
On-the-Fly Emptiness Checks for
Generalized Büchi Automata

Jean-Michel Couvreur1, Alexandre Duret-Lutz2, and Denis Poitrenaud2

1 LaBRI, Université de Bordeaux I, Talence, France
2 LIP6, Université de Paris 6, France

Abstract. Emptiness check is a key operation in the automata-theoretic approach
to LTL verification. However, it is usually done on Büchi automata with a single
acceptance condition. We review existing on-the-fly emptiness-check algorithms
for generalized Büchi automata (i.e., with multiple acceptance conditions) and
show how they compete favorably with emptiness-checks for degeneralized au-
tomata, especially in presence of weak fairness assumptions. We also introduce a
new emptiness-check algorithm, some heuristics to improve existing checks, and
propose algorithms to compute accepting runs in the case of multiple acceptance
conditions.

1 Introduction

The automata-theoretic approach to model-checking [22] uses automata on infinite
words to represent a system as well as a formula to check on this system. Both automata
are synchronized, and a key operation is to determine whether the resulting automaton
is empty (i.e., contains no accepting run). This operation is called emptiness check. An
on-the-fly emptiness check allows the synchronized automata to be constructed lazily
while it runs. This is a win if the emptiness check answers before the whole synchro-
nized product is completed.

We follow up on a paper by Schwoon and Esparza [17] who compared two classes
of on-the-fly emptiness checks: those based on nested depth-first searches (NDFSs)
versus those computing strongly connected components (SCCs). Their measures for
Büchi automata with single acceptance conditions led to the following conclusions:

– Couvreur [3]’s algorithm is the best at computing accepting SCCs,
– Schwoon and Esparza [17]’s algorithm is the best of NDFS-based checks,
– for weak Büchi automata [1], a simple DFS is enough; otherwise SCC-based algo-

rithms should be preferred to NDFSs unless bit-state hashing is used.

Here we explore these algorithms on Büchi automata with multiple acceptance condi-
tions (the so-called generalized Büchi automata) to stress the advantages of generalized
emptiness checks over traditional algorithms.

Section 2 introduces the emptiness-check problem and existing algorithms. Sec-
tion 3 describes our experimental workbench. The later two sections present some con-
tributions to each class of algorithms as well as algorithms for the computation of ac-
cepting runs.

P. Godefroid (Ed.): SPIN 2005, LNCS 3639, pp. 143–158, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

144 J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud

2 Emptiness Check

2.1 Transition-Based Generalized Büchi Automata

A Transition-based Generalized Büchi Automaton (TGBA) over the alphabet Σ is a
Büchi automaton with labels on transitions, and generalized acceptance conditions on
transitions too. It can be defined as a tuple A = 〈Σ,Q,F , q0, δ〉 where

– Σ is an alphabet,
– Q is a finite set of elements called states,
– F is a finite set of elements called acceptance conditions,
– q0 ∈ Q is a distinguished initial state,
– δ ⊆ Q × (2Σ \ {∅}) × 2F × Q is the transition relation, where each transition is

labeled by a nonempty set of letters of Σ and a set of acceptance conditions of F .

A run of A is an infinite sequence 〈q0, l0, f0, q1〉〈q1, l1, f1, q2〉···〈qj , lj , fj, qj+1〉··· of
transitions of δ, starting at q0 = q0. Such a run is said to be accepting if ∀f ∈ F , ∀i �
0, ∃j � i, such that f ∈ fj , i.e., if its transitions are labeled by each acceptance
condition infinitely often.

An emptiness check is an algorithm that tells whether at least one accepting run ex-
ists. On a TGBA, it amounts to testing whether there exists a circuit that (1) is accessible
from q0, and (2) is labeled by all acceptance conditions F .

The lis can be used to describe words recognized by a run, but for the purpose of
finding accepting runs we shall not be concerned by lis and Σ. Also note that we use
acceptance conditions as labels on transitions, rather than as the usual sets of transitions,
because that is how it is coded in practice.

Other Büchi automata in use for model-checking, have acceptance conditions on
states rather than transitions, and are often not generalized (i.e., |F| � 1). While the
benefit of TGBAs in the process of translating LTL formulæ is already quite clear [3,
10, 4], few people are actually using them for emptiness-check, because mainstream
algorithms work on non-generalized, state-based, Büchi automata.

A degeneralization is the transformation of an automaton with |F| > 1 into an au-
tomaton with |F| = 1 [10]. This operation may multiply the size of the automaton by
at most |F| to produce a transition-based automaton, and by at most |F|+ 1 to produce
a state-based automaton. Such a blowup is often disregarded when only the automaton
that represents the property needs to be degeneralized: such automata are usually small.
Acceptance conditions can also be used to express some class of fairness constraints
such as weak fairness. In Spin, weak fairness is handled using a degeneralization algo-
rithm [13, p. 182]. As we shall see in our measures, the degeneralization is much more
painful when applied to weak fairness.

2.2 Existing Algorithms

Two classes of on-the-fly emptiness-check algorithms exist: nested depth-first searches
(NDFSs), and algorithms that compute strongly connected components (SCCs). Fig. 1
shows how the algorithms we cite relate to each other.

