On-the-fly Emptiness Check of

Transition-based Streett Automata

Alexandre Duret-Lutz, Denis Poitrenaud, Jean-Michel Couvreur

15th October 2009

@ Automata Theoretic Approach to Model Checking
© Transition-based Generalized Biichi Automata

© Fairness Hypotheses

@ Transition-based Streett Automata

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Automata Theoretic Approach to Model Checking

High-level model LTL formula
M @

LTL—Biichi
translation

State-space generation

Negated formula
Synchronized product automaton
LAy ® Awp) = A-p
Z(An) N Z(A-y)

state—space automaton
Am

Product automaton
Ay ® A-p

Emptiness check

LAy ® A-y) z 0

ME e
or
counterexample

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Automata Theoretic Approach to Model Checking

High-level model LTL formula
M @

LTL—Biichi
translation

State-space generation

Negated formula
Synchronized product automaton
LAy ® Awp) = A-p
Z(An) N Z(A-y)

state—space automaton
Am

Product automaton
Ay ® A-p

Emptiness check

LAy ® A-y) z 0

ME e
or
counterexample

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Biichi Automata

They comes in various flavors:
@ Labels on states or transitions (ignored by emptiness check)
@ Acceptance conditions on states or transitions
@ Single acceptance set, or generalized acceptance conditions

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Biichi Automata

They comes in various flavors:
@ Labels on states or transitions (ignored by emptiness check)
@ Acceptance conditions on states or transitions
@ Single acceptance set, or generalized acceptance conditions
We focus on Transition-based Generalized Biichi Automata (TGBA).

S5 Sy

S1 S2 S3

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Biichi Automata

They comes in various flavors:
@ Labels on states or transitions (ignored by emptiness check)
@ Acceptance conditions on states or transitions
@ Single acceptance set, or generalized acceptance conditions
We focus on Transition-based Generalized Biichi Automata (TGBA).

S5 Sy
«—O—_
—

S1 $ $3

An infinite run of this automaton is accepting if it visits a transition
from each accepting set infinitely often.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

SCC-Based Emptiness Check for TGBA

Roots: DFS:

St Sh

o)

51 So S3

(From: On-the-fly Verification of Temporal Logic.
Jean-Michel Couvreur. FM'99. LNCS 1708.)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

SCC-Based Emptiness Check for TGBA

Roots: DFS:

S Sh

(=] ™)

51 So S3

(From: On-the-fly Verification of Temporal Logic.
Jean-Michel Couvreur. FM'99. LNCS 1708.)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

SCC-Based Emptiness Check for TGBA

Roots:

(=) o8]

(From: On-the-fly Verification of Temporal Logic.
Jean-Michel Couvreur. FM'99. LNCS 1708.)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

DFS:

SCC-Based Emptiness Check for TGBA

Roots: DFS:

= N8 &

(From: On-the-fly Verification of Temporal Logic.
Jean-Michel Couvreur. FM'99. LNCS 1708.)

SCC-Based Emptiness Check for TGBA

5 Roots: DFS:
S5 Sy g
&
()
©
s1 S S3

(From: On-the-fly Verification of Temporal Logic.
Jean-Michel Couvreur. FM'99. LNCS 1708.)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

SCC-Based Emptiness Check for TGBA

Roots: DFS:
O
St Sy @
5
(%2
©
S1 So 53

(From: On-the-fly Verification of Temporal Logic.
Jean-Michel Couvreur. FM'99. LNCS 1708.)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

SCC-Based Emptiness Check for TGBA

Roots: DFS:
O
S Sy
3:0
©
()
()
S1 So 53

(From: On-the-fly Verification of Temporal Logic.
Jean-Michel Couvreur. FM'99. LNCS 1708.)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

SCC-Based Emptiness Check for TGBA

Roots: DFS:

(=] ™)

51 So S3

(From: On-the-fly Verification of Temporal Logic.
Jean-Michel Couvreur. FM'99. LNCS 1708.)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

SCC-Based Emptiness Check for TGBA

Roots: DFS:
)
(52)
(5D

(From: On-the-fly Verification of Temporal Logic.
Jean-Michel Couvreur. FM'99. LNCS 1708.)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

SCC-Based Emptiness Check for TGBA

Roots: DFS:

(51)
)
9
(5D

(From: On-the-fly Verification of Temporal Logic.
Jean-Michel Couvreur. FM'99. LNCS 1708.)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

