55 29
Cou99shy | 0.4 04 9.2 41 0.2 0.2 5.1 275
Tau03 18.1 16.9210.0 58.112.6 11.2139.4 35.$
TauO3opt | 1.7 35 43.0124 1.1 2.6 25.6 7.8

Table 4. Comparison of algorithms for computing accepting cycles.

As far as the prefix is concerned, a list of states frghto ¢, can be easily con-
structed while unwinding théodo stack. However this prefix may not be the shortest
possible prefix leading to the accepting cycle, so a similaaiwould be to use a BFS
to construct the shortest path betwegnand any state of the cycle, this path can be
constrained to visit the SCCs in increasing order to limé sicope of the BFS.

Accepting runs withifau03. Computing accepting runs for generalized NDFS algo-
rithms such a3au03 or Tau03 opt is more embarrassing, because the resulting data do
not provide structural information as useful as a SCC thatld/cestrict our search.We
know that the last¢ for which line t34 was executed belongs to an accepting cyctam
this statery = s we first perform a nested DFS to collect a set of transitidribat (1)
are each on a cycle back t¢g, and (2) will, together, coveF.

This collection of cycles could be used to construct an auogpycle, but since we
are trying to create short runs we decided to connect thdkeztad transitions directly.
Therefore we perform a BFS to compute the shortest path fpta a transitiort, of
7, and from there another BFS to find the shortest path to anotlté 7, etc. Closing
the cycle and computing the prefix can be done like for SC@dbatgorithms.

Table 4 uses the layout of Table 1. For each setup, the twesate the number of
states visited to construct the cycle part of the acceptingand the size of the search
space for this cycle. They are expressed as a percentage ofithber of states of the
input TGBA. ForCou99 the cycle’s search space is the top SCC, andi&w03 the
search space contains all stategdin(A state is counted as many times as it is visited.)

As the table shows, the absence of structural informatidiair03 makes the com-
putation more costly, since the search space is large€C&099, the search is contained
in a small subgraph (the top SCC), which justifies the use @8BH he “fair” columns

show that with more acceptance conditions in the systemigjogithms need to traverse
the search space more times. Surprisingly, the size of ielsespace fo€Cou99 shy
and Cou99 shy- is smaller than that o€ou99; this is counter-intuitive because our
heuristics aim at favoring merges of SCCs.

During our experiments we observed that the size of acogptins produced by
such BFS-based algorithms were significantly smaller thase obtained directly from
the stack of NDFS algorithms. A deeper study of existing atgms, weighting mini-
mization against computational complexity still has to beel(Gastin et al. [7] provide
some initial clues).

6 Conclusion

In this paper we have stressed the importance of dealing gétteralizedBiichi au-
tomata in emptiness-check algorithms. Our experimentxistieg algorithms showed
that SCC-based ones clearly outrank NDFSs; this completagsults of Schwoon and
Esparza [17], who studied emptiness checks of standartiBilitomata.

Although we have not implemented it, the generalized athors presented here
can be used in conjunction with the bit-state hashing teplej13, p. 206] if done care-
fully. The bit-state hashing should not be applied to stdtasbelong to the first-level
DFS: those states need to be perfectly hashed. The applidatTau03 is discussed
by Tauriainen [20]. In SCC-based algorithms the restricxtends to all states that
belong to SCCs in th8C'C stack. In other words, bit-state hashing can only be applied
to states from removed MSCC:s; this limits its usefulness.

To give NDFS-based algorithms a chance to compete with S&@<bones, we
introduced (1) a new optimization to detect some acceptyudes earlier, and (2) a
new algorithm Tau03 opt) that mixes all the optimizations &E05 with the multiple
acceptance condition capability @u03. AlthoughTau03 opt surpasses other NDFS
algorithms, our experiments still show that SCC-basedrélyos perform better.

To complete our TGBA verification framework, we finally intteced algorithms to
extract accepting runs. Here again, our results are in fai/@ou99.

All the algorithms presented and measured here are impleEdén our model-
checking library, Spot [4], available &t t p: / / spot . | i p6. f r. The distribution of
Spotincludes the scripts we used for our experiments. Theye adjusted to different
configurations, and can output more statistics than we qanélsent in these pages. For
instance they also verify the reduced state spaces geddrata the examples using
Spin’s partial-order reduction [13, p. 192].