On-the-Fly Emptiness Checks for Generalized Büchi Automata 145

1972

1973

Depth−first search and
linear graph algorithms

Tarjan, 1972

[8] Tarjan’s Algorithm
Makes On−the−Fly LTL

Verification More Efficient
Geldenhuys & Valmari, 2004

[12] Truly On−The−Fly
LTL Model Checking
Hammer et al., 2005

1985

Finding the maximum
strong components in

a directed graph
Dijkstra, 1973

[3] On−the−fly Verification of
Linear Temporal Logic

Couvreur, 1999

1990

[16] Checking That Finite State
Concurrent Programs Satisfy

Their Linear Specification
Lichtenstein and Pnueli, 1985

1993

[2] Memory−Efficient Algorithms for the
Verification of Temporal Properties

Courcoubetis et al., 1990

[11] On the Verification of
Temporal Properties

Godefroid & Holzmann, 1993

An Improvement in Formal Verification
Holzmann & Peled, 1994

1994

[14] On Nested Depth First Search
Holzmann et al., 1996

1996

1999

[20] Nested Emptiness Search
for GBA

Tauriainen, 2003

[7] Minimization of
counterexamples in SPIN

Gastin et al., 2004

2003

[9] More Efficient On−the−fly
LTL Verification with

Tarjan’s Algorithm
Geldenhuys & Valmari, 2005

Cou99 shy

2004

[19] On Translating LTL
into Alternating and

Nondeterministic Automata
Tauriainen, 2003

Tau03 opt

2005

[17] A Note on On−The−Fly
Verification Algorithms

Schwoon & Esparza, 2004

This paper

Legend: Büchi automata with accepting states

Generalized Büchi automata with accepting states

Generalized Buchï automata with accepting transitions

Fig. 1. A family tree of emptiness-check algorithms

146 J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud

c1 // Let 〈Σ,Q, δ, q0,F〉 be the
c2 // input automaton to check.
c3 todo: stack of 〈state ∈ Q, succ ⊆ δ〉
c4 SCC: stack of 〈root ∈ N, la ⊆ F ,
c5 acc ⊆ F , rem ⊆ Q〉
c6 H: map of Q �→ N

c7 max← 0
c8

c9 main():
c10 push(∅, q0)
c11 while ¬todo.empty()
c12 if todo.top().succ = ∅
c13 pop()
c14 else
c15 pick one 〈 , , a, d〉 off todo.top().succ
c16 if d 	∈ H
c17 push(a, d)
c18 else if H [d] > 0
c19 if merge(a, H [d]) = F
c20 return ⊥
c21 return �

c23 push(a ⊆ F , q ∈ Q):
c24 max←max + 1
c25 H [q]←max
c26 SCC .push(〈max, a, ∅, ∅〉)
c27 todo.push(〈q, {〈s, l, a, d〉 ∈ δ | s = q}〉)
c28

c29 pop():
c30 〈q, 〉 ← todo.pop()
c31 SCC .top().rem.insert(q)
c32 if H [q] = SCC.top().root
c33 forall s ∈ SCC .top().rem
c34 H [s]← 0
c35 SCC .pop()
c36

c37 merge(a ⊆ F , t ∈ N):
c38 r← ∅
c39 while (t < SCC.top().root)
c40 a← (a ∪ SCC .top().acc
c41 ∪SCC .top().la)
c42 r← r ∪ SCC .top().rem
c43 SCC .pop()
c44 SCC .top().acc← SCC.top().acc ∪ a
c45 SCC .top().rem← SCC .top().rem ∪ r
c46 return SCC.top().acc

Fig. 2. Another presentation of the algorithm of Couvreur [3] to check the emptiness of TGBAs

Nested Depth-First Searches. NDFSs were initially developed for Büchi automata with
only one acceptance condition for states [2]. Basically, a NDFS will perform a first DFS
rooted at q0 until it finds an accepting state s, and from there starts a second DFS to
check whether s is reachable from itself. This naive algorithm was then further refined
so that both DFSs could share the same hash table [11], to exit earlier and to support
partial order reductions [14].

Holzmann et al. [14]’s algorithm has been refined by Gastin et al. [7] and Schwoon
and Esparza [17]. In parallel, Tauriainen generalized it to support multiple acceptance
conditions on states [20], or transitions [19]. Switching from states to transitions is easy;
the real challenge was to devise a way to handle generalized acceptance conditions.
Tauriainen did this by repeating the inner DFS several times (at worst |F| times).

Strongly Connected Components. Another strategy is to compute the maximal strongly
connected components (MSCCs) of the automaton. Let us define a trivial SCC as a
single state without self-loop. If the union of all the acceptance conditions occurring
in a non-trivial SCC is F , and that SCC is accessible from q0, then one can assert the
existence of such an accepting run. This is the essence of the algorithms of Couvreur
[3], Geldenhuys and Valmari [8, 9], and Hammer et al. [12].

We present an iterative version of Couvreur [3]’s algorithm in Fig. 2 in order to
introduce two heuristics in Section 4.1. This algorithm is based on the fact that any

On-the-Fly Emptiness Checks for Generalized Büchi Automata 147

SCC[0].la����������SCC[0].acc
SCC[1].la ����������SCC[1].acc

SCC[2].la ����������SCC[2].acc
SCC[3].la ����������SCC[3].acc

a

��

Fig. 3. The meaning of la and acc in SCC

graph contains at least one MSCC without outgoing arc. To list all MSCCs, one should
find such a terminal MSCC, remove it from the graph, and then list all MSCCs of the
resulting graph [16]. It turns out this requires to visit each transition only once.

To do so the algorithm explores the graph in depth-first order. todo is a DFS stack,
on which each item contains a state and the set of its successors that have yet to be
visited. (In practice this set of successors may not need to be represented explicitly and
would be replaced by the necessary information to compute the next successor of the
state.) H maps each state to its rank in the depth-first order, and H [q] = 0 indicates that
q belongs to a removed MSCC.

During the DFS, a chain of SCCs is maintained as a stack, SCC, depicted on
Fig. 3. To each SCC is associated the rank of the first state of the SCC (root), the
union of acceptance conditions in the SCC (acc), the acceptance conditions labeling
the transition coming from the previous SCC (la), and the list of states of the SCC
that have been fully explored (rem). (SCC[0].la = ∅ by convention and is never
used.) Using this structure, two visited states q1 and q2 belong to the same SCC if
max{r |SCC[r].root � H [q1]} = max{r |SCC[r].root � H [q2]}.

