
SPOT: an Extensible Model Checking Library
using Transition-based Generalized Büchi Automata
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Abstract— Spot is a C++ library offering model checking bricks
that can be combined and interfaced with third party tools to
build a model checker. It relies on Transition-based Generalized
Büchi Automata (TGBA) and does not need to degeneralize these
automata to check their emptiness. We motivate the choice of
TGBA by illustrating a very simple (yet efficient) translation
of LTL into TGBA. We then show how it supports on-the-fly
computations, and how it can be extended or integrated in other
tools.

I. INTRODUCTION

This paper presents Spot (Spot Produces Our Traces), an
object-oriented model checking library written in C++. Unlike
model checkers, which are programs with a fixed modus
operandi, the library has no hard-wired operating procedure.
It provides a collection of data types and algorithms that can
be used as bricks to build a model checker, or experiment
extensions.

One striking characteristic of Spot is that it relies on a
kind of automata called Transition-based Generalized Büchi
Automata (TGBA). These automata encompass traditional
Büchi automata, they allow more compact translations of LTL
formulæ, and they can be checked for emptiness without being
degeneralized. Furthermore, third party state-graph generators
or algorithms can be easily plugged into Spot by masquerading
as TGBA.

The paper is organized as follows. This introduction
presents the automata-theoretic approach and the linear-time
temporal logic used by the library. We then present TGBA, and
illustrate why they allow shorter automata while translating
LTL formulæ. A third section discusses the library itself, and
shows how the TGBA interface allows on-the-fly computation
and third party extensions. Finally, we review a few such
extensions to illustrate this last point.

A. On Model Checkers and the Automata-Theoretic Approach

The automata-theoretic approach to model checking [1]
splits the verification process into four operations. These
operations are pictured as rounded boxes on Fig. 1, while the
square boxes are the data input and output.

1) Computation of the state graph of the model M . This
state graph can be seen as an ω-automaton AM whose
language, L (AM ), is the set of all possible executions
of the system.

2) Translation of the temporal property ϕ into a ω-
automaton A¬ϕ whose language, L (A¬ϕ), is the set
of all executions that would invalidate ϕ.

3) Synchronized product of these two objects. This con-
structs an automaton AM ⊗ A¬ϕ whose language is
L (AM ) ∩ L (A¬ϕ), that is, the set of executions of
the model M that invalidate the temporal property ϕ.

4) Emptiness check of this product. This operation tells
whether AM ⊗ A¬ϕ accepts an infinite word, and can
return such a word (a counter-example) if it does. The
model M verifies ϕ iff L (AM ⊗ A¬ϕ) = ∅.
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Fig. 1. The automata-theoretic approach to LTL model checking.

Although these steps are usually studied separately, in
practice they are often tightly tied by the implementation.
This is due to traversal optimizations which impede traditional
pipeline approaches. One such optimization is on-the-fly model
checking, where the computation of the product, state graph,
and formula automaton are all driven by the progression of
the emptiness-check procedure: nothing is computed until it



is required. This is an optimization because it may allow
the emptiness-check to answer without computing the entire
state space; however this hinders reusability and extensibility
because the different phases need to be interleaved in the code.

One of Spot’s design goal is to implement each step of
this automata-theoretic approach independently, so they can
be combined or replaced at will by users. However this
modularity is achieved in a way that does not preclude on-
the-fly computations. We will come to how this is done after
we have motivated the choice of automata we use.

The shaded part of Fig. 1 corresponds to algorithms offered
by Spot. It should be noted that the state-graph generation has
been left out of the library, as it is expected to be carried out
by third party tools. We will come back to this in a subsequent
section too.

B. Linear-Time Temporal Logic

We consider the future fragment of the propositional linear-
time temporal logic, henceforth referred to simply as LTL. LTL
formulæ are constructed from a set AP of atomic propositions,
the usual boolean operators (¬, ∨, ∧) and two temporal
operators: X (next) and U (until).

For an infinite word σ = σ(0)σ(1)σ(2) . . . over the alphabet
2AP we denote σ(n) ∈ 2AP its nth letter, and σi its suffix
starting at letter i (i.e., σi(n) = σ(i + n)).

