
1

LTL Translation Improvements in Spot 1.0

Alexandre Duret-Lutz
EPITA’s Research and Development Laboratory (LRDE)
14-16 rue Voltaire, 94270 Le Kremlin-Bicêtre, France
E-mail: adl@lrde.epita.fr

Abstract: Spot is a library of model-checking algorithms started in 2003.
This paper focuses on its module for translating linear-time temporal logic
(LTL) formulas into Büchi automata: one of the steps required in the
automata-theoretic approach to LTL model-checking.

We detail the different algorithms involved in this translation: the core
translation itself, which performs many simplifications thanks to its use
of binary decision diagrams; the pre-processing of the LTL formulas with
rewriting rules chosen to help their translation; and various post-processing
algorithms whose use depends on the intent of the translation: do we favor
deterministic automata, or small automata?

Using different benchmarks, we show how Spot competes with other LTL
translators, and how it has improved over the years.

Keywords: formal methods, model checking, Büchi automata, LTL, temporal
logic, translation, simplifications, implementation, software, verification

Reference to this paper should be made as follows: A. Duret-Lutz. (2014) ..

Note: This document is the final
draft that was sent to the publisher,
updated with this note. There are
minor differences in the text and in
the layout of tables and figures.

‘LTL Translation Improvements in Spot 1.0’, Int. J. Critical Computer-Based
Systems, Vol. 5, Nos. 1/2, pp. 31–54.

1 Introduction

One of the first steps of the automata-theoretic approach to model checking of linear-
time properties (Vardi 1996, 2007) is to translate the property to verify into an ω-
automaton. This automaton is then synchronized with a model of the system in order
to find executions that invalidate the property. By constructing a smaller or more
deterministic property automaton, we can hope (this is generally the case) to obtain a
smaller synchronized product to explore, resulting in faster model checking.

The Spot library (Duret-Lutz & Poitrenaud 2004) offers algorithms to realize the
above automata-theoretic approach. A salient feature of Spot is its preference for using
Transition-based Generalized Büchi Automata (TGBA) instead of the more commonly
used Büchi Automata (BA). Section 2 explains the difference.

This paper attempts to give a global view of the different algorithms involved into
the LTL-to-TGBA or LTL-to-BA translation of Spot, to explain why it often produces
smaller automata than other available translators, and why it does not always produce
them as fast. Along the way, we point some steps (like the degeneralization) that could

Copyright © 2014 Inderscience Enterprises Ltd.

2

probably be improved. We believe the insight we provide into the implementation of
Spot should be helpful to anyone devising a new translator.

Spot actually offers four translation procedures, and we shall only discuss the most
efficient one, derived from an algorithm by Couvreur (1999).

A previous version of this paper was presented at VECOS’11 (Duret-Lutz 2011).
The text has been augmented to discuss new optimizations implemented between Spot
0.7 and Spot 1.0, and presents new benchmarks featuring more LTL translators.

We assume the reader is familiar with LTL (Clarke et al. 2000) and Binary Decision
Diagrams (Bryant 1986), abbreviated as BDDs in the sequel.

This paper is organized as follows. Section 2 defines Transition-based Generalized
Büchi Automata as opposed to Büchi Automata. Section 3 presents the core of the
translation algorithm, with an emphasis on the optimizations that are enabled by the
use of BDDs, and discusses some improvements to this translation. In sections 4 and 5
we discuss pre-processing and post-processings. Finally, Section 6 compares Spot with
other translators on various benchmarks.

Throughout the paper, the reader is invited to play with an on-line version of the
translator at http://spot.lip6.fr/ltl2tgba.html. This page has options for many
optimizations discussed herein.

2 Two kinds of Büchi automata

Let AP be a set of atomic propositions, i.e., propositional variables that may be true or
false in the system. 2AP denotes the set of minterms (or assignments) over AP, and 22

AP
,

interpreted as the set of sums of minterms, denotes the Boolean formulas over AP.

Definition 1 A Büchi automaton is a tuple B = ⟨AP,Q, q0,F , δ⟩ where AP is a set of
atomic propositions, Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is a
set of acceptance states, and δ ⊆ Q× 2AP ×Q is a transition relation in which each
transition is labeled by a Boolean assignment.
An infinite word c0c1c2 . . . ∈ (2AP)ω of assignments is accepted by B if there exists a run
of A, say (q0, l0, q1)(q1, l1, q2)(q2, l2, q3) . . . ∈ δω , that recognizes the word (∀i, ci = li)
and that visits infinitely many acceptance states (∀i ≥ 0, ∃j ≥ i, qj ∈ F).

A common implementation technique is to group transitions with common source
and destination into edges labeled by Boolean formulas. E.g., the three transitions
(q1, ab̄, q2), (q1, ab, q2), and (q1, āb, q2) can be represented by one edge (q1, a ∨ b, q2).

A Transition-based Generalized Büchi Automaton (TGBA) is a Büchi automaton in
which multiple acceptance marks are carried by the transitions.

Definition 2 A TGBA is a tuple T = ⟨AP,Q, q0,F , δ⟩ where AP is a set of atomic
propositions, Q is a finite set of states, q0 ∈ Q is the initial state, F = {f1, f2, . . . , fn}
is a finite set of acceptance marks, δ ⊆ Q× 2AP × 2F ×Q is a transition relation in
which each transition is labeled by a Boolean assignment and a set of acceptance marks.
An infinite word c0c1c2 . . . ∈ (2AP)ω of assignments is accepted by T if there exists a
run of A, say (q0, l0, F0, q1)(q1, l1, F1, q2)(q2, l2, F2, q3) . . . ∈ δω , that recognizes the
word (∀i, ci = li) and that visits each acceptance mark infinitely often (∀f ∈ F , ∀i ≥
0, ∃j ≥ i, f ∈ Fj).

http://spot.lip6.fr/ltl2tgba.html

3

..s2 .

s0

..s1 . a ∧ b.

¬b

.
¬a ∧ b

.

¬b

.

a ∧ b

.

¬a ∧ b

.¬a .

a

.

(B1)

...

a ∧ b

.

.

.
.

.
a ∧ ¬b

. ..

¬a ∧ b

.

.

.

¬a ∧ ¬b

.

(T1)
Figure 1 Two automata recognizing the LTL formula G F a ∧ G F b. B1: Büchi automaton

with a single acceptance state (double circle). T1: TGBA with F = { . , .}.

Similarly, transitions that share the same source, destination and acceptance mark
may be implemented by a single edge labeled by a Boolean formula. For simplicity, we
only display these edges on the figures.

Figure 1 illustrates these definitions with two automata that recognize the LTL
property: G F a ∧ G F b. The infinite sequence a: 1 0 0 1 0 0 1 0 0 ...

b: 0 0 1 0 0 1 0 0 1 ... will be accepted by
T1 because it visits the top and right loops infinitely often, therefore all acceptance
marks are seen infinitely often. Similarly this sequence visits the only acceptance state
of B1 infinitely often.

Spot is built around TGBAs and can perform the entire model-checking approach
with these automata. However most other model-checking tools use Büchi automata.
Fortunately, TGBAs can be degeneralized into Büchi automata by an operation
discussed in Section 5.4. Automaton B1 in Fig. 1 was obtained by degeneralizing T1.

We will often name the states of automata with the LTL formula they accept. These
extra annotations have no influence on the behavior of the automata.

In a Büchi automaton, we say that a strongly connected component (SCC) is
accepting if it contains some accepting state. In a TGBA an SCC is accepting if for
each acceptance mark it contains at least one marked transition.

3 From LTL to TGBA

The algorithm of Couvreur (1999) for the translation of LTL automata into TGBA is
based on a tableau method. Although the following explanations are self-contained, we
refer the reader to Duret-Lutz & Poitrenaud (2004) for an illustration of this algorithm
as a tableau that can be used to build generalized Büchi automata with state-based or
transition-based acceptance conditions. Here we shall present the algorithm at a lower
level to explain how the use of BDDs helps the translation.