Initially, each new state is pushed on the stack as a trivial SCC with an empty acc
(line c26). When the DFS reaches a successor q that has already been visited and has
not been removed (line c18), all SCCs between the SCC to which q belongs and the top
SCC (source of the transition) are merged into a single SCC. On the example of Fig. 3
where a back arc is found between SCC[3] and SCC[1], the last three SCCs would
be merged into a single one with acceptance conditions SCC[1].acc ∪ SCC[2].la ∪
SCC[2].acc ∪ SCC[3].la ∪ SCC[3].acc ∪ a. If that union is F , then an accessible,
non-trivial, and accepting SCC exists, and the algorithm reports ⊥ (the automaton is
not empty).

When the root of an SCC is popped (tested line c32), the SCC is known to be
maximal and not accepting, so it can be discarded. The use of rem line c31 to remove
the states of the MSCC line c33 could be avoided because when line c33 is reached,
rem contains all the states s accessible from q (ignoring those with H [s] = 0), as
the original algorithm did [3]. The current implementation favors run-time to memory
consumption, indeed a concern from Schwoon and Esparza [17] was that computing
transitions can be expensive. To be fair we will account for the size of rem in our
measures of the stack size. (Geldenhuys and Valmari [9] provide alternative structures
that address the same problem.)

Another SCC-based algorithm, Geldenhuys and Valmari [8]’s, has a similar han-
dling of its stack: it keeps all states of partial SCCs, so it can remove them easily.

148 J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud

However it also stores an additional integer for each state (lowlink) that we will not
account for in our measures. This algorithm works only on degeneralized automata.

Hammer et al. [12]’s algorithm is presented as an emptiness check for Linear Weak
Alternating Automata (LWAA). However their algorithm translates an LWAA into a
generalized Büchi automata on-the-fly during the emptiness check. The translation from
LWAA could be coupled with any other emptiness-check algorithm presented here. The
real part of their emptiness check follows the same logic as Couvreur’s algorithm except
it merges SCCs one by one while popping instead of immediately when a loop is found.
It will therefore find an accepting SCC later than the algorithm of Fig. 2, only when this
SCC is popped.

3 Experimentations

In this section we introduce the experimental framework in which we compare the
aforementioned algorithms, and comment on the results. All the algorithms we use
are implemented in the Spot library [4]. The random graph and random LTL formulæ
generation algorithms are comparable to those presented by Tauriainen [21]. Of the 8
emptiness-check algorithms we compare, the first 4 are SCC-based: Cou99, is the al-
gorithm of Fig. 2, Cou99 shy- and Cou99 shy are two variants of Cou99 described in
Section 4.1, and GV04 is the algorithm of Geldenhuys and Valmari [8]. The other 4 are
NDFS algorithms: CVWY90 [2], SE05 [17], Tau03 [19], and Tau03 opt (a variant
of Tau03 presented Section 4.2). In tables, “×” indicates new algorithms that will be
discussed in Section 4.

Because all our tests use TGBAs as input, we had to adjust CVWY90, GV04, and
SE05 to handle transition-based automata (this is straightforward) and because they
will not handle generalized acceptance conditions we also had to degeneralize the input
automata for these 3 algorithms. (Hence the input can be |F| times larger.)

We exercised these algorithms on random graphs and concrete models, following
a pattern similar to that of Geldenhuys and Valmari [8]. First we use them to check
random graphs against LTL formulæ. Then we try them on two real models (the first of
which also comes from Geldenhuys and Valmari [8]).

Table 1 presents our results when checking random graphs with all algorithms in
12 different setups. Each setup differs in how the graph and formulæ are generated.
The random graphs have 1024 states and are generated with 3 different densities d of
transitions (all 1024 states are accessible and the arity of each state follows a normal
distribution with mean 1+1023d and variance 1023d(1−d)). In columns headed “fair”,
transitions in the graph are additionally randomly labeled with 3 acceptance conditions
to mimic weak fairness constraints; in the other columns the acceptance conditions, if
any, will come only from the LTL formulæ.

The values presented for each experiment are means. They where computed by
running each emptiness check on a set of 1300–3000 products generated as follows.

For each setup we consider 15 random graphs. On setups with random formulæ,
each graph is checked against 200 LTL formulæ (converted to TGBAs using the al-
gorithm of Couvreur [3]), yielding 3000 different products. On setups with “Human-
generated formulæ”, each graph is checked against 94 formulæ (and their negation)
selected from the literature [5, 6, 18], yielding 2820 products.

On-the-Fly Emptiness Checks for Generalized Büchi Automata 149

In this first test we discarded all products without accepting run (i.e., keeping those
where algorithms need not visit the whole automaton). For each setup the number of
non-empty products remaining is written in italics on the same line as the density. For
Tau03 we also discarded products with no acceptance conditions at all, because Tau03
is not designed to handle them; the resulting number of products is put in parentheses.

For each check of a non-empty product, we compute the ratios between (1) the
number of distinct states visited and the number of states in the product TGBA, (2) the
number of traversed transitions (a same transition can be accounted more than once) and
the number of transitions of the product TGBA, and (3) the maximal size of the stack
and the number of states of the product. For all algorithms, even if a degeneralization
is required, ratios are computed against the product before any degeneralization. The
table displays the means of each of these three ratios in %.

Our computation of the stack size deserves more explanations as not all algorithms
use similar stacks. For all NDFS algorithms, we simply counted the number of states in
the DFS stack. For Cou99, we counted the number of entries in todo (its DFS stack),
plus the size of rem for each of entry on SCC (this is because succ can be represented
as an iterator of constant size, and if you omit its rem field the size of SCC is bounded
by that of todo). For GV04 we counted all items on stack [8] (this is proportional to
all states that are in the current SCC chain).

The algorithms presented here have a runtime proportional to the number of tran-
sitions explored. So the second value of each triplet allows to compare the runtimes.
Also, for a fixed |F|, the memory consumption of the algorithm is a linear combination
of the number of states explored (first value) and of the size of the stack (second value).