Whether a word σ verifies an LTL formula ϕ, written σ |=
ϕ, is defined inductively on the formula as follows.

σ |= p iff p ∈ σ(0) (1)
σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2 (2)
σ |= ϕ1 ∨ ϕ2 iff σ |= ϕ1 or σ |= ϕ2 (3)
σ |= ¬ϕ iff ¬(σ |= ϕ) (4)

σ |= X ϕ iff σ1 |= ϕ (5)

σ |= ϕ1 U ϕ2 iff ∃i > 0

{

σi |= ϕ2 and
∀j, 0 6 j < i, σj |= ϕ1

(6)

II. STATE VS. TRANSITION-BASED BÜCHI AUTOMATA

Büchi automata are ω-automata traditionally used in LTL
verification. These automata accept only the infinite words that
traverse infinitely often a set of states called the acceptance
set. Generalized Büchi automata can have multiple acceptance
sets that must each be traversed infinitely often.

Properties of the models as well as propositions of the
formula are commonly carried by states of the automata. In
some LTL-to-automata translations, propositions are carried
by transitions, but acceptance conditions are always relative
to states.

It was recently recognized that transition-based automata,
where acceptance conditions are defined in term of transitions,
can lead to translations of LTL formulæ to smaller automata.

More formally, a Transition-based Generalized Büchi Au-
tomata (TGBA) over the alphabet Σ is a Büchi automaton
with labels on transitions, and generalized acceptance condi-
tions on transitions too. It can be defined as a tuple A =
〈Σ,Q,F , q0, δ〉 where

• Σ is an alphabet,
• Q is a finite set of states,
• F is a finite set of acceptance conditions,
• q0 ∈ Q is a distinguished initial state,
• δ ⊆ Q× (2Σ \ {∅}) × 2F ×Q is the transition relation,

where each transition carries a nonempty set of letters of
the alphabet and a set of acceptance conditions.

For the purpose of model checking we have AP equal
to the set of all atomic proposition that can characterize a
configuration, and use these automata with Σ = 2AP (i.e.,
each configuration of the system can be mapped into a letter
of Σ).

An infinite word σ over the alphabet Σ is ac-
cepted by A if there exists an infinite sequence ρ =
(q0, l0, f0, q1)(q1, l1, f1, q2) . . . of transitions of δ, starting at
q0 = q0, and such that ∀i > 0, σ(i) ∈ li, and ∀f ∈
F , ∀i > 0, ∃j > i, f ∈ fj . That is, each transition matches
the corresponding letter of the word, and ρ traverses each
acceptance condition infinitely often.

To the best of our knowledge, LTL translators have started
using this kind of automaton five years ago [2].1

Translation algorithms by Gastin & Oddoux [4], Gian-
nakopoulou & Lerda [5] who actually coined the acronym
TGBA, and Thirioux [6] use TGBA only as an intermediate
step before they finally produce a non-generalized Büchi
automaton (with one acceptance condition on states). De-
generalizing an automaton can induce a linear blowup of
the automaton, which implies a bigger product and a slower
emptiness check. However this last step is motivated by
mainstream emptiness-check algorithms that work only with
one acceptance set of states [7].

Other people have provided not only LTL to TGBA trans-
lators, but also emptiness check algorithms that work directly
on these TGBA, avoiding the aforementioned blowup. This
includes work from Couvreur [2], [8] and Tauriainen [9].

Spot implements the two LTL translation algorithms of
Couvreur [2], [8] as well as his emptiness check algorithm [2],
so it can handle the full Fig. 1 with TGBA. It also has methods
to degeneralize a TGBA, so it can feed algorithms designed
for more conventional Büchi automata.

A. Translating LTL formulæ into TGBA

Most LTL to Büchi automata translation algorithms in use
today are based on tableau methods for LTL [10].