To put this algorithm in context, the complete translation procedure to go from LTL
to a Büchi Automaton can be presented as four steps:

1. Simplify the LTL formula syntactically. E.g., rewrite F F a (a 3-state automaton)
into F a (2 states). These pre-processings are discussed in Section 4.

2. Translate the simplified formula into a TGBA using the algorithm presented in
this section.

3. Post-process the resulting TGBA, e.g., by pruning useless SCCs, or running
various simulation-based reductions or minimizations discussed in section 5.

4. If desired (and needed after the previous post-processing) degeneralize the TGBA
into a Büchi automaton, as discussed in section 5.4.

4

r(X f) = Nxt[f]
r(⊤) = ⊤ r(F f) = r(f) ∨ (Nxt[F f] ∧ P[f])
r(⊥) = ⊥ r(G f) = r(f) ∧ Nxt[G f]
r(p) = Var[p] r(f U g) = r(g) ∨ (r(f) ∧ Nxt[f U g] ∧ P[g])

r(¬p) = ¬Var[p] r(f W g) = r(g) ∨ (r(f) ∧ Nxt[f W g])

r(f ∨ g) = r(f) ∨ r(g) r(f R g) = r(g) ∧ (r(f) ∨ Nxt[f R g])
r(f ∧ g) = r(f) ∧ r(g) r(f M g) = r(g) ∧ (r(f) ∨ (Nxt[f M g] ∧ P[f]))

Figure 2 Recursive rules to translate an LTL formula into a BDD.

3.1 Basic translation

If we omit BDDs, the procedure is simple enough to be performed by hand on a paper
or blackboard. The algorithm generates an automaton whose states corresponds to LTL
formulas. The initial state is the formula to translate. This formula is then rewritten as
a sum of products where the only temporal operator allowed at the top level is X.

For instance if we were to translate Ψ = (X a) ∧ (bU¬a) we would use the fact
that φUψ = ψ ∨ (φ ∧ X(φUψ)) to rewrite Ψ as (¬a ∧ X a) ∨ (b ∧ X a ∧ X(bU¬a)).
Reading this formula, it is clear that a state that must recognize Ψ should either
accept an assignment compatible with ¬a and verify a at the next step, or accept an
assignment compatible with b and then verify a ∧ (bU¬a) at the next step. The start of
the automaton is thus as follows:

..(X a) ∧ (bU¬a)..
a

.

a ∧ (bU¬a)
.

¬a
. b

The procedure should then be applied similarly on the new states. There is little
technicality that has to be taken into account when translating the φUψ operator: the
formula ψ must be satisfied eventually, it cannot be postponed continuously. This is
solved in the translation by making a promise to fulfill ψ while rewriting the formula.
The actual rewriting rule used for U is: φUψ = ψ ∨ (φ ∧ X(φUψ) ∧ Pψ), with the
operator P denoting an explicit promise.

All these formulas can be simplified using classical Boolean rules like (α ∧ β) ∨
α = α to kill some terms (even Xφ or Pφ). This is where using BDD really helps. The
core of the translation is the rewriting function r(f) defined recursively as in Fig. 2.
It encodes outgoing transitions using BDD variables of the form Var[p], Nxt[f], P[f],
created as needed to represent respectively atomic propositions, X f formulas, and P f
promises. The given definition assumes that the LTL formula is specified into negative
normal form, where negation operators appear only in front of atomic propositions.

Applying r on our example, we obtain:
r((X a) ∧ (bU¬a)) = r(X a) ∧ r(bU¬a)

= Nxt[a] ∧ (r(¬a) ∨ (r(b) ∧ Nxt[bU¬a] ∧ P[¬a]))
= Nxt[a] ∧ (¬Var[a] ∨ (Var[b] ∧ Nxt[bU¬a] ∧ P[¬a]))
= (¬Var[a] ∧ Nxt[a]) ∨ (Var[b] ∧ Nxt[a] ∧ Nxt[bU¬a] ∧ P[¬a])

5

..(X a) ∧ (bU¬a).. a.

a ∧ (bU¬a)

.

bU¬a

. ⊤. ¬a.

b;P[¬a]

. a. ⊤.

a ∧ b;P[¬a]

.

b;P[¬a]

.

¬a

Figure 3 Translation of (X a) ∧ (bU¬a) using promises.

..(X a) ∧ (bU¬a).. a.

a ∧ (bU¬a)

.

bU¬a

. ⊤. .. ¬a.

b

. .. a. .. ⊤.

a ∧ b

.

b

.

.

.

¬a

Figure 4 Translation of (X a) ∧ (bU¬a) as a TGBA.

ltl_to_tgba_fm(f):
todo← {f}; all_acc← ∅
a←new automaton; a.set_initial_state(f)
while (todo ̸= ∅)
here← todo.remove_one()
forall i in prime_implicants_of(r(here))
Put i as

∧
v∈V

Var[v] ∧
∧

v∈V ′

¬Var[v] ∧
∧
a∈A

P[a] ∧
∧
n∈N

Nxt[n]

dest←
∧

n∈N n
if ¬a.has_state(dest)

todo.insert(dest)
a.add_edge(src: here, dst: dest, cond:

∧
v∈V v ∧

∧
v∈V ′ ¬v, promises: A)

all_acc← all_acc ∪A
forall t in a.edges()
t.acceptance_marks← all_acc \ t.promises

return a
Figure 5 Pseudo-code of the algorithm of Couvreur (1999) to translate an LTL formula f

into a TGBA. The function r(here) is defined on Fig. 2.

Which corresponds to: ..(X a) ∧ (bU¬a)..
a

.
a ∧ (bU¬a)

.
¬a

.

b;P[¬a]
There are several ways to turn a BDD into a sum of products, but because each

term of the sum corresponds to a transition in the automaton, redundant terms should
be avoided. Furthermore, Nxt[] and P[] variables should never be negated. We compute
prime implicants using an algorithm from Minato (1992) to that effect.

The complete translation is shown on Fig. 3. This automaton is still not a TGBA
because it uses promises instead of acceptance marks. To guarantee that a promise holds,
the accepted runs of the automaton should never make promises continuously: in other
words for each promise Pφ, accepted runs should visit infinitely many transitions that
do not make such a promise.1 This can be encoded as a TGBA by labeling all transitions
that do not make promise Pφ by an acceptance mark associated to φ. There will be as
many acceptance marks as promises. Fig. 4 shows the final TGBA.

The pseudo-code for the complete translation algorithm is shown on Fig. 5.

6

..G F a.. (F a) ∧ G F a.

.

.

a

.
.

.
a

.

⊤

.

⊤

..G F a.. .. a.

⊤
Figure 6 Two translations of G F a. Since r(G F a) = r((F a) ∧ G F a) the two states of the

first automaton can be merged, yielding the second automaton.

At this point it should be clear that the use of BDDs simplifies every Boolean
formulas that label edges. For instance we cannot have an edge labeled by b ∧ a ∧ ¬b
because such a conjunction would be simplified by the BDD representation.

Similarly the conversion of the BDD into a sum of prime implicants helps to reduce
the number of outgoing arcs of each node.

We experimented with different BDD variable orders, and found it was better to
introduce variables in the order they are discovered while applying r recursively.

3.2 Using r to identify states

A powerful BDD-based optimization is to use r to identify some equivalent formulas.
Because BDDs have a unique representation, two formulas φ and ψ are equivalent if
their rewritings are the same BDDs r(φ) = r(ψ). The converse does not hold because
two equivalent subformulas prefixed with X might be represented by different Nxt[]
variables. Since r(φ) encodes the outgoing edges (labels, promises, and destinations) of
the state ψ, if r(φ) = r(ψ) then the states φ and ψ have exactly the same successors
and can be merged. Such a reduction occurs when translating G F a:

r(G F a) = ((Nxt[F a] ∧ P[a]) ∨ Var[a]) ∧ Nxt[G F a]
r((F a) ∧ G F a) = ((Nxt[F a] ∧ P[a]) ∨ Var[a]) ∧ Nxt[G F a]

The result of r(G F a) implies that G F a should have two successors, G F a and (F a) ∧
G F a, as shown in the first automaton of Fig. 6. However r((F a) ∧ G F a) = r(G F a)
so these states can be merged.