A first remark concerns the results presented by Geldenhuys and Valmari [8], who
compared their implementations of GV04 and CVWY90 using the same procedure (at
the exception of the “fair” columns). We could not reproduce the important contrast they
show between these two algorithms (neither could Hammer et al. [12]). For example,
the 94 formulæ (and their negation) from the literature have been checked against 15
random graphs with a transition probability of 0.001. 2308 of the 2820 generated prod-
ucts are non-empty and GV04 has reported an accepting run after exploring an average
of 7.5% of the states when CVWY90 needs to visit 7.7%. Geldenhuys and Valmari [8]
report a rate of 8.99% for GV04 against 40.21% for CVWY90. These discrepancies are
likely due to different parameters of the random graph generator.

The results for setups with randomly-generated formulæ are comparable to those
with non-random formulæ; if anything, this only shows that random formulæ are not
biased. Similarly, the density d does not seem to affect the algorithms much. Therefore
it is much more interesting to compare the behaviors of the algorithms when acceptance
conditions comes only from the formulæ or when additional acceptance conditions have
been injected into the random graphs. In the former most TGBAs have few acceptance
conditions (e.g., for formulæ from the literature, 40% of TGBAs have 0 or 1 acceptance
condition, 40% have 2, and 20% have between 3 and 6), consequently the difference be-
tween CVWY90, GV04, SE05 (which require degeneralized automata) and the other
algorithms are not striking. However on the “fair” setups, SCC-based algorithms often
outrank NDFS ones. The poor results of Tau03 are mostly due to the logic of the origi-

150 J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud

Table 1. Comparison of algorithms for random graphs and random and real LTL formulæ

Random formulæ Human-generated formulæ
Algorithm formula’s cond. fair formula’s cond. fair
d = 0.001 2328 (1318) 2188 2308 (2127) 1951
Cou99 6.8 4.5 4.5 18.1 11.1 13.8 7.4 5.1 4.0 16.3 10.6 10.4

⎫
⎪⎪⎬

⎪⎪⎭

SC
C

-b
as

ed

× Cou99 shy- 5.4 5.8 7.5 16.5 17.7 25.6 6.5 6.8 7.7 15.2 15.7 19.6

de
ge

ne
ra

li
ze

d × Cou99 shy 5.4 5.8 7.4 15.6 16.7 23.5 6.3 6.5 7.0 14.5 15.0 18.0⎧
⎨

⎩

GV04 6.8 4.5 4.5 28.4 17.1 21.6 7.5 5.1 4.0 25.9 16.5 16.1
CVWY90 6.8 7.1 6.4 61.7 73.9 66.6 7.7 7.9 5.2 53.6 65.0 49.3

⎫
⎪⎪⎬

⎪⎪⎭ N
D

F
SSE05 6.8 5.7 4.5 59.4 39.1 38.4 7.6 6.8 3.9 50.9 34.7 28.1

Tau03 9.9 16.1 10.8 64.7 295.9 49.6 9.5 17.4 8.1 53.9 265.5 36.2
× Tau03 opt 6.8 5.2 4.5 18.5 27.1 15.4 7.4 8.1 3.8 16.4 31.8 11.3

d = 0.002 2716 (1488) 2695 2569 (2304) 2548
Cou99 4.8 2.2 3.1 17.5 8.5 11.4 4.5 2.6 2.4 13.7 7.4 7.6

× Cou99 shy- 3.4 3.4 6.9 15.4 15.8 30.1 3.6 3.8 6.1 12.5 12.1 19.8
× Cou99 shy 3.4 3.4 6.8 14.3 14.6 26.5 3.4 3.6 5.4 11.9 11.4 17.3

GV04 4.8 2.2 3.1 29.1 14.1 18.5 4.6 2.8 2.4 23.2 12.8 11.9
CVWY90 4.9 3.6 4.5 60.3 58.0 59.5 4.8 4.2 3.4 45.1 43.9 35.6
SE05 4.8 2.8 3.1 56.8 30.2 32.9 4.7 3.5 2.4 42.0 24.3 19.8
Tau03 8.5 12.5 9.1 61.3 265.5 46.5 7.1 12.5 6.3 40.9 185.4 27.3

× Tau03 opt 4.8 2.7 3.1 17.8 23.9 12.7 4.5 4.5 2.4 13.9 26.3 8.3
d = 0.01 2978 (1569) 2979 2766 (2441) 2765
Cou99 3.5 0.7 2.4 12.3 1.9 8.1 2.6 0.7 1.4 7.8 1.5 4.8

× Cou99 shy- 1.7 1.5 11.7 8.2 8.3 66.6 1.6 1.6 10.6 5.6 5.4 39.2
× Cou99 shy 1.6 1.5 10.7 6.9 7.0 53.0 1.4 1.3 7.7 4.8 4.4 29.9

GV04 3.5 0.7 2.4 20.7 3.5 13.2 2.6 0.8 1.4 13.5 2.8 7.7
CVWY90 3.6 1.1 3.3 44.7 15.6 49.8 2.7 1.0 2.1 30.8 13.0 30.9
SE05 3.6 0.9 2.3 39.8 7.0 25.4 2.6 0.9 1.5 26.4 5.7 15.5
Tau03 16.9 20.6 19.7 58.1 221.8 57.8 11.2 14.9 12.7 35.5 140.2 32.3

× Tau03 opt 3.5 1.0 2.3 12.4 11.0 9.6 2.6 1.6 1.4 7.8 10.2 5.7

nal algorithm [19]; informally, it visits all the successors of a state even if it could have
answered after having visited the first.

Experiments based only on random graphs can be misleading. To emphasize the
advantage of TGBAs and SCC-based emptiness checks, we have verified concrete for-
mulæ against concrete models. For this purpose, we have treated one example pre-
sented by Geldenhuys and Valmari [8] modeling an algorithm of election in an arbitrary
network (this model is also experimented by Schwoon and Esparza [17]). Among the
three variations they presented [8], Table 2 collects our results only for the second one,
checked against their 9 formulæ (labeled from A to I). Values for the other, less signifi-
cant variations can be computed using the benchmark scripts distributed with Spot.