In propositional logic, a tableau can prove that a formula
is satisfiable. It is a tree whose nodes are sets of formulæ.
The root is a singleton containing the formula to check, and
the children of a node are computed by applying one of the 7
first rewriting rules of Fig. 2. For instance if a node contains
f ∧ g we can decide to apply the 5th rule and create two

1For history’s sake, we should mention Michel’s translation [3] which used
a cousin structure 15 years earlier. He translates an LTL formula into a network
of transducers with labels on transitions, using acceptance conditions that are
the opposite of those of TGBA: unstable graphs denote sets of transitions from
which runs of the transducer are required to exit infinitely often. Unstable
graphs correspond to the concept of promises we will introduce in the sequel.



formula 1st child 2nd child
{Γ,¬>} {Γ,⊥}
{Γ,¬⊥} {Γ,>}
{Γ,¬¬f} {Γ, f}
{Γ, f ∧ g} {Γ, f, g}
{Γ, f ∨ g} {Γ, f} {Γ, g}

{Γ,¬(f ∧ g)} {Γ,¬f} {Γ,¬g}
{Γ,¬(f ∨ g)} {Γ,¬f,¬g}
{Γ,¬X f} {Γ, X¬f}
{Γ, f U g} {Γ, g} {Γ, f, X(f U g), P g}

{Γ,¬(f U g)} {Γ,¬f,¬g} {Γ,¬g, X¬(f U g)}

Fig. 2. Tableau rules for LTL.
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Fig. 3. Tableau for (X a) ∧ (b U¬a).
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Fig. 4. Using leaves to build a state-based generalized Büchi automaton.
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Fig. 5. Using roots to build a transition-based generalized Büchi automaton.



children: one labeled with f and the other unrewritten terms,
the other labeled with g and these same unrewritten terms. This
process is repeated on these new leaves until no more rules
can be applied. As can be seen from the rules, this method
essentially is a transformation to disjunctive normal form. At
the end, leaves (that represent conjunctions) can contain only
propositions and their negations, as well at > (true) and ⊥
(false). A branch is said to be closed if its leaf contains ⊥
or both proposition and its negation, and the root formula is
satisfiable if the tableau has a non-closed branch.

Tableau methods for LTL work similarly, but additionally
have to deal with the temporal aspect of LTL formulæ. They
proceed by slicing the tableau in different instants. The tableau
rules are augmented with three new rules, on the bottom of
Fig. 2, based on the following equivalences:

¬X f ≡X¬f (7)
f U g ≡ g ∨ (f ∧ X(f U g)) (8)

¬(f U g) ≡¬g ∧ (¬f ∨ X¬(f U g)) (9)

These equivalences (which can be proven from equations
(4) to (6)) isolate what has to be verified at one instant from
what has to be verified next. Using these rules it is possible
to develop a tableau whose leaves contain only >, ⊥, atomic
propositions, negated atomic propositions, and X-prefixed LTL
formulæ. Such a tableau can be seen in the top four nodes of
Fig. 3. (We will discuss P g soon.)

This four-node tableau can be understood as follows: to
verify the root formula (X a)∧(b U¬a) one must verify either
the first leaf, (X a)∧¬a, or the second, (X a)∧ b∧X(b U¬a).

Once the tableau for an instant has been fully developed and
no rewriting rule can be applied anymore, it can be extended
to take the next instant into account. This is done by starting
a new tableau from each leaf, using the set of X-prefixed
formulæ as root. The double arrows on figure 3 represent these
jumps to the next instant.

Because (8) and (9) are recursive equations, we need to
identify nodes of the tableau that share the same label, so that
the tableau is a finite graph instead of being an infinite tree.

At this point it should be fairly intuitive to the reader why an
automata labeled with the leaves at the different instants of the
tableau will recognize (at least) the sequences that verify the
formula. The reasoning is that if we have built an automaton
for (X a)∧ (b U¬a), then that automaton should accept either
words that start with a letter that verifies ¬a and then verify
a, or words whose first letter verifies b and that then verify
a ∧ (b U¬a). Fig. 4 and Fig. 5 show how this tableau can
be used to construct an automaton with labels respectively on
states and transitions.