One way to implement this “r-quotienting” automatically is to index the states of
the automaton by the BDD r(φ) instead of by the LTL formula φ (the pseudo-code
from Fig. 5 does not perform this reduction).

This automatic simplification may fail to merge states that have the same successors
except for a self-loop because the Nxt[] variable representing the destination of the self-
loop will be different in each state. Babiak et al. (2012) have suggested to improve this
case by introducing a unique dummy BDD variable to represent the current state. This
optimization is implemented in their LTL translator, ltl3ba, but not yet in Spot.

3.3 Better determinism

The determinism of the automata from Fig. 6 can be improved using a trick based
on the BDD representation of states. Instead of converting the equation r(G F a) =
((Nxt[F a] ∧ P[a]) ∨ Var[a]) ∧ Nxt[G F a] into a sum of products to discover the labels
and destinations, we can instead fix one label to discover its destination(s).

Where shall we go if we read a? r(G F a) ∧ Var[a] = Var[a] ∧ Nxt[G F a].
If we read ¬a? r(G F a) ∧ ¬Var[a] = ¬Var[a] ∧ Nxt[F a] ∧ P[a] ∧ Nxt[G F a].

7

rG(f ∧ g) = rG(f) ∧ rG(g) rG(f W g) = r(g) ∨ r(f)

rG(F f) = r(f) ∨ P[f] rG(f R g)) = rG(g)

rG(f U g) = r(g) ∨ (r(f) ∧ P[g]) rG(f M g)) = rG(g) ∧ (r(f) ∨ P[f])
rG(f) = r(f) in all other cases

Figure 7 Recursive rules to translate LTL subformulas of G.

These equations show that all instances of ⊤ in Fig. 6 can be replaced by ¬a,
yielding two deterministic automata.

In an automaton over n atomic propositions (Var[a], Var[b],…), there are 2n labels
to consider. However the structure of the BDD encoding the formula helps to ignore
useless labels; and in real-world formulas, n is usually small enough to make the
enumeration of these labels not perceptible.

While an automaton constructed this way is usually more deterministic, it is not
necessarily a deterministic automaton. The result of r(φ) ∧A for some A could feature
a disjunction, i.e., multiple destinations. (The reader is invited to compute r(F G a) ∧
Var[a] for an example.)

In an experiment we translated 92 LTL formulas taken from the literature and
compared their translations with and without this optimization, by synchronizing the
resulting automata with random state spaces. This technique reduced the number of
transitions in the product by 40%, and the number of states by only 0.33%.

3.4 Speeding up the translation of G formulas

In his original paper, Couvreur (1999) discussed an optimization of this translation using
a specific rule for formulas of the form G F f : r(G F f) = (r(f) ∨ P[f]) ∧ Nxt[G F f].

This rule avoids the creation of the state F a ∧ G F a during the translation of G F a.
From a size perspective, it is entirely optional since the r-quotienting discussed in
section 3.2 will already identify the two states. However from a time point of view, it
is more efficient to construct a single state directly, and avoid many BDD operations.
(Spot’s translator spends more than half of its run time performing BDD operations.)

We generalized this rule to apply to any subformula that is guaranteed to be repeated
in the next state. We modify the G rule of Fig. 2 as: r(G f) = rG(f) ∧ Nxt[G f]
where rG is the recursive function defined by Fig. 7. These rG rules, called inside
r(G f), avoid the creation of the Nxt[f] variables that would be implied by Nxt[G f]
anyway. In particular, this optimization halves the time spent translating subformulas of
the form

∧
i G F pi or of the equivalent (but preferred) form G

∧
i F pi, either of which

occur when expressing weak fairness properties.

3.5 Simplifying promises

Consider the BDD rewriting of aU(bU c) whose complete automaton is represented
with promises on Fig. 8:
r(aU(bU c)) = Var[c] ∨ (Var[b]∧Nxt[bU c]∧P[c]) ∨ (Var[a]∧Nxt[aU(bU c)]∧P[bU c])

This BDD encodes three transitions, two of which use different promises: P[c] and
P[bU c]. However these promises are always issued sequentially: first P[bU c] forbids

8

..aU(bU c).. bU c. ⊤.

a;P[bU c]

. b;P[c].
c

.

b;P[c]

. c.

⊤

Figure 8 Translation of aU(bU c) using promises (and without using the determinization
improvement of Section 3.3).

runs that continuously stay in the initial state, then if the state bU c is reached, P[c]
rejects runs that would stay infinitely in that state. In practice, we could have made the
same promise, for instance P[c] (the name does not even matter), on all these transitions.
If we interpret P[f] as a promise to fulfill f eventually, it is clear that P[bU c] and P[c]
are two equivalent promises.

Along these lines, we implement the following simplifications to limit the number
of promises introduced: P[F f] = P[f], P[f U g] = P[g], and P[f M g] = P[f].

Furthermore, if the top-level formula is a syntactic persistence, only one promise
need to be used during the translation and we rewrite any P[f] as P[⊤]. This optimization
and the class of syntactic persistence formulas are described by Černá & Pelánek (2003).

4 Pre-processings

Pre-processing the LTL formula before it is translated helps to speed-up the translation,
and to produce smaller automata. Spot distinguishes different kinds of LTL rewritings:

Trivial identities are applied at any time during the construction of a formula (e.g.,
while they are parsed). These are all based on idempotence of some operators
(e.g., F F a ≡ F a), or neutral/absorbent operands (e.g., X⊥ ≡ ⊥, f ∧ ⊥ ≡ ⊥, f ∧
⊥ ≡ ⊥, etc.).

Basic rewritings Are unconditional rewriting rules, such as G X f ≡ X G f .
Eventual and universal rewritings apply only when some subformulas are purely

universal Etessami & Holzmann (2000), are pure eventualities Etessami &
Holzmann (2000), or are what Babiak et al. (2012) have called alternating
formulas. As an example F G F a can be rewritten as G F a because the latter is a
pure eventuality.

Implication-based rewritings apply only in cases where one subformula can be shown
to imply another subformula. For instance under the hypothesis that f → g, we
have f U g ≡ g. There are two ways to detect such implications: they can be
approximated syntactically (Somenzi & Bloem 2000), or decided exactly using
automata-based language containment checks (Tauriainen 2006).

Spot implements many (but not all) rewriting rules taken from the aforementioned
sources, plus some of its own. A complete listing of all these rules is distributed along
with Spot2 and is too long to be reproduced here. We only discuss a couple of them
to illustrate the point that these rewritings should be selected from the point of view of
the translation algorithm that will be used next.

9

A1
..F(a ∧ G F b).. G F b. G F b.

⊤

. a.

b

.

.

.

⊤

A2
..(F a) ∧ G F b.. G F b.

(F a) ∧ (F b) ∧ G F b

.

⊤

. a.

⊤

.

b

.

.

.

⊤

.

⊤

.

a

.

⊤

Figure 9 Paper-and-pen translations into TGBA of F(a ∧ G F b) and (F a) ∧ G F b.

4.1 A harmful rewriting rule

As a first example, we do not apply the rule F(φ ∧ G Fψ) ≡ (Fφ) ∧ (G Fψ) suggested
by Somenzi & Bloem (2000). Intuitively, this rule is dubious because F(φ ∧ G F(ψ))
appears less complex to translate. Indeed, translating FΦ is just a matter of creating an
initial state that accepts any letter for a finite number of step, and non-deterministically
jumps into a state that will recognize Φ when a letter matching the beginning of Φ is
found. However, translating a formula such as (Fφ) ∧ G Fψ is harder because in the
initial state you have four choices to consider: either the input can be the start of φ, or
it is the start of ψ, or it is both, or it is none. When φ and ψ are atomic propositions
as in Fig. 9, these four cases can be reduced to three. It turns out that on the automaton
A2 from Fig. 9 the states (F a) ∧ G F b and (F a) ∧ (F b) ∧ G F b have exactly the same
outgoing transitions: they can be merged. Thanks to the BDD identification discussed
in Sec. 3.2, Spot will actually output an automaton similar to A1 for both formulas
F(a ∧ G F b) or (F a) ∧ G F b. This is not the case when φ and ψ are more complex.