SCC-Based Emptiness Check for TGBA

Roots: DFS:
)
(52)
(5D

(From: On-the-fly Verification of Temporal Logic.
Jean-Michel Couvreur. FM'99. LNCS 1708.)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

SCC-Based Emptiness Check for TGBA

Roots: DFS:

4 °)

S5

51 So S3

(From: On-the-fly Verification of Temporal Logic.
Jean-Michel Couvreur. FM'99. LNCS 1708.)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

SCC-Based Emptiness Check for TGBA

Roots: DFS:

4 °)

S5

51 So S3

(From: On-the-fly Verification of Temporal Logic.
Jean-Michel Couvreur. FM'99. LNCS 1708.)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

SCC-Based Emptiness Check for TGBA

- . ~ Roots: DFS:

S5

(2
— ()

51 So S3

(From: On-the-fly Verification of Temporal Logic.
Jean-Michel Couvreur. FM'99. LNCS 1708.)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

SCC-Based Emptiness Check for TGBA

Roots: DFS:

4 P)

S5

51 So S3

Found!

(From: On-the-fly Verification of Temporal Logic.
Jean-Michel Couvreur. FM'99. LNCS 1708.)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Two Heuristics for SCCs

@ H1: visit transitions that go to visited states first.

o St i oy

d] =

(From: On-the-Fly Emptiness Checks for Generalized Biichi
Automata. J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud.

SPIN'05. LNCS 3639.)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Two Heuristics for SCCs

@ H1: visit transitions that go to visited states first.

)
!

(From: On-the-Fly Emptiness Checks for Generalized Biichi
Automata. J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud.

SPIN'05. LNCS 3639.)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Two Heuristics for SCCs

@ H1: visit transitions that go to visited states first.

)
!

@ H2: H1 + consider the DFS in term of SCCs when choosing a
SuCCessor.

(From: On-the-Fly Emptiness Checks for Generalized Biichi
Automata. J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud.

SPIN'05. LNCS 3639.)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Two Heuristics for SCCs

@ H1: visit transitions that go to visited states first.

OO -0
v

@ H2: H1 + consider the DFS in term of SCCs when choosing a
SuCCessor.

(From: On-the-Fly Emptiness Checks for Generalized Biichi
Automata. J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud.

SPIN'05. LNCS 3639.)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Fairness Hypotheses

@ Hypotheses on the system to verify.
o E.g.: two independent processes running on the same host get a
“run slice” infinitely often (alternative: model the host’s
scheduler too)

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Fairness Hypotheses

@ Hypotheses on the system to verify.
o E.g.: two independent processes running on the same host get a
“run slice” infinitely often (alternative: model the host’s
scheduler too)
@ These hypotheses are constraints for the emptiness check.
@ We want a counterexample where both processes are progressing
infinitely often.
@ We can ignore runs where one process is stuck.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Expressing Weak and Strong Fairness with LTL

weak fairness If something happens continuously, something else will

happen infinitely often. FGen — GFoc = GF(—enV oc)
strong fairness If something happens infinitely often, something else
will happen infinitely often. GFen— GFoc

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Expressing Weak and Strong Fairness with LTL

weak fairness If something happens continuously, something else will

happen infinitely often. FGen — GFoc = GF(—enV oc)
strong fairness If something happens infinitely often, something else
will happen infinitely often. GFen— GFoc

To check proposition prop under hypothesis fairness
we check fairness — prop.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Expressing Weak and Strong Fairness with LTL

weak fairness If something happens continuously, something else will

happen infinitely often. FGen — GFoc = GF(—enV oc)
strong fairness If something happens infinitely often, something else
will happen infinitely often. GFen— GFoc

To check proposition prop under hypothesis fairness
we check fairness — prop.

AM ® Aﬁ(faimess—>prop) :AM ® Afaimess/\—\prop
:AM & Afairness ® -Aﬁprop

Added complexity depends on Agjmess-

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

TGBA for GF(—enV oc) (Weak Fairness)

—enV oc

F ={e}

en N\ —oc

Biichi acceptance conditions correspond to formulae such as GF a.
In fact, any formula of the form A’_, G F(—en; V oc;) can be
translated into a 1-state deterministic TGBA (with 2" transitions,
and n acceptance conditions).

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

TGBA for GF(—enV oc) (Weak Fairness)

—enV oc

F ={e}

en N\ —oc

Biichi acceptance conditions correspond to formulae such as GF a.
In fact, any formula of the form A’_, G F(—en; V oc;) can be
translated into a 1-state deterministic TGBA (with 2" transitions,

and n acceptance conditions).