The only hard part of tableau methods is how to avoid
the unwanted infinite loops induced by (8). Indeed the f U g

formula guarantees that g will be verified eventually (see (6)),
but when applying the tableau rule corresponding to (8) we
construct a loop in which f could be verified infinitely often
without g being ever verified. Such a loop can be seen at the
bottom right of our example tableau, where we could loop

over b infinitely often.
The way to catch these unwanted loop has been a source

of several variants of tableau methods.
One solution is to introduce a new operator into the tableau,

P, to express promises. When f U g has to be verified, either
(i) g holds, or (ii) f holds, we should verify f U g next, and we
also promise to verify g eventually (P g). Promises are easy
to express in Büchi automata because they are the opposite
of acceptance conditions. So each promise in the tableau will
be mapped onto an acceptance condition of the automaton,
carried by all transitions or states (depending on the type of
automata we construct) that do not make this promise. This
guarantees that a sequence of the automata cannot postpone a
promised formula indefinitely. In Fig. 4 and 5 there is only one
promise (P¬a), so the single acceptance set of the automata
has been represented by double circles or double arrows.

These figures exhibit why a transition-based Büchi automa-
ton constructed using this method will always be smaller than a
state-based one: a tableau has always less roots than leaves...2

In practice, one would not implement tableau methods as
presented. The first 7 tableaux rules, whose purpose is to
construct a disjunctive normal form, are better replaced by
any smarter algorithm that minimizes the number of leaves.
Also, leaves that have an identical set of X-formulæ and P-
formulæ can be merged; meaning a transition (or state) of the
resulting automata will be labeled by a propositional formula
rather than by a propositional conjunction.

Since we are only interested in showing why TGBA are
interesting we do not provide a proof for this tableau construc-
tion. We refer the interested reader to the proof of Couvreur’s
translation [2]: what he calls af U g is what we write P g.

B. LTL Translation in Spot

The above tableau construction can be efficiently imple-
mented using BDD as presented by Couvreur [2]. Spot imple-
ments this algorithm, augmented with techniques presented
by Sebastiani & Tonetta [11] to create more deterministic
automata, LTL formula simplifications introduced by Etessami
& Holzmann [12] and Somenzi & Bloem [13], and automaton
simplification by Etessami et al. [14]. This first algorithm is
referred to as Spot/FM.

Spot also implements a second algorithm also presented by
Couvreur [8], that we will call Spot/LaCIM. This algorithm is
not intended to produce small automata: it constructs automata
that can be represented compactly using BDDs. The represen-
tation is compact and efficient to use, but the automaton it
represents can be big.

Many LTL translation algorithms have been developed over
the last 20 years. Most of them strive to produce small
automata in an attempt to produce a smaller synchronized
product (see Fig. 1) and hence to speed up the emptiness
check. Another way to reduce the product is to output more

2Roots and leaves were respectively designated as pre-states and states by
Wolper [10]. While this naming is suitable for classical Büchi automata (states
of the tableau corresponds to states of the automaton), it can be confusing
when building TGBA (pre-states become states of the automaton).



deterministic automata; this is done in Modella and Spot/FM.
As already said, not degeneralizing the formula automaton will
also help keeping the product small, this is why Spot promotes
TGBA.

TABLE I
TRANSLATING 39 LTL FORMULÆ.

Algorithm reference Automata Products
and implementation st. tr. st. tr.

Translation to degeneralized Büchi automata:
[2] Spot/FM 181 453 36139 1380196
[12] Spin 4.0.6 277 1196 54200 3548935
[15] LBT 1.2.1 844 5584 161040 12530060
[13] Wring 1.1.0 407 5339 58762 4377735
[4] LTL2BA 1.0 205 624 40200 2480261
[16] LTL→NBA 235 1022 40800 2777045
[11] Modella 1.5.1 561 1181 112093 4078015

Translation to TGBA:
[2] Spot/FM 153 403 30562 1163346
[8] Spot/LaCIM 494 4379 98800 5465590
[4] LTL2BA 1.0 (unfair) 169 506 33200 1941344

Table I shows how the Spot translations compete with other
freely available implementations. We used LBTT 1.1.2 [17]
to run several LTL translators on 39 classic LTL formulæ,
and compute their synchronized product with a random state-
graph. The table shows the cumulated size in states and
transitions of these automata and products. The formulæ used
are the 27 formulæ listed by Somenzi & Bloem [13], and the
12 from Etessami & Holzmann [12].