This rewriting rule, which we applied in the past, also prevented other useful rules
to apply. E.g., Spot 0.5 would rewrite the formula F(φ1 ∧ G Fψ1) ∨ F(φ2 ∧ G Fψ2) as
((Fφ1) ∧ G Fψ1) ∨ (Fφ2) ∧ G Fψ2) missing the opportunity to apply the rule F(Ψ1) ∨
F(Ψ2) = F(Ψ1 ∨Ψ2). Since Spot 0.6, we rewrite this formula as F((φ1 ∧ G Fψ1) ∨
(φ2 ∧ G Fψ2)), which is easier to translate for similar reasons.

4.2 Handling the W and M operators

Figure 2 includes rules to translate the W (weak until) and M (strong release) LTL
operators. Many tools dealing with LTL formulas do not implement these operators or
treat them as syntactic sugar: they do not add expressive power and can be rewritten
using other operators. To illustrate the importance of the rewriting rules from the point
of view of the translator algorithm, we consider different rewritings for these operators.

The formula aW b is usually rewritten into (aU b) ∨ G a. For instance this is the
implementation of the W operator in Spin 6.2.2. From the point of view of an LTL
translator based on a tableau method, this is not a very good rewriting as it requires a
non-deterministic choice between aU b and G a at the very beginning. A better rewriting
is aW b ≡ aU(b ∨ G a), as it postpones the choice between b and G a. This latter
rewriting was used by Dwyer et al. (1998), although they now changed their web site3
to use W for simplicity. An even better choice, although less intuitive, is aW b ≡
bR(a ∨ b), since no promise have to be introduced. The TGBAs corresponding to the
translation of these different rewritings are shown on Fig. 10. Similar rewritings for M
exist: aM b ≡ (aR b) ∧ (F a) ≡ aR(b ∧ F a) ≡ bU(a ∧ b).

10

..aW b.. ⊤.

a ∧ ¬b

. b.

⊤

..bR(b ∨ a).. ⊤.

a ∧ ¬b

. b.

⊤

..aU(b ∨ G a)..

G a

.

⊤

.

a ∧ ¬b

.

a ∧ ¬b

.

b

.

⊤

.

.

.

a

.

.

..(aU b) ∨ G a.. G a.

aU b

.

⊤

. a ∧ ¬b.

a ∧ ¬b

.

b

. a. ..

a ∧ ¬b

.

b

.

⊤

.

.

Figure 10 Four formulas equivalent to aW b and their corresponding automata.

Since Spot fully supports the W and M operators, our basic rewriting rules actually
perform the reverse of all the previous rewritings (e.g., we rewrite into aW b the
formulas (aU b) ∨ G a, aU(b ∨ G a), and bR(a ∨ b)).

4.3 Implementation of LTL formulas

The implementation of all these rewriting rules benefit greatly from our representation
of a set of LTL formulas as a forest of “syntax DAGs” with sharing of subformulas.

LTL formulas are reference counted and a unicity table makes sure that two equal
formulas (or subformulas) will share the same address. The operators ∧ and ∨ are
handled as n-ary operators, and their operands are always sorted. We can therefore
easily detect that a ∧ X(b) ∧ F(c) is equivalent to F(c) ∧ X(b) ∧ a because the two
formula objects will have the same address.

The uniqueness of each subformula also helps to speed up rewriting algorithms, as
they use a cache when processing subformulas recursively.

5 Post-processings

Once an LTL formula has been translated into a TGBA as described in Section 3,
Spot implements different kinds of post-processings. We first describe each processing
independently before explaining when there are used and how they are chained.

5.1 SCC pruning

It may happen that the TGBA constructed by the translation contains states that do
not contribute to its language. A classical optimization is therefore to remove all non-
accepting SCCs that cannot reach an accepting SCC (Somenzi & Bloem 2000).

Since we have to traverse the entire automaton to classify its SCCs as accepting
or non-accepting, we can also perform a few other improvements along the way.
The acceptance marks of transitions that do not belong to an accepting SCC can be
removed. Similarly, acceptance marks that are always present at the same time as
another acceptance mark can be simplified.

11

..G a ∨ G b ∨ G c..

G a

.

G b

.

G c

.

a

.

b

.

c

.

a

.

b

.

c

......... abc.

ābc

.

ab̄c

.

abc̄

.

bc

.

ac

.

ab

.

b̄c

.

bc̄

.

āc

.

ac̄

.

āb

.

ab̄

.

c

.

b

.

a

Figure 11 Left: translation of G a ∨ G b ∨ G c. Right: its minimal WDBA.

5.2 Minimization of Weak Deterministic Büchi Automata

A Büchi automaton is weak if, in each SCC, either all the cycles are accepting, or all
cycles are non-accepting.

It is well known that not all Büchi automata can be determinized (Vardi 1996,
prop. 8). There is a subclass of properties that can be represented by Weak Deterministic
Büchi Automata (WDBA), and for which there exists an algorithm to compute the
minimal WDBA recognizing the property (Löding 2001). This class corresponds to the
“obligations” in the temporal hierarchy of Manna & Pnueli (1990) and includes a large
number of LTL formulas used for model checking.For instance 40 formulas out of the
55 formulas from Dwyer et al. (1998) are obligations.

Dax et al. (2007) showed how to implement this minimization without knowing
a priori if the translated property actually is an obligation: the correctness of the
minimization is tested a posteriori using a language equivalence test (easy to implement
because a WDBA can be complemented like deterministic finite automata, and the
original TGBA can be complemented by translating the negation of the property).

Dax et al. (2007) did a comparison of the size produced by different translators (not
Spot, which they did not know) with the size of the minimal WDBA. This revealed that
although it was deterministic, the minimal WDBA usually had a number states smaller
or equal to that of the automata produced by the translators.

This WDBA minimization has since been integrated into Spot, and we completed the
benchmark of Dax et al. (2007) in the previous version of this paper (Duret-Lutz 2011).
Our implementation takes a TGBA, and outputs a deterministic Büchi automaton when
the WDBA-minimization is valid. We avoid the language equivalence test in a number
of cases by testing whether the translated formula actually belongs to the syntactic
obligation class (Černá & Pelánek 2003).

While being able to output a minimal deterministic automaton for some class of LTL
formulas is appreciable, we have found a few cases were using such a deterministic
output was not desirable because the deterministic automaton was too large.

As an example consider the family of LTL formulas G p1 ∨ G p2 ∨ . . .G pn.
Figure 11 shows the result of the translation for n = 3 before and after WDBA
minimization. The non-deterministic automaton has n+ 1 states, while the minimal
deterministic automaton has 2n − 1 states. Experiments on actual model checking
problems show that the smaller of these two automata has to be preferred, despite its
non-determinism, when the full product with the system must be constructed.

12

5.3 Simulation-based reductions

Spot implements the simulation-based reductions described by (Somenzi & Bloem
2000), which are easily adjusted to work on a TGBA. Intuitively direct simulation can
merge states based on the inclusion of the sets of infinite runs starting from these states,
while reverse simulation would merge states based on the inclusion between sets of
finite runs leading to these states.

Our implementation has the same structure as the StrongFairSimulation algorithm
of Etessami & Holzmann (2000), except that we represent the class (or color) of a state
using BDD variables to ease inclusion checks. More details about our implementation
are given by Babiak et al. (2013).

5.4 Degeneralization

A degeneralization algorithm takes a generalized automaton with n states and m
acceptance marks, and produces a Büchi automaton with at most n(m+ 1) states.
The classical algorithm used to transform Generalized Büchi Automata into Büchi
automata (Clarke et al. 2000, section 9.2.2) can be adapted to transform TGBA into
Büchi automata (Giannakopoulou & Lerda 2002, Gastin & Oddoux 2001) as follows.