AM ® Afairness ® Aﬁprop

In practice the system can be labeled with the appropriate acceptance

conditions as the state space is explored.
Weak fairness is free if you have a generalized emptiness check.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

TGBA for GF en — G F oc (Strong Fairness)

F={ec} — - T
—0Ccd oc en 9 _ep
—0(:@@@ oc O:(‘)) —en

Above is automatically generated. It gets worse for more hypotheses:
A_,(GF en; — GF oc;) leads to 3" + 1 states. We don't know of
an LTL translator that does better.

Using an ad hoc construction we can build a TGBA with 2" 4+ 1
states. We have 2°(") transitions in both cases.

Strong fairness is costly: Agimess adds an exponential blowup in

AM ® Afairness ® Aﬁprop-

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Streett Automata

@ Differ from Biichi automata only in acceptance conditions.
@ Acceptance conditions look like “if a run sees @ infinitely often,
then it will see o infinitely often” (can be generalized to more

pairs of colors)

Emptiness Check of TSA

Duret-Lutz, Poitrenaud, Couvreur

Streett Automata

@ Differ from Biichi automata only in acceptance conditions.

@ Acceptance conditions look like “if a run sees @ infinitely often,
then it will see o infinitely often” (can be generalized to more
pairs of colors)

@ Exactly what is needed to recognize GF en — GF oc:

—en N\ —oc

N\
en A\ oc en N\ —oc F ={(e,0)}

oc N\ —en

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Streett Automata

@ Differ from Biichi automata only in acceptance conditions.

@ Acceptance conditions look like “if a run sees @ infinitely often,
then it will see o infinitely often” (can be generalized to more
pairs of colors)

@ Exactly what is needed to recognize GF en — GF oc:

—en N\ —oc

N

en N\ oc en \ —oc F ={(e,0)}

oc A\ —en
o A_,(GFen; — GF oc;) can be converted into a 1-state
deterministic Streett automaton.
In practice the system can be labeled with the appropriate
acceptance conditions as the state space is explored.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Automata Theoretic Approach to Model Checking

High-level model LTL formula
M @

LTL—Biichi
translation

State-space generation

Negated formula
Synchronized product automaton
LAy ® Awp) = A-p
Z(An) N Z(A-y)

state—space automaton
Am

Product automaton
Ay ® A-p

Emptiness check

LAy ® A-y) z 0

ME e
or
counterexample

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness Check for Streett Automata

@ The basic idea (using SCCs) has been known for a long time
(Lichtenstein and Pnueli in 1985, Emerson and Lei in 1987).
@ Our algorithm is close to that of Latvala and Heljanko (2000).
Their algorithm work for state-based Streett automata.
E.g. using F = {(e,0), (e,0)}
© Build a list of all the reachable SCCs of the automata.
© While the list isn't empty, pick an SCC off the list and do:
o If it's a trivial SCC (single state without self-loop), drop it.
o If the acceptance conditions of all the states in the SCC verifies
®=-O0A@®=0, then report non-emptiness.
@ Otherwise, there exists some bad states in the SCC: states
labeled by a left-color with no right-color match in the SCC.
@ Erase these bad states

@ Recompute the SCCs from the remaining states, and add them
to the list of SCCs.

© Once the list is empty, report emptiness.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

What Do We Want?

@ An algorithm that will work with on-the-fly constructions: let's
not construct all SCCs unless necessary. This part is rather easy.

@ A transition-based algorithm. Because it is harder to erase a
transition (especially since we work on the fly) we will use
barriers.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness of Transition-based Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

PN
—(O50 (0O, 0,0

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness of Transition-based Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

D) O 00

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness of Transition-based Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

o= +-0rs:0°0

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness of Transition-based Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

lodli@ 0.0

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness of Transition-based Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness of Transition-based Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness of Transition-based Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness of Transition-based Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness of Transition-based Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness of Transition-based Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

—(% 5

Since there is no o in this SCC, we start again, but read ® as a
one-way “barrier” forbidding attempts to come back.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness of Transition-based Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

Since there is no o in this SCC, we start again, but read ® as a
one-way “barrier” forbidding attempts to come back.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness of Transition-based Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

Joe0) om0 0

Since there is no o in this SCC, we start again, but read ® as a
one-way “barrier” forbidding attempts to come back.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness of Transition-based Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

Since there is no o in this SCC, we start again, but read ® as a
one-way “barrier” forbidding attempts to come back.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness of Transition-based Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