The first part of the table shows the size for degeneralized
Büchi automata; since these are the most used automata
(e.g., Spin can be fed with such automata directly). Although
Spot/FM, LTL2BA, and LTL→NBA usually produce compa-
rable automata, those of Spot are usually more deterministic:
it can be seen that the product is smaller, especially its number
of transitions.

The second part of the table shows the size of TGBA for
the same formulæ. We have extracted the intermediate TGBA
used by LTL2BA to produce a degeneralized automata to have
a comparison, but this is quite unfair because this skips all the
post simplifications of LTL2BA.

III. TGBA IN SPOT

TGBA are handled in Spot using an abstract class, tgba,
with a minimalist interface. Baring other technical details, this
interface boils down to two functions: get_init_state()
returns the initial state, and succ_iter() returns an iterator
over the successors of a state. This iterator will also supply
transition labels (properties, acceptance sets).

Several implementations of this abstract tgba are offered
by Spot. For instance an automaton can be encoded either
explicitly, or using a BDD relation. tgba is also a means of
allowing on-the-fly computation and third party extensions.

A. tgba to Support On-The-Fly Computations

An algorithm that produces a TGBA, for instance a syn-
chronized product of two automata, can be implemented as a
subclass of tgba. An object of this class represents the result

of the algorithm, although it has not been computed yet. Only
when get_init_state() or succ_iter() are called
does any computation actually take place.

Implementing on-the-fly algorithms this way allows us to
combine several on-the-fly computations. Nesting products
is such a combination, and it is particularly useful when
composing models or formulæ.

Thanks to this abstraction, on-the-fly computation does not
incur any loss of modularity: all algorithms are well decoupled
and can be worked on separately.
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Fig. 6. Composing model checking bricks.

Fig. 6 shows a contrived example of such modularity in on-
the-fly checking. This setup has three inputs: one LTL property
and two files containing TGBA automata. The LTL is first
translated into a TGBA, then this automata is degeneralized
and synchronized successively with the two automata, and
finally checked for emptiness using the magic-search [18].
In this setup, the degeneralization and the two products are
computed on-the-fly, following the progression of the magic-
search. Although this is not done in Spot, it should not be a
problem to translate the LTL formula and read the automata
on-the-fly too.

B. tgba as an Interface for Third Party Extensions

The above example was artificial, because automata are not
usually read from files in practice. Rather, one would like to
generate a state-graph on-the-fly from a high-level formalism
such as Petri Net, or Promela. Since Spot does not support
any such formalism, this generation of the state graph has to
be done outside the library.

Fortunately, the tgba interface can also be seen as a
standardized way to extend Spot. Users can implement their
own subclasses of tgba and use them with Spot’s algorithms
transparently.



Fig. 7 illustrates how we have connected Spot to GreatSPN3.
GreatSPN can produce a symbolic reachability graph (SRG)
for a Colored Petri net by exploiting its symmetries [19]. We
have implemented this interface as a tgba subclass whose
methods simply delegate their work to the corresponding
procedures of GreatSPN. From the point of view of Spot, an
SRG appears as any other TGBA.
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Fig. 7. Interfacing third party state graph generators.

Fig. 7 also shows a concrete implementation of the
automata-theoretic approach to model checking depicted in
Fig. 1. The Generalized Tarjan algorithm corresponds to the
algorithm presented by Couvreur [2].

Roughly speaking, SRG exploits global symmetries of the
system and regroups items of the system that are not distin-
guished by the formula [20].

Another approach, worked out by Baarir et al. [21] does
not consider the formula as a whole, but will rather consider
the automaton for this formula, and computes the equivalence
classes induced by a transition of this automaton during the
synchronization. This second approach is called the Symbolic
Synchronized Product (SSP), and has been connected to Spot
as shown in Fig. 8.

As can be seen on that figure, the integration goes beyond
simply plugging a state graph generator. We are here using a
third party synchronized product.

C. tgba as an Input Formalism

It seems important to us that our interface be based on a
low-level formalism like TGBA.