Bibliography

[1] 1. Cerna and R. Pelanek. Relating hierarchy of temporal gnttgs to model
checking. InProc. of MFCS’03volume 2747 of. NCS pages 318-327. Springer-
Verlag, Aug. 2003.

[2] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. YannakakMemory-efficient
algorithm for the verification of temporal properties. RPnoc. of CAV’9Q volume
531 of LNCS pages 233-242. Springer-Verlag, 1991.

[3] J.-M. Couvreur. On-the-fly verification of temporal l@gi In Proc. of FM’99
volume 1708 oLLNCS pages 253-271. Springer-Verlag, Sept. 1999.

[4] A. Duret-Lutz and D. Poitrenaud. Spot: an extensible slathecking library
using transition-based generalized Buchi automataPrbt. of MASCOTS'04
pages 76—83. IEEE Computer Society, Oct. 2004.

[5] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property sifieation patterns for
finite-state verification. IfProc. of FMSP’98pages 7-15. ACM, Mar. 1998.

[6] K. Etessami and G. J. Holzmann. Optimizing Blichi auttanadn Proc. of Con-
cur’00, volume 1877 oLLNCS pages 153-167. Springer-Verlag, 2000.

[7] P. Gastin, P. Moro, and M. Zeitoun. Minimization of coargxamplesin SPIN. In
Proc. of SPIN’04volume 2989 o NCS pages 92-108. Springer-Verlag, 2004.

[8] J. Geldenhuys and A. Valmari. Tarjan’s algorithm makastioe-fly LTL verifica-
tion more efficient. IrProc. of TACAS’04volume 2988 of NCS pages 205-219.
Springer-Verlag, 2004.

[9] J. Geldenhuys and A. Valmari. More efficient on-the-flylLVerification with
Tarjan’s algorithm.Theoretical Computer Scienc2005. To appear: conference
paper selected for journal publication.

[10] D. Giannakopoulouand F. Lerda. From states to trasrsstilmproving translation
of LTL formulae to Buchi automata. IRroc. of FORTE’02volume 2529 o£ NCS
pages 308-326. Springer-Verlag, Nov. 2002.

[11] P. Godefroid and G. J. Holzmann. On the verification ehperal properties.
In Proc. of PSTV’93volume C-16 ofiFIP Transactionspages 109-124. North-
Holland, May 1993.

[12] M. Hammer, A. Knapp, and S. Merz. Truly on-the-fly LTL madcthecking. In
Proc. of TACAS’05LNCS. Springer-Verlag, Apr. 2005.

[13] G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual
Addison-Wesley, 2003. ISBN 0-321-22862-6.

[14] G.J.Holzmann, D. A. Peled, and M. Yannakakis. On nedegadh first search. In
Proc. of SPIN'96volume 32 o DIMACS AMS, May 1996.

[15] T. Latvala and K. Heljanko. Coping with strong fairnessindamenta Informati-
cae 43(1-4):1-19, 2000.

[16] O. Lichtenstein and A. Pnueli. Checking that finite stabncurrent programs
satisfy their linear specification. roc. of POPL'85pages 97-107. ACM, 1985.

[17] S. Schwoon and J. Esparza. A note on on-the-fly verificedigorithms. IrProc.
of TACAS'05LNCS. Springer-Verlag, Apr. 2005. To appear.

[18] F. Somenziand R. Bloem. Efficient Biichi automata fok férmulee. InProc. of
CAV’00, volume 1855 of.NCS pages 247—-263. Springer-Verlag, 2000.

[19] H. Tauriainen. On translating linear temporal logitaralternating and nonde-
terministic automata. Research Report A83, Helsinki Ursi¢g of Technology,
Laboratory for Theoretical Computer Science, Espoo, RidJdec. 2003.

[20] H. Tauriainen. Nested emptiness search for genedhBighi automata. IfProc.
of ACSD’04 pages 165-174. IEEE Computer Society, June 2004.

[21] H. Tauriainen. A randomized testbench for algorithnamslating linear temporal
logic formulee into Buchi automata. Broc. of CS&P’99 pages 251-262, Sept.
1999.

[22] M. Y. Vardi. An automata-theoretic approach to lineamiporal logic. InProc. of
Banff’94, volume 1043 oL NCS pages 238-266. Springer-Verlag, 1996.