Each square corresponds to a given formula. At the top of a square is indicated the
label of the formula as well as the product size (in terms of number of states, transitions
and acceptance conditions). Moreover, a symbol indicates if the product is empty (∅) or
if an accepting run exists (�). For each algorithm we give the number of distinct states

On-the-Fly Emptiness Checks for Generalized Büchi Automata 151

Table 2. Leader election algorithm in an arbitrary network

A(287922, 1221437, 1)� B(287922, 1222805, 1)� C (47887, 134916, 0) ∅

Cou99 365 365 365 365 365 365 47887 134916 115
× Cou99 shy- 365 1356 1358 365 1356 1358 47887 134916 226
× Cou99 shy 365 1356 1358 365 1356 1358 47887 134916 226

GV04 365 365 365 365 365 365 47887 134916 115
CVWY90 17693 91145 902 448 789 787 47887 269831 115
SE05 17693 90803 564 448 449 449 47887 269831 115
Tau03 17702 187964 911 448 1876 787

× Tau03 opt 365 365 366 365 365 366 47887 134916 115
D(289812, 1232783, 1)∅ E (145400, 413351, 0) � F(289812, 1225799, 1)∅

Cou99 289812 1232783 145172 365 365 365 289812 1225799 145172
× Cou99 shy- 289812 1232783 145666 365 706 708 289812 1225799 145666
× Cou99 shy 289812 1232783 145304 365 706 708 289812 1225799 145304

GV04 289812 1232783 145172 365 365 365 289812 1225799 145172
CVWY90 289812 1642497 1145 365 703 704 289812 1635513 1145
SE05 289812 1642497 1145 365 365 366 289812 1635513 1145
Tau03 289812 2875280 1145 289812 2861312 1145

× Tau03 opt 289812 1642497 1145 365 365 366 289812 1635513 1145
G (241808, 687630, 1) � H(728132, 2080615, 4)� I (728132, 2076619, 4) ∅

Cou99 557 557 557 145847 413799 145172 728132 2076619 145172
× Cou99 shy- 557 1087 1089 145847 414229 145303 728132 2076619 145307
× Cou99 shy 557 1087 1089 145847 414229 145257 728132 2076619 145257

GV04 557 557 557 145847 413799 145172 728132 2076619 145172
CVWY90 557 895 896 178543 511930 1388 728132 2489217 1172
SE05 557 557 558 178543 504468 1145 728132 2489217 1172
Tau03 566 1249 905 178551 1604336 1454 728132 6631906 1454

× Tau03 opt 557 557 558 145847 827149 1454 728132 4555287 1454

visited, traversed transitions, and the maximal size of the stack. No measures have been
done for Tau03 on TGBAs without acceptance condition.

The complete reachability graph (i.e., without partial order reduction—the conclu-
sion for the reduced graphs are similar, only with smaller figures) of the model has
been generated from its Promela specification using Spin [13]. Then the corresponding
TGBA has been introduced in Spot and the formulæ translated into TGBAs using also
Spot. Though this is not generally the case, on this example the sizes of the degeneral-
ized product and of the generalized one are identical. This is why Cou99 and GV04
perform equally well. The original implementation of Cou99 [3] would have used far
less stack, but visited twice as many transitions (for instance on formula F the results
for the implementation of Cou99 without rem are 〈289812, 2451598, 1145〉).

These runs confirm the conclusions of Schwoon and Esparza [17]. SE05 always
performs better than CVWY90 (formulæ A, B, E, G and H); and SCC-based algorithms
Cou99 and GV04 perform better than NDFS ones (formulæ A and H).

To conclude our experimentation and focus on multiple acceptance conditions, we
present complementary measures for a simple client-server example where c clients
communicate with s servers via a duplex channel. Any client can send a request, then

152 J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud

Table 3. Client-server algorithm

3 cl., 1 serv. ∅ 3 cl., 1 serv., fair ∅

Cou99 a 783 2371 511 b 783 2371 511
× Cou99 shy- a 783 2371 710 b 783 2371 710
× Cou99 shy a 783 2371 519 b 783 2371 519

GV04 a 783 2371 511 b’ 2005 6627 550
CVWY90 a 783 2897 237 b’ 2005 7771 251
SE05 a 783 2897 237 b’ 2005 7771 251
Tau03 a 783 5268 238 b 783 10143 264

× Tau03 opt a 783 2897 237 b 783 8200 264
3 cl., 3 serv. � 3 cl., 3 serv., fair ∅

Cou99 c 631 839 159 d 21394 85387 11465
× Cou99 shy- c 631 1153 487 d 21394 85387 17133
× Cou99 shy c 1170 1914 401 d 21394 85387 11469

GV04 c 631 839 159 d’ 77979 339876 11521
CVWY90 c 631 1513 159 d’ 77979 410877 5632
SE05 c 631 1499 159 d’ 77979 410877 5632
Tau03 c 899 3373 191 d 21394 415551 5099

× Tau03 opt c 631 1499 159 d 21394 331587 5060

sizes of products
ref. # st. # tr. # cond.
a 783 2371 1
b 783 2371 5
b’ 2005 6627 1
c 21394 85387 1
d 21394 85387 7
d’ 77979 339876 1

some server will answer that client. The property we check is that if the first client sends
a request it will get an answer. This property is only satisfied for 1 client and is otherwise
false unless weak fairness is assumed. Table 3 shows the measures. One can indeed see
that the property is not satisfied in the case of 3 clients without fairness. The interesting
point is that the additional acceptance conditions used for fairness constraints comes at
no cost for Cou99 while the cost is high for other algorithms. This is obvious on the
cases with 1 client (and can be generalized), however we cannot directly compare the
product sizes for 3 clients as the fair case is empty while the unfair case is not.

4 Heuristics and Optimizations

4.1 Heuristics for SCC-Based Algorithms

The two shy variants of Cou99 measured in these tables use the fact that line c15 in
Fig. 2 does not enforce any order on the successors. Cou99 will simply use the physical
order of the successors in memory, so the succ member of todo items can be efficiently
represented as an iterator. The Cou99 shy- variant orders successors to visit those
that are already in H first before visiting new states. Doing so sounds natural because
it favors merges of SCCs upon pushs. Cou99 shy works similarly, but it considers
the successors of the whole top SCC instead of selecting a successor only among the
successors of the state at the top of todo (in practice todo is merged like SCC).