If T = ⟨AP,Q, q0,F , δ⟩ is a TGBA with m acceptance marks F =
{f1, f2, . . . , fm}, then an equivalent Büchi automaton T = ⟨AP,Q′, q′0,F ′, δ′⟩ can be
constructed as follows:

• Q′ = Q× {0, . . . ,m}, i.e., the original automaton is cloned in m+ 1 levels,
• F ′ = Q× {m}, i.e., states from the last level are accepting,
• δ′ = {((s, j), l, (d, levelj(F))) | (s, l, F, d) ∈ δ}

where levelj(F) =


0 if j = m

j + 1 if j < m and fj+1 ∈ F

j otherwise
,

i.e., for each level j < m the outgoing transitions that carry fj+1 are redirected
to the next level and all transitions from the last level are redirected to level 0,

• q′0 = (q0, 0), i.e., the initial state is on the first level (but any other level would
also be correct).

This setup guarantees that any accepting path in the degeneralized automaton will
correspond to an infinite path that sees all acceptance marks infinitely often in the
original automaton. The classical optimization is to “jump levels”, i.e., when a transition
from level i < m carries acceptance marks fi+1, fi+2, and fi+3, it can be redirected to
the level i+ 3. This corresponds to the following redefinition of levelj(F):

levelj(F) =

{
max{n ∈ {j, . . . ,m} | ∀k ∈ {j + 1, . . . , n}, fk ∈ F} if j < m,

max{n ∈ {0, . . . ,m} | ∀k ∈ {1, . . . , n}, fk ∈ F} if j = m.

The automaton B1 from Fig. 1 was degeneralized from T1 with this definition, in
the order f1 = ., f2 = ., and setting the initial state in the last level.

Another optimization this is implemented in Spot is a “pulling of acceptance marks”.
When all outgoing transitions of a state s have a set Y of acceptance marks in common,
this set can be added to the acceptance marks of all the incoming transitions. This is

13

correct because if a run traverses s it will necessarily see all acceptance marks from Y ;
it makes no difference if its sees them twice.

This degeneralization procedure offers m! possible ways to order the acceptance
marks, and there are m+ 1 possible levels on which the initial state can be located.
Changing these parameters might make some states from Q× {0, . . . ,m} unreachable,
and can thus reduce the automaton. For one TGBA, we therefore have m!(m+ 1)
possible degeneralizations using only this definition.

In Spot, the order of acceptance of sets used for the degeneralization correspond to
the order in which the corresponding promises where introduced during the translation,
and the initial state is always on the first level. There is definitely room for improvement
here, since the initial submission of this paper, we have been working with the authors
of ltl3ba to improve the situation (Babiak et al. 2013).

Oddoux (2003, section 6.1.2) mentions another kind of degeneralization in which the
acceptance marks can be taken in any order and where each state of the degeneralized
automaton has to retain the set of all acceptance marks that are waited for. This can
potentially multiply the size of the original automaton with 2m if m acceptance marks
are used. But this might be worth a try when m is very small.

5.5 The complete post-processing chain

Because it is not always clear in which context the translated automaton will be used,
Spot 1.0 introduces two different options to specify the intent of the translation.

--deterministic is used to indicate that an output that is (as much as possible)
deterministic is desired. E.g., the right automaton of Fig. 11 should be preferred.
In this case, we first prune useless SCC and acceptance marks in the translated
TGBA, then we apply WDBA-minimization. If the latter succeeded, we output
its result (a Büchi automaton) as-is. In case where WDBA-minimization was not
applicable, we reduce the TGBA by iterating both direct and reverse simulation
until the automaton is not reduced any more. The simulation-reduced TGBA is
then degeneralized if requested.

--small is used to indicate that an output with less states should be favored. We shall
still strive to make it deterministic, but if a choice like that of Fig. 11 happens,
we will prefer the left automaton.
The post-processing for this intent also starts by pruning useless SCCs and
acceptance marks. Then we compute two different automata, and return the
smallest: the first automaton is the result of WDBA-minimization (if that result
exists), and the second is the result of the iterated simulation (optionally
degeneralized). If the two automata have an equal number of states, we keep the
WDBA because it is guaranteed to be deterministic.

6 Benchmarks

The following sections present different benchmarks comparing Spot with other
translators that are publicly available (including older versions of Spot).

These translators (presented in chronological order) are:

14

• The Spin model checker. Its -f option converts an LTL formula into a never
claim representing a (degeneralized) Büchi automaton. Spin’s LTL translator is
based on the tableau construction of Gerth et al. (1996). Spin has some trivial and
unconditional rewriting rules for LTL, and includes simple post-processings.

• LBT (Rönkkö 1999) also implements the translation of Gerth et al. (1996), but
produces a generalized Büchi automaton. LBT only apply trivial rewriting rules.
It has no post-processings.

• wring (Somenzi & Bloem 2000) implements some unconditional LTL rewritings,
as well as some implication-based checks. Using a tableau construction it builds a
Generalized Büchi Automaton with labels on states (rather than transitions). This
GBA is simplified using SCC-based and simulation-based reductions.

• ltl2ba (Gastin & Oddoux 2001) is a descendant of Spin’s translator in the sense
that it reused the same code base. However the translation algorithm has been
completely rewritten. LTL formulas are reduced using all classes of rewriting
rules (the implication checks are syntactic), translated into an intermediate
alternating Büchi automaton, which is then converted into a TGBA, which is
finally degeneralized into a Büchi automaton. Some simplifications (like removing
redundant transitions and useless SCCS) are performed at all these steps.

• modella (Sebastiani & Tonetta 2003) uses a tableau construction, implements all
classes of rewriting rules (with syntactic implication checks), it also implements
simulation-based reductions on the Büchi automaton. One of the main points
of Modella’s authors was that it is worth improving the determinism of the
automaton at the expense of its size, because this will pay off when this automaton
is later synchronized with a system to check.

• ltl2nba (Fritz 2003) translates LTL formulas into alternating Büchi automata
with ε-transitions, and performs simulation reductions directly on that. These
alternating automata are then converted into Büchi automaton using the Miyano-
Hayashi construction. No pre- or post- processing are performed.

• ltl3ba (Babiak et al. 2012) is a reimplementation of ltl2ba in C++ with better
data structures and additional optimizations. It implements many LTL rewriting
rules, including some new ones based on a class for formulas called alternating
formulas. For instance it uses BDDs to simplify the guards of transitions.
It implements a technique called suspension that would effectively solve the
problem described in 4.1: when ltl3ba translates (Fφ) ∧ (G Fψ), it suspends
the translation of G Fψ until a point where φ must hold. This translator also
implements a direct-simulation reduction on the final Büchi automaton (option
-S), and has an option to improve determinism (option -M).

ltl2nba and wring are scripts written respectively in Python and Perl. All other tools
are compiled from C or C++. All the following experiments were ran under GNU/Linux
on an Intel Core2 Q9550 running at 2.83GHz with 8GB of RAM.

6.1 184 LTL formulas from the literature

The benchmark consists in 92 LTL formulas:
• 55 formulas from Dwyer et al. (1998) (where aW b was written as aU(b ∨ G a)),
• 25 formulas from Somenzi & Bloem (2000) — their paper shows 27 formulas but
two of them are already the negations of other formulas in the list,

• 12 formulas from Etessami & Holzmann (2000).

15

With their negations this makes a total of 184 formulas.

A summary of the translation of these formulas is presented in Table 1. The statistics
displayed in this table were gathered using ltlcross, a Spot-based reimplementation of
LBTT (Tauriainen & Heljanko 2002) that cross compares translators in order to detect
errors (for our extensive test suite) and collect statistics (for our papers). The tools
have been clustered by type of automaton produced, with Spot appearing in two groups
depending on whether it was configured to output BA or TGBA.

As shown by the count column, Spin failed to translate 11 formulas within the 10
minutes limit we had set up (the machine was swapping before the end of these 10
minutes, meaning spin needed more than the available memory). Wring aborted in three
cases with an error message from Perl. Modella produced one incorrect automaton.

Modella and ltl2nba output automata in a format in which states need not
be declared accepting if they all are, this explains why they show less acceptance
sets/marks than translated formulas (but this difference is not important). For other LTL-
to-BA translators we used the never claim output.