Since there is no o in this SCC, we start again, but read ® as a
one-way “barrier” forbidding attempts to come back.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness of Transition-based Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

Since there is no o in this SCC, we start again, but read ® as a
one-way “barrier” forbidding attempts to come back.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness of Transition-based Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

—

J

Since there is no o in this SCC, we start again, but read ® as a
one-way “barrier” forbidding attempts to come back.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness of Transition-based Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

—

J

Since there is no o in this SCC, we start again, but read ® as a
one-way “barrier” forbidding attempts to come back.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Emptiness of Transition-based Streett Automata

@ For Biichi, we look for SCCs whose acceptance conditions verify
o/ \O/N\ONO.

@ For Streett they must verify something like #=0A@®=>0.

—

J

Since there is no o in this SCC, we start again, but read ® as a
one-way “barrier” forbidding attempts to come back.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

Finally

@ To be correct, has to be combined with a variant of heuristic H2
(ordering successors SCC-wise)

@ “Barriers” must be crossed only after all normal successors have
been visited.

Slowdown (w.r.t. generalized Biichi emptiness check):

@ SCC are revisited at worst m times if m pairs of acceptance
conditions.

@ Compare with the 2™ 4 1 states of the Biichi automaton for the
corresponding LTL formula...

Our motivation was fairness hypotheses, but what about running the
whole approach using Streett automata? Streett automata are
exponentially more succinct than Biichi automata, but can we
translate LTL to Streett efficiently?

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

A small LTL formula...

<GFpo—>GFp1 GFP2—>GFpo)/\

() A (
(GFps = GFp) AN(GFpy — GFpy) A
(GFps — GFp3) A(GF ps — GF(ps V ps)) A

(GFp; = GFps) A(GF py —>GFP7)> — GFpg

How many states to encode the negation in a Biichi automaton?

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

A small LTL formula...

<GFpo—>GFp1 GFP2—>GFpo)/\

() A (
(GFps = GFp) AN(GFpy — GFpy) A
(GFps — GFp3) A(GF ps — GF(ps V ps)) A

(GFp; — GFps) A(GFp, — GFP7)> — GFpg
How many states to encode the negation in a Biichi automaton?

Spot's LTL to Biichi translation without optimizations : 7291 states.

With optimizations : 1731 states.
Sebastiani et al. (CAV'05) dedicated translation : 1281 states.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

A small LTL formula...

<GFPO—>GFP1 GFp2—>GFp0)/\

() A (
(GFps = GFp) AN(GFpy — GFpy) A
(GFps — GFps) A(GF ps — GF(ps V ps)) A

(GFp; = GFps) A(GF py —>GFP7)) — GFpg

How many states to encode the negation as a Streett automaton?

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

A small LTL formula...

<GFPO—>GFP1 GFp2—>GFp0)/\

() A (
(GFps = GFp) AN(GFpy — GFpy) A
(GFps — GFps) A(GF ps — GF(ps V ps)) A

(GFp; = GFps) A(GF py —>GFP7)> — GFpg

How many states to encode the negation as a Streett automaton?
Formula of the form ¢ — where 1 is a strong fairness hypothesis.

Aoy = Ay @ Ay
Ay: 1-state deterministic Streett automaton with 8 pairs of acc.cond.
A, = Apgps: 2-state Biichi automaton with 1 acc.cond.
Therefore A (., can be represented as a 2-state Streett
automaton with 9 pairs of acc.cond.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA

A small LTL formula...

<GFp0—>GFp1 GFp2—>GFp0)/\

() A (
(GFps = GFp) AN(GFpy — GFpy) A
(GFps — GFp3) A(GF ps — GF(ps V ps)) A

(GFp; — GFps) A(GFp, — GFP7)> — GFpg
How many states to encode the negation in a Biichi automaton?

Spot's LTL to Biichi translation without optimizations : 7291 states.
With optimizations : 1731 states.

Sebastiani et al. (CAV'05) dedicated translation : 1281 states.

A n states Streett automaton with m acceptance pairs can

be converted into a n x (2" + 1) state TGBA. Therefore for
this formula we can build a TGBA with 2 x (2° +1) = 1026

states.

Duret-Lutz, Poitrenaud, Couvreur Emptiness Check of TSA 16 / 16

	Title
	Automata Theoretic Approach to Model Checking
	Transition-based Generalized Büchi Automata
	Fairness Hypotheses
	Transition-based Streett Automata
	Conclusion
	A small LTL formula...