Because Cou99 shy- and Cou99 shy have to reorder the successors before execut-
ing line c15, the succ field of todo entries cannot be represented as an iterator. To be
fair our measures of the stack size of these two variants also account for the number of
states of each succ field. Also, while Cou99 makes it possible to compute successors
of a state one by one on-the-fly, this is not possible for shy variants who need all suc-

On-the-Fly Emptiness Checks for Generalized Büchi Automata 153

	
�����q7�� 1 ��	
�������������q8
2 ��	
�����q9

��
��

3

��

Large subgraph 4

Fig. 4. Problematic case for SE05

•c0

•
c3
��

��
��

��
��

��

•
��

��� t2

•c2
��

��
��

��

•��
���
t1

•
c1

��
��

��
��

•�����
t0

��
��

��
��

•q0 �� �� �� �� �� �� ��

Fig. 5. Computing an accepting run for a TGBA

cessors to reorder them. This difference is apparent in the number of transitions visited:
shy variants compute more transitions than plain Cou99.

These heuristics have a controversial effect on performance. Often, they will indeed
visit less states, but in counterpart they compute more transitions and require more stack
space. On non-empty automata, it is possible to find cases (e.g., bottom left of Table 3)
where the variants visit more states. One issue with measuring on-the-fly emptiness
checks is that they exit as soon as they can: a more complex algorithm may exit before
an efficient one if it luckily picks successors in the right order. (Apart from these two
shy variants, all the other algorithms implemented here visit states in the same DFS
order; this ensures equitable measurements.) This confirms observations of Geldenhuys
and Valmari [8] who tested other heuristics, none of which appeared better either.

4.2 A New Nested DFS Algorithm

Fig. 4 illustrates a case where SE05 could be improved. Arcs are labeled by their depth-
first order. SE05 is defined on Büchi automata with accepting states. In its first DFS, if
either q9 or q7 are accepting, then SE05 can report a violation. If q8 is accepting, the
accepting cycle (q8, q9, q7, q8) cannot be detected by the first DFS: it will only be found
by the second DFS performed after the large subgraph have been explored.

The first DFS could detect an accepting cycle when visiting the third arc if it knew
whether an accepting state exists between q7 and q9. We propose to associate each state
q in the DFS stack with the number W [q] of accepting states in the DFS path from q0 to
q. Therefore checking the existence of an accepting state between q7 and q9, amounts
to testing whether W [q9] − W [q7] > 0.

This technique can be generalized to multiple acceptance conditions using a vector
of counters. We implemented it in Tau03 opt. Its effect can be observed on TGBAs
with a single acceptance condition, where SE05 and Tau03 opt differ only on this last
optimization. For instance see formulæ A and B in Table 2.

Fig. 6 presents Tau03 opt. This new algorithm uses the technique of Tau03 to
handle multiple acceptance conditions, but simplifies its logic and also implements all
the optimizations introduced by SE05.

On Table 1 the reason why Tau03 opt outperforms GV04 in terms of visited states
is that the latter works on a degeneralized automaton (this is confirmed when comparing
Cou99 with Tau03 opt); however the way Tau03 opt nests multiple DFSs to handle
multiple acceptance conditions causes more transitions to be visited than GV04.

154 J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud

t1 // Let 〈Σ,Q, δ, q0,F〉 be the
t2 // input automaton to check.
t3 H: map of Q �→ 〈color ∈ {cyan, blue},
t4 acc ⊆ F〉
t5 W : map of Q �→ map of F �→ N

t6 weight: map of F �→ N

t7

t8 main():
t9 forall f ∈ F , weight[f]← 0

t10 return dfs blue(q0)
t11

t12 propagate(s ∈ Q, Acc ⊆ F , t ∈ Q):
t13 〈tcol, tacc〉 ←H [t]
t14 if tcol = cyan ∧ F = (H [s].acc ∪Acc∪
t15 tacc ∪ {f ∈ F |weight[f] > W [t][f]})
t16 return ⊥
t17 else if Acc 	⊆ tacc
t18 H [t].acc← tacc ∪Acc
t19 if dfs red(t, Acc) = ⊥
t20 return⊥
t21 return �

t23 dfs blue(s ∈ Q):
t24 H [s]← 〈cyan, ∅〉
t25 W [s]← weight
t26 forall 〈l, a, t〉 such that 〈s, l, a, t〉 ∈ δ
t27 if t 	∈ H
t28 forall f ∈ a
t29 weight[f]← weight[f] + 1
t30 if dfs blue(t) = ⊥
t31 return ⊥
t32 forall f ∈ a
t33 weight[f]← weight[f]− 1
t34 if propagate(s, H [s].acc ∪ a, t) = ⊥
t35 return⊥
t36 H [s].color← blue
t37 delete W [s]
t38 return �
t39

t40 dfs red(s ∈ Q, Acc ⊆ F):
t41 forall 〈l, a, t〉 such that 〈s, l, a, t〉 ∈ δ
t42 if t ∈ H ∧ propagate(s, Acc, t) = ⊥
t43 return⊥
t44 return �

Fig. 6. A variation on the emptiness-check algorithm of Tauriainen [19]

5 Computing Accepting Runs for Generalized Automata

When a product space is found not to be empty, it means the system does not verify the
formula it is checked against. An important step is to provide the user with a counterex-
ample, showing an actual faulty execution of the system. Such a counterexample is an
accepting run of the product automata. It can often be produced as a side-effect of the
emptiness check, or afterwards by reusing some data of the check.

In emptiness-check algorithms that work on degeneralized automata, exhibiting an
accepting run if one exists is straightforward. In NDFS-based algorithms (CVWY90,
SE05) that run is the contents of the stack. For GV04, Geldenhuys and Valmari [9]
showed how to use an extra integer per stack state to produce an accepting run.