The product with a random state space gives some idea of the behavior of the
automaton during model checking. The intuition is that if this state space was that of
a real model to verify, the model checking procedure would need space proportional to
the number of state in the product, and time proportional to the number of transitions in
that product. This can be used to argue for instance that although modella’s automata
are bigger than ltl2ba’s, they will yield less transition in the product, and therefore
make a faster verification. A similar effect can be seen with ltl3ba’s -M option: it
improves the determinism at the expense of the number of states, but this pays off in
terms of transitions in the products. This interpretation of the last columns should be
mitigated by the fact that these random state spaces are not real models (Pelánek 2008),
and that an actual model checker will implement other techniques to avoid constructing
the entire product.

The statistics for Wring are slightly unfair because the nature of the automata
it generates (state-based labels, and multiple initial states) is very different from the
automata produced by other translators. In order to integrate Wring in our benchmark,
we had to add a fake initial state (connected to all the former initial states) to each
produced automata, and move the label of each state onto all its incoming transitions.
This quick transformation adds one more state per automaton, and is also accounted for
in the total run time.

On Table 1 Spot appears better than all other translator on all accounts except its run
time (which is still reasonable). The number of states in its BA output is probably even
more impressive if we additionally consider the number of nondeterministic automata:
the automata are smaller and more deterministic.

However these cumulative values hide the actual differences that may be observed
when comparing the results formula by formula. There is only one formula for which
Spot produces an automaton with one more states than other tools. However if we
distinguish automata with equal number of states by their number of transitions, then
these cases are more numerous as shown in Table 2.

Detailed results can be found at http://www.lrde.epita.fr/~adl/ijccbs/, and
include an interactive page that can build Table 2 for different comparison criteria.

http://www.lrde.epita.fr/~adl/ijccbs/

16

autom
ata

sizes
non-det.

products
translator

count
states

edges
trans.

acc.
SC

C
states

aut.
tim

e
states

trans.
SC

C

B
A

spin
6.2.2

173
2166

17428
62771

173
1242

1861
169

964.09
287823

9983437
29575

ltl2ba
1.1

184
1017

3385
30237

184
732

811
173

0.67
194684

5638095
4390

ltl2nba
184

952
3065

27158
181

724
744

174
18.77

179988
5472936

3470
modella

1.5.9
183

1312
4391

23998
180

861
650

119
30.78

219548
4258427

14753
ltl3ba

1.0.1
-S

184
812

2242
21339

184
627

607
172

1.00
154567

4350636
1769

ltl3ba
1.0.1

-M
184

875
2634

15101
184

666
357

124
1.05

163669
3090518

4133
ltl3ba

1.0.1
-M

-S
184

848
2437

14495
184

648
330

124
1.07

158517
2953167

3260
Spot1.0

--deterministic
184

683
1707

10627
184

496
93

45
4.27

132239
2409181

1453
Spot1.0

--small
184

678
1683

10517
184

495
99

50
4.47

131850
2406921

1474

G
B
A

lbt
1.2.2

184
8415

130501
884155

333
4781

7588
180

1.62
1423870

108033745
596754

W
ring

1.1.0
181

1476
4943

49416
182

1120
1027

166
31.80

253354
7765883

74934

TG
B
A

Spot1.0
--deterministic

184
641

1573
9964

198
493

84
45

4.41
124053

2258314
1446

Spot1.0
--small

184
636

1549
9854

198
492

90
50

4.56
123664

2256054
1467

T
able

1
C
um

ulative
sum

m
ary

for
the

translation
of

184
form

ulas
by

each
tool.W

ith
the

exception
of

the
count

colum
n,sm

aller
values

are
better.

The
first

data
colum

n
displays

the
total

count
of

form
ulas

successfully
translated

by
each

tool.The
rem

aining
colum

ns
all

display
accum

ulated
values

over
all

successful
translations.The

first
colum

ns
display

the
total

num
ber

of
states,edges,transitions,acceptance

m
arks

(1
for

B
A
),and

strongly
connected

com
ponents

in
all

the
translated

autom
aton.They

are
follow

ed
by

the
total

num
ber

of
non-determ

inistic
states,and

the
total

num
ber

of
non-determ

inistic
autom

ata
in

these
translated

autom
ata.The

next
colum

n
gives

num
ber

of
seconds

it
took

to
translate

all
form

ulas.
For

each
form

ula,one
random

(and
deadlock

free)
state

space
of

200
states

w
as

created,and
used

to
build

a
synchronized

product
w
ith

each
translated

autom
aton.The

size
of

this
product

is
show

n
in

the
last

three
colum

ns.W
e
do

not
have

to
distinguish

edges
from

transitions
in

the
product

because
all

atom
ic

propositions
are

valued
in

the
state

space:
each

edge
m
aps

to
one

transition.

17

sp
in

ltl
2b
a

ltl
2n
ba

m
od
el
la

ltl
3b
a
-S

ltl
3b
a
-M

ltl
3b
a
-M

-S

Sp
ot

(d
et
.)

Sp
ot

(s
m
al
l)

spin 131 132 134 135 166 168 169 169
ltl2ba 2 38 69 47 160 162 156 159
ltl2nba 5 25 65 43 147 150 158 161
modella 35 104 108 116 116 116 132 132
ltl3ba -S 0 18 31 55 138 144 153 157
ltl3ba -M 0 3 18 4 22 19 82 84

ltl3ba -M -S 0 3 16 4 15 0 79 82
Spot (det.) 0 10 9 1 10 24 25 5

Spot (small) 0 7 6 1 6 20 20 0
Table 2 Comparing LTL-to-BA translator on 182 formulas. The value on line i and column j

shows how many times the automaton produced by translator #i was strictly bigger
than the automaton produced by translator #j. Here “bigger” means “more states” or
“equal number of states and more transitions”.

Spot 0.8.3 562 seconds
Spot 0.9 315 seconds
Spot 0.9.1 198 seconds
Spot 1.0 150 seconds
ltl3ba 1.0.1 77 seconds

Table 3 Total time required to translate αn, βn, β′
n, φn, and ψn for 1 ≤ n ≤ 20.

6.2 Some formulas for which the minimal Büchi automaton is known

Cichoń et al. (2009) studied several classes of LTL formulas for which they calculated
the size (in states) of the minimal Büchi automaton that could represent the property.
They compared the output of Spot 0.4 and ltl2ba 1.1, neither of which was able to
translate all formulas efficiently. Sometimes they would take too long (hours or days),
sometimes they would produce automata larger than necessary.

Here are the five families of formulas they evaluated on both tools for n ranging
from 1 to 20:

αn = F(p1 ∧ F(p2 ∧ F(. . .F pn))) ∧ F(q1 ∧ F(q2 ∧ F(. . .F qn)))
βn = F(p ∧ X(p ∧ X(p ∧ . . .))︸ ︷︷ ︸

n occurrences of p

) ∧ F(q ∧ X(q ∧ X(q ∧ . . .))︸ ︷︷ ︸
n occurrences of q

)

β′
n = F(p ∧ X(p) ∧ X X(p) ∧ . . .︸ ︷︷ ︸

n occurrences of p

) ∧ F(q ∧ X(q) ∧ X X(q) ∧ . . .︸ ︷︷ ︸
n occurrences of q

)

φn = G F p1 ∧ G F p2 ∧ . . . ∧ G F pn
ψn = F G p1 ∨ F G p2 ∨ . . . ∨ F G pn

Nowadays Spot, as well as the new ltl3ba, are both able to translate all 100
formulas into their optimal Büchi automata, and within reasonable time. Table 3 shows
the evolution of the total time required to translate the 100 formulas.

18

........................... ab̄. āb̄. āb̄. ab. āb̄. āb̄. ab̄. āb. āb̄. ab. āb.

āb̄

.

ab̄

.

āb̄

.

āb

.

ab

.

āb̄

.

āb

.

ab̄

.

āb

.

āb

.

ab

.

āb

.

āb

Figure 12 A Büchi automaton that recognizes C3.