Model checkers usually define their own input formalism,
that preserves properties which are important to the tool. When
it comes to integration with other tools, models have to be
converted between the various formalisms used. This turns out
to be difficult when the features of each formalism are disjoint,

3http://www.di.unito.it/˜greatspn/
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Fig. 8. Interfacing third party synchronized product.

and results in the definition of a core formalism which is the
intersection of all the others.

By allowing input to be given directly in our low-level
formalism (viz., TGBA) we hope to allow many high-level
formalisms to be used. For instance the GreatSPN interface is
a way to convert Well-Formed Petri Nets into TGBA.

Note that this is also true for formulæ. The automata-
theoretic approach can be used to check any property that
can be expressed as a TGBA. Translating an LTL formula is
only one way to produce such a TGBA.

We should also emphasize that TGBA can be seen as a
superclass of the other Büchi automata. A Büchi automaton
with labels on states (or labels on transitions but acceptance
conditions on states) can be rewritten as TGBA of equal size
easily (and on-the-fly), while the converse is not true. This
means that Spot can reuse any algorithm that produces a Büchi
automaton, but cannot otherwise directly use algorithms that
expect such an automaton as input, without prior conversion.

IV. OTHER USES OF SPOT

The above couplings between Spot and GreatSPN to imple-
ment SRG and SSP have been successfully used to model
check a medium-sized model: the heart of the PolyORB
middleware, modeled as a Well-Formed Petri Net [22]. These
results have yet to be published, but they are the first realistic
uses of our tools.

Besides SRG and SSP, Spot is also used to drive a few
other state-graph generator methods developed in our team.
An interface with the symbolic method of Haddad et al. [23]
already exists, and one to the symbolic symbolic state space
representation of Thierry-Mieg et al. [24] is being developed.

Finally, Spot comes with a set of Python bindings that
allows the library to be used from Python scripts (often more
convenient than C++ when experimenting). These bindings
were for instance used to implement our on-line LTL2TGBA
translator.



V. CONCLUSION

Our contribution in this paper is twofold. We have presented
an easy-to-teach explanation of tableau methods to translate
LTL formulæ into generalized Büchi automata with state
or transitions labels. This presentation introduces promises,
which—to our knowledge—is new.

We have also introduced a model checking library, Spot,
that offers a set of model checking bricks supporting on-the-fly
computation and that can be easily extended. Spot uses TGBA,
which encompass existing automata and allows translation of
LTL to smaller automata. Besides translating LTL formulæ,
Spot offers algorithms to simplify LTL formulæ, simplify
TGBA, build synchronized products, as well as algorithms to
perform emptiness check and find counter-examples.

Spot is distributed as free software at http://spot.
lip6.fr/. Our hope is that it can serve the community
as a ground to experiment and develop new model checking
algorithms.
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Ilié. The interface with GreatSPN for SRG and SSP have
been done with the help of Yann Thierry-Mieg and Soheib
Baarir. Kais Klai implemented the interface to the state-
graph generator he developed during his PhD [23], [25], and
Philippe Garilli is working on the integration of the state-graph
generator of Thierry-Mieg et al. [24].

REFERENCES

[1] M. Y. Vardi, “An automata-theoretic approach to linear temporal logic,”
in Proc. of the 8th Banff Higher Order Workshop, ser. LNCS, F. Moller
and G. M. Birtwistle, Eds., vol. 1043. Banff, Alberta, Canada: Springer-
Verlag, 1996, pp. 238–266.

[2] J.-M. Couvreur, “On-the-fly verification of temporal logic,” in Proc.
of the World Congress on Formal Methods in the Development of
Computing Systems (FM’99), ser. LNCS, J. M. Wing, J. Woodcock,
and J. Davies, Eds., vol. 1708. Toulouse, France: Springer-Verlag,
September 1999, pp. 253–271.
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[24] Y. Thierry-Mieg, J.-M. Ilié, and D. Poitrenaud, “A symbolic symbolic
state space representation,” in Proc. of the 24th Int. Conf. on For-
mal Techniques for Networked and Distributed Systems (FORTE’04),
Madrid, Spain, September 2004, in press.
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