In this section we present two techniques to extract accepting runs from the data
structures of the algorithms that work on generalized automata: Cou99, Tau03, and
their variants. Both techniques try to compute a short accepting cycle using successive
breadth-first searches (BFSs) and then construct the shortest prefix leading to this cycle.

Accepting runs with Cou99. When Cou99 returns ⊥ it means an accepting SCC is
reachable from q0. Fig. 5 shows this SCC as a dotted circle. A state s can easily be told
to belong to this SCC by checking whether H [s] � SCC.top().root.

Because the SCC is accepting, from any of its states there exists a circuit labeled
by all acceptance conditions. This circuit may cross the same transitions several times.

On-the-Fly Emptiness Checks for Generalized Büchi Automata 155

Table 4. Comparison of algorithms for computing accepting cycles

Random formulæ Human-generated formulæ
Algorithm formula’s cond. fair formula’s cond. fair
d = 0.001 2328 (1318) 2188 2308 (2127) 1951
Cou99 1.9 2.0 17.1 12.7 1.3 1.3 12.3 9.0
Cou99 shy- 1.5 1.5 15.7 11.7 1.0 1.0 11.6 8.4
Cou99 shy 1.5 1.5 15.0 11.0 1.0 1.0 11.0 7.9
Tau03 10.9 9.9 237.6 64.7 8.7 9.5 205.9 53.9
Tau03 opt 2.8 6.8 64.5 18.5 2.2 7.4 53.4 16.4
d = 0.002 2716 (1488) 2695 2569 (2304) 2548
Cou99 1.3 1.5 15.2 10.6 0.9 1.0 9.7 6.6
Cou99 shy- 0.9 0.9 14.0 9.4 0.6 0.7 8.8 5.9
Cou99 shy 0.9 0.9 13.3 8.6 0.6 0.6 8.5 5.6
Tau03 10.8 8.5 225.1 61.3 7.7 7.1 153.5 40.9
Tau03 opt 2.6 4.8 61.9 17.8 1.8 4.5 43.6 13.9
d = 0.01 2978 (1569) 2979 2766 (2441) 2765
Cou99 0.8 1.0 12.5 7.4 0.5 0.6 7.1 4.2
Cou99 shy- 0.4 0.4 9.8 4.9 0.2 0.2 5.5 2.9
Cou99 shy 0.4 0.4 9.2 4.1 0.2 0.2 5.1 2.5
Tau03 18.1 16.9 210.0 58.1 12.6 11.2 139.4 35.5
Tau03 opt 1.7 3.5 43.0 12.4 1.1 2.6 25.6 7.8

Therefore, it is easier to construct an accepting cycle as a series of independent parts that
can each visit a transition at most once, and that each brings new acceptance conditions.

The algorithm thus works as follows. Let F0 be the set of all acceptance conditions.
From a state c0 of the SCC, start a BFS (restricted to the SCC) to construct a path to
the closest transition t0 that has some acceptance conditions F0 so that F0 ∩ F0 �= ∅.
Let F1 = F0 \ F0 be the set of remaining acceptance conditions. Repeat the BFS
from c1 (the output of t0) until a transition t1 is found with acceptance conditions F1

that intersect F1. Iterate until Fn = ∅. Finally use a last BFS to compute the shortest
path from cn back to c0, closing the cycle. This algorithm was presented by Latvala
and Heljanko [15] using the root of the SCC as c0. However the choice of c0 can be
arbitrary because we are in a SCC. Since we know that the transition that caused Cou99
to exit (the one corresponding to the last execution of line c15) is necessarily part of the
acceptance cycle, it seems wiser to use either its source or its destination as c0.

As far as the prefix is concerned, a list of states from q0 to c0 can be easily con-
structed while unwinding the todo stack. However this prefix may not be the shortest
possible prefix leading to the accepting cycle, so a similar idea would be to use a BFS
to construct the shortest path between q0 and any state of the cycle, this path can be
constrained to visit the SCCs in increasing order to limit the scope of the BFS.

Accepting runs with Tau03. Computing accepting runs for generalized NDFS algo-
rithms such as Tau03 or Tau03 opt is more embarrassing, because the resulting data do
not provide structural information as useful as a SCC that would restrict our search.We
know that the last s for which line t34 was executed belongs to an accepting cycle. From

156 J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud

this state c0 = s we first perform a nested DFS to collect a set of transitions T that (1)
are each on a cycle back to c0, and (2) will, together, cover F .

This collection of cycles could be used to construct an accepting cycle, but since we
are trying to create short runs we decided to connect these collected transitions directly.
Therefore we perform a BFS to compute the shortest path from c0 to a transition t0 of
T , and from there another BFS to find the shortest path to another t1 of T , etc. Closing
the cycle and computing the prefix can be done like for SCC-based algorithms.

Table 4 uses the layout of Table 1. For each setup, the two values are the number of
states visited to construct the cycle part of the accepting run, and the size of the search
space for this cycle. They are expressed as a percentage of the number of states of the
input TGBA. For Cou99 the cycle’s search space is the top SCC, and for Tau03 the
search space contains all states in H . (A state is counted as many times as it is visited.)

As the table shows, the absence of structural information in Tau03 makes the com-
putation more costly, since the search space is larger. For Cou99, the search is contained
in a small subgraph (the top SCC), which justifies the use of BFSs. The “fair” columns
show that with more acceptance conditions in the system the algorithms need to traverse
the search space more times. Surprisingly, the size of the search space for Cou99 shy
and Cou99 shy- is smaller than that of Cou99; this is counter-intuitive because our
heuristics aim at favoring merges of SCCs.

During our experiments we observed that the size of accepting runs produced by
such BFS-based algorithms were significantly smaller than those obtained directly from
the stack of NDFS algorithms. A deeper study of existing algorithms, weighting mini-
mization against computational complexity still has to be done (Gastin et al. [7] provide
some initial clues).