The translation of αn, βn, β′
n and ψn is nearly instantaneous: α20, the longest to

translate, requires 1.7s. Therefore the larger part of the run time summed in Table 3
comes from the φn family of formulas. For instance Spot 1.0 spends 90s computing
just φ20, and 40% of that time is spent in our inefficient degeneralization procedure.
Comparatively, ltl3ba, which has some better handling for subformulas of that form,
will translate φ20 in only 42s.

The variation between Spot 0.9 and Spot 0.9.1 corresponds to the introduction of the
optimized translation of G discussed in Section 3.4, which is especially pertinent for the
translation of φn: our LTL pre-processing will rewrite φn as G(F(p1) ∧ F(p2) ∧ . . . ∧
F(pn)) and from there the rules from Fig. 7 will avoid the creation of many useless
Nxt[] variables for each of the F subformulas.

6.3 LTL counter

Rozier & Vardi (2007) compared 9 LTL translators, on various families of LTL
formulas.

The first family of formulas they experimented on is scalable. For a given n they
generated an LTL formula Cn that matches an infinite sequence of bits in which
all the values of a n-bit counter have been concatenated. E.g., C3 = ((a ∧ (G(a→
(X(¬a ∧ X(¬a ∧ X a)))))) ∧ ((¬b) ∧ X(¬b ∧ X¬b)) ∧ (G((a ∧ ¬b) → (X((X X b) ∧
(((¬a) ∧ (b→ X X X b) ∧ ((¬b) → (X X X¬b)))U a))))) ∧ (G((a ∧ b) → (X((X X¬b) ∧
((b ∧ (¬a) ∧ X X X¬b)U(a ∨ ((¬a) ∧ (¬b) ∧ (X((X X b) ∧ (((¬a) ∧ (b→ X X X b) ∧
((¬b) → X X X¬b))U a))))))))))).4 Such a formula will match a sequence consisting
of a: 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 ...

b: 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 1 1 ... repeated infinitely. Variable a signals
the start of each value, while variable b iterates over the 3 bits of each value from least
to most significant bit (000, 100, 010, …).

From this description it should be clear that the smallest automaton that can
recognize Cn is a deterministic loop with n2n states and as many transitions. Fig. 12
shows this automaton for C3. Any translator that constructs such an automaton explicitly
will have a run time that is worse than exponential in n.

Figure 13 shows the run time taken by ltl2ba, ltl3ba, and three versions of Spot
to translate Cn for increasing n. Executions were limited to 15min. Other tools are not
shown, as they already fail to translate C4 (sometimes even C1) within this limit.

All these tools have been configured to not perform any pre- and post-processings.
Also we patched ltl2ba, ltl3ba, so they would stop right after having constructing
a TGBA without constructing a Büchi automaton. Therefore we are only measuring the
scalability of the core LTL-to-TGBA translation algorithm in each of these tools. (We
verified that each tool was slower with pre-processing turned on, which means that LTL
rewriting are of no help on the Cn family of formulas.)

19

...
..

C4

.

C6

.

C8

.

C10

.

C12

.

C14

.

C16

.

C18

.0s .

200s

.

400s

.

600s

.

. ..ltl2ba-1.1

. ..ltl3ba-1.0.1

. ..spot-0.4

. ..spot-0.5

. ..spot-0.7

. ..spot-1.0

Figure 13 Run time of different tools on the translation of LTL counter formulas. Spot 0.4
was the version used by Rozier & Vardi (2007) in their experiments. Spot 0.7 was
the version used for our experiments at VECOS’11 (Duret-Lutz 2011).

7 Conclusion

We have presented the main ingredients of the translation module of Spot. The core of
the translation is the BDD-based tableau construction of Couvreur (1999), which has
been extended in several ways: more determinism (a suggestion of Couvreur himself),
some simplifications of the translations of subformulas of G, and a reduction of the
number of promises required. This translation is preceded by a huge number of LTL
rewriting rules, and followed by several post-processings to reduce the size of the
produced automaton. This entire chain produces small automata that tend to be very
deterministic, although not necessarily as fast as other translators such as ltl3ba.

Our implementation is extensively tested using both handwritten and random LTL
formulas, and cross-compared to other translators using tools such LBTT (Tauriainen &
Heljanko 2002) or ltlcross, a Spot-based reimplementation.

The degeneralization algorithm appears to be a weak point in Spot, and the historical
reason is that we seldom use it in practice. When building a model checker on top of
Spot, we implement the automata-theoretic approach using TGBA directly.

Although we have not discussed this, the implementation of this translation in
Spot has been extended to support PSL (Accellera 2004), and our post-processings
also include algorithms to output monitors (Tabakov & Vardi 2010) and testing
automata (Ben Salem et al. 2011, 2012).

It has been argued (Cichoń et al. 2009, Tsay et al. 2011) that rather than optimizing
an algorithm to try to produce the best automata always, it would be useful to create a
database of optimal automata for commonly used formulas. However different uses may
call for different definition of optimal automaton. In the context of model-checking, one
usually wants to reduce the size of the product of the property with the system, and
translating the property into a small automaton that is the most deterministic possible
usually helps (Sebastiani & Tonetta 2003), but it is not always clear if more determinism
justify additional states. In the context of monitoring, where an automaton is monitoring
a running process, a deterministic automaton is preferred. In the context of synthesis of
reactive systems, Ehlers & Finkbeiner (2010) prefers to minimize the number of states
at the expense of determinism.

20

Also different kinds of automata can be used for verification: model checking with
TGBA is usually better than model checking with Büchi automata when the formula
incur a lot of acceptance marks (Couvreur et al. 2005). Using testing automata also
appears promising (Geldenhuys & Hansen 2006, Ben Salem et al. 2011). A database
should therefore not be limited to Büchi automata.

While we agree that such a database, like the Büchi Store project (Tsay et al. 2011),
is useful, we still believe that it is important to have a translation that is efficient and
versatile enough to be tuned to the needs of a particular situation.

Acknowledgments

The author would like to thank Kristin Rozier (Robust Software Engineering team at
NASA), Rüdiger Ehlers (Saarland University), Christian Dax (formerly at ETH Zürick),
Tomàš Babiak and Jan Strejček (both at Masaryk University) for fruitful discussions
and for sharing some of their tools. Felix Abecassis (Epita student) wrote a large part
of the WDBA minimization in Spot. Thomas Badie (Epita student) wrote the third (and
current) implementation of the simulation algorithms. Denis Poitrenaud (LIP6) and the
anonymous reviewers reported several mistakes in draft versions of this paper.

References

Accellera (2004), Property Specification Language Reference Manual v1.1. http://www.eda.org/
vfv/.

Babiak, T., Badie, T., Duret-Lutz, A., Křetínský, M. & Strejček, J. (2013), Compositional approach to
suspension and other improvements to LTL translation, in ‘Proceedings of the 20th International
SPIN Symposium on Model Checking of Software (SPIN’13)’, Vol. 7976 of Lecture Notes in
Computer Science, Springer, pp. 81–98.

Babiak, T., Křetínský, M., Řeehák, V. & Strejček, J. (2012), LTL to Büchi automata translation:
Fast and more deterministic, in ‘Proc. of the 18th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’12)’, Vol. 7214 of LNCS, Springer, pp. 95–109.

Ben Salem, A. E., Duret-Lutz, A. & Kordon, F. (2011), Generalized Büchi automata versus testing
automata for model checking, in ‘Proc. of the second International Workshop on Scalable and
Usable Model Checking for Petri Net and other models of Concurrency (SUMO’11)’, Vol. 626
of Workshop Proceedings, CEUR, Newcastle, UK.

Ben Salem, A. E., Duret-Lutz, A. & Kordon, F. (2012), Model checking using generalized testing
automata, in ‘Transactions on Petri Nets and Other Models of Concurrency (ToPNoC VI)’, Vol.
7400 of LNCS, Springer, pp. 94–112.

Bryant, R. E. (1986), ‘Graph-based algorithms for boolean function manipulation’, IEEE Transactions
on Computers 35(8), 677–691.

Černá, I. & Pelánek, R. (2003), Relating hierarchy of temporal properties to model checking, in
‘Proc. of the 28th Int. Symp. on Mathematical Foundations of Computer Science (MFCS’03)’,
Vol. 2747 of LNCS, Springer-Verlag, Bratislava, Slovak Republic, pp. 318–327.