6 Conclusion

In this paper we have stressed the importance of dealing with generalized Büchi au-
tomata in emptiness-check algorithms. Our experiments on existing algorithms showed
that SCC-based ones clearly outrank NDFSs; this completes the results of Schwoon and
Esparza [17], who studied emptiness checks of standard Büchi automata.

Although we have not implemented it, the generalized algorithms presented here
can be used in conjunction with the bit-state hashing technique [13, p. 206] if done care-
fully. The bit-state hashing should not be applied to states that belong to the first-level
DFS: those states need to be perfectly hashed. The application to Tau03 is discussed
by Tauriainen [20]. In SCC-based algorithms the restriction extends to all states that
belong to SCCs in the SCC stack. In other words, bit-state hashing can only be applied
to states from removed MSCCs; this limits its usefulness.

To give NDFS-based algorithms a chance to compete with SCC-based ones, we
introduced (1) a new optimization to detect some accepting cycles earlier, and (2) a
new algorithm (Tau03 opt) that mixes all the optimizations of SE05 with the multiple
acceptance condition capability of Tau03. Although Tau03 opt surpasses other NDFS
algorithms, our experiments still show that SCC-based algorithms perform better.

To complete our TGBA verification framework, we finally introduced algorithms to
extract accepting runs. Here again, our results are in favor of Cou99.

On-the-Fly Emptiness Checks for Generalized Büchi Automata 157

All the algorithms presented and measured here are implemented in our model-
checking library, Spot [4], available at http://spot.lip6.fr. The distribution of
Spot includes the scripts we used for our experiments. They can be adjusted to different
configurations, and can output more statistics than we could present in these pages. For
instance they also verify the reduced state spaces generated from the examples using
Spin’s partial-order reduction [13, p. 192].

References

[1] I. Černá and R. Pelánek. Relating hierarchy of temporal properties to model checking. In
Proc. of MFCS’03, volume 2747 of LNCS, pages 318–327. Springer-Verlag, Aug. 2003.

[2] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algorithm
for the verification of temporal properties. In Proc. of CAV’90, volume 531 of LNCS, pages
233–242. Springer-Verlag, 1991.

[3] J.-M. Couvreur. On-the-fly verification of temporal logic. In Proc. of FM’99, volume 1708
of LNCS, pages 253–271. Springer-Verlag, Sept. 1999.

[4] A. Duret-Lutz and D. Poitrenaud. Spot: an extensible model checking library using
transition-based generalized Büchi automata. In Proc. of MASCOTS’04, pages 76–83. IEEE
Computer Society, Oct. 2004.

[5] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification patterns for finite-
state verification. In Proc. of FMSP’98, pages 7–15. ACM, Mar. 1998.

[6] K. Etessami and G. J. Holzmann. Optimizing Büchi automata. In Proc. of Concur’00,
volume 1877 of LNCS, pages 153–167. Springer-Verlag, 2000.

[7] P. Gastin, P. Moro, and M. Zeitoun. Minimization of counterexamples in SPIN. In Proc. of
SPIN’04, volume 2989 of LNCS, pages 92–108. Springer-Verlag, 2004.

[8] J. Geldenhuys and A. Valmari. Tarjan’s algorithm makes on-the-fly LTL verification more
efficient. In Proc. of TACAS’04, volume 2988 of LNCS, pages 205–219. Springer-Verlag,
2004.

[9] J. Geldenhuys and A. Valmari. More efficient on-the-fly LTL verification with Tarjan’s
algorithm. Theoretical Computer Science, 2005. To appear: conference paper selected for
journal publication.

[10] D. Giannakopoulou and F. Lerda. From states to transitions: Improving translation of LTL
formulæ to Büchi automata. In Proc. of FORTE’02, volume 2529 of LNCS, pages 308–326.
Springer-Verlag, Nov. 2002.

[11] P. Godefroid and G. J. Holzmann. On the verification of temporal properties. In Proc. of
PSTV’93, volume C-16 of IFIP Transactions, pages 109–124. North-Holland, May 1993.

[12] M. Hammer, A. Knapp, and S. Merz. Truly on-the-fly LTL model checking. In Proc. of
TACAS’05, LNCS. Springer-Verlag, Apr. 2005.

[13] G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley,
2003. ISBN 0-321-22862-6.

[14] G. J. Holzmann, D. A. Peled, and M. Yannakakis. On nested depth first search. In Proc. of
SPIN’96, volume 32 of DIMACS. AMS, May 1996.

[15] T. Latvala and K. Heljanko. Coping with strong fairness. Fundamenta Informaticae, 43
(1–4):1–19, 2000.

[16] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their
linear specification. In Proc. of POPL’85, pages 97–107. ACM, 1985.

[17] S. Schwoon and J. Esparza. A note on on-the-fly verification algorithms. In Proc. of
TACAS’05, LNCS. Springer-Verlag, Apr. 2005. To appear.

http://spot.lip6.fr

158 J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud

[18] F. Somenzi and R. Bloem. Efficient Büchi automata for LTL formulæ. In Proc. of CAV’00,
volume 1855 of LNCS, pages 247–263. Springer-Verlag, 2000.

[19] H. Tauriainen. On translating linear temporal logic into alternating and nondeterministic
automata. Research Report A83, Helsinki University of Technology, Laboratory for Theo-
retical Computer Science, Espoo, Finland, Dec. 2003.

[20] H. Tauriainen. Nested emptiness search for generalized Büchi automata. In Proc. of
ACSD’04, pages 165–174. IEEE Computer Society, June 2004.

[21] H. Tauriainen. A randomized testbench for algorithms translating linear temporal logic
formulæ into Büchi automata. In Proc. of CS&P’99, pages 251–262, Sept. 1999.

[22] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Proc. of Banff’94,
volume 1043 of LNCS, pages 238–266. Springer-Verlag, 1996.

	Introduction
	Emptiness Check
	Transition-Based Generalized Büchi Automata
	Existing Algorithms

	Experimentations
	Heuristics and Optimizations
	Heuristics for SCC-Based Algorithms
	A New Nested DFS Algorithm

	Computing Accepting Runs for Generalized Automata
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