Cichoń, J., Czubak, A. & Jasiński, A. (2009), Minimal Büchi automata for certain classes of
LTL formulas, in ‘Proc. of the Fourth Int. Conf. on Dependability of Computer Systems
(DEPCOS’09)’, IEEE Computer Society, pp. 17–24.

Clarke, E. M., Grumberg, O. & Peled, D. A. (2000), Model Checking, The MIT Press.

http://www.eda.org/vfv/
http://www.eda.org/vfv/

21

Couvreur, J.-M. (1999), On-the-fly verification of temporal logic, in ‘Proc. of the World Congress
on Formal Methods in the Development of Computing Systems (FM’99)’, Vol. 1708 of LNCS,
Springer-Verlag, Toulouse, France, pp. 253–271.

Couvreur, J.-M., Duret-Lutz, A. & Poitrenaud, D. (2005), On-the-fly emptiness checks for generalized
Büchi automata, in ‘Proc. of the 12th Int. SPIN Workshop on Model Checking of Software
(SPIN’05)’, Vol. 3639 of LNCS, Springer, pp. 143–158.

Dax, C., Eisinger, J. & Klaedtke, F. (2007), Mechanizing the powerset construction for restricted
classes of ω-automata, in ‘Proc. of the 5th Int. Symp. on Automated Technology for Verification
and Analysis (ATVA’07)’, Vol. 4762 of LNCS, Springer.

Duret-Lutz, A. (2011), LTL translation improvements in Spot, in ‘Proc. of the 5th Int. Workshop on
Verification and Evaluation of Computer and Communication Systems (VECoS’11)’, Electronic
Workshops in Computing, British Computer Society, Tunis, Tunisia.

Duret-Lutz, A. & Poitrenaud, D. (2004), SPOT: an Extensible Model Checking Library using
Transition-based Generalized Büchi Automata, in ‘Proc. of the 12th Int. Symp. on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’04)’, IEEE
Computer Society Press, Volendam, The Netherlands, pp. 76–83.

Dwyer, M. B., Avrunin, G. S. & Corbett, J. C. (1998), Property specification patterns for finite-state
verification, in ‘Proc. of the 2nd Workshop on Formal Methods in Software Practice (FMSP’98)’,
ACM Press, New York, pp. 7–15.

Ehlers, R. & Finkbeiner, B. (2010), On the virtue of patience: minimizing Büchi automata, in ‘Proc.
of the 17th international SPIN conference on Model checking software (SPIN’10)’, Vol. 6349
of LNCS, Springer, pp. 129–145.

Etessami, K. & Holzmann, G. J. (2000), Optimizing Büchi automata, in C. Palamidessi, ed., ‘Proc. of
the 11th Int. Conf. on Concurrency Theory (Concur’00)’, Vol. 1877 of LNCS, Springer-Verlag,
Pennsylvania, USA, pp. 153–167.

Fritz, C. (2003), Constructing Büchi automata from linear temporal logic using simulation relations for
alternating Büchi automata, in ‘Proc. of the 8th Int. Conf. on Implementation and Application of
Automata (CIAA’03)’, Vol. 2759 of LNCS, Springer-Verlag, Santa Barbara, California, pp. 35–
48.

Gastin, P. & Oddoux, D. (2001), Fast LTL to Büchi automata translation, in ‘Proc. of the 13th Int.
Conf. on Computer Aided Verification (CAV’01)’, Vol. 2102 of LNCS, Springer-Verlag, Paris,
France, pp. 53–65.

Geldenhuys, J. & Hansen, H. (2006), Larger automata and less work for LTL model checking, in
‘Proc. of the 13th Int. SPIN Workshop (SPIN’06)’, Vol. 3925 of LNCS, Springer, pp. 53–70.

Gerth, R., Peled, D., Vardi, M. Y. & Wolper, P. (1996), Simple on-the-fly automatic verification
of linear temporal logic, in ‘Proc. of the 15th Workshop on Protocol Specification Testing and
Verification (PSTV’95)’, Chapman & Hall, Warsaw, Poland, pp. 3–18.

Giannakopoulou, D. & Lerda, F. (2002), From states to transitions: Improving translation of LTL
formulæ to Büchi automata, in ‘Proc. of the 22nd IFIP WG 6.1 Int. Conf. on Formal Techniques
for Networked and Distributed Systems (FORTE’02)’, Vol. 2529 of LNCS, Springer-Verlag,
Houston, Texas, pp. 308–326.

Löding, C. (2001), ‘Efficient minimization of deterministic weak ω-automata’, Information Processing
Letters 79(3), 105–109.

Manna, Z. & Pnueli, A. (1990), A hierarchy of temporal properties, in ‘Proc. of the sixth annual
ACM Symposium on Principles of distributed computing (PODC’90)’, ACM, New York, NY,
USA, pp. 377–410.

Minato, S. (1992), Fast generation of irredundant sum-of-products forms from binary decision
diagrams, in ‘Proc. of the third Synthesis and Simulation and Meeting International Interchange
workshop (SASIMI’92)’, Kobe, Japan, pp. 64–73.

22

Oddoux, D. (2003), Utilisation des automates alternants pour un model-checking efficace des logiques
temporelles linéaires, PhD thesis, Universitée Paris 7, Paris, France.

Pelánek, R. (2008), ‘Properties of state spaces and their applications’, STTT 10(5), 443–454.
Rönkkö, M. (1999), ‘LBT: LTL to Büchi conversion’, http://www.tcs.hut.fi/Software/

maria/tools/lbt/. Implements the tableau construction from Gerth et al. (1996).
Rozier, K. Y. & Vardi, M. Y. (2007), LTL satisfiability checking, in ‘Proc. of the 12th Int. SPIN

Workshop on Model Checking of Software (SPIN’07)’, Vol. 4595 of LNCS, Springer, pp. 149–
167.

Sebastiani, R. & Tonetta, S. (2003), ”More deterministic” vs. ”smaller” Büchi automata for efficient
LTL model checking, in ‘Proc. of the 12th Advanced Research Working Conference on Correct
Hardware Design and Verification Methods (CHARME’03)’, Vol. 2860 of LNCS, Springer-
Verlag, L’Aquila, Italy, pp. 126–140.

Somenzi, F. & Bloem, R. (2000), Efficient Büchi automata for LTL formulæ, in ‘Proc. of the 12th
Int. Conf. on Computer Aided Verification (CAV’00)’, Vol. 1855 of LNCS, Springer-Verlag,
Chicago, Illinois, USA, pp. 247–263.

Tabakov, D. & Vardi, M. Y. (2010), Optimized temporal monitors for SystemC, in ‘Proc. of the 1st
Int. Conf. on Runtime Verification (RV’10)’, Vol. 6418 of LNCS, Springer, pp. 436–451.

Tauriainen, H. (2006), Automata and Linear Temporal Logic: Translation with Transition-based
Acceptance, PhD thesis, Helsinki University of Technology, Espoo, Finland.

Tauriainen, H. & Heljanko, K. (2002), ‘Testing LTL formula translation into Büchi automata’,
International Journal on Software Tools for Technology Transfer 4(1), 57–70.

Tsay, Y.-K., Tsai, M.-H., Chang, J.-S. & Chang, Y.-W. (2011), Büchi store: An open repository of
büchi automata, in ‘Proc. of the 17th Int. Conf. Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’11)’, Vol. 6605 of LNCS, Springer, pp. 262–266.

Vardi, M. Y. (1996), An automata-theoretic approach to linear temporal logic, in F. Moller & G. M.
Birtwistle, eds, ‘Proc. of the 8th Banff Higher Order Workshop (Banff’94)’, Vol. 1043 of LNCS,
Springer-Verlag, Banff, Alberta, Canada, pp. 238–266.

Vardi, M. Y. (2007), Automata-theoretic model checking revisited, in ‘Proc. of the 8th Int. Conf.
on Verification, Model Checking and Abstract Interpretation (VMCAI’07)’, Vol. 4349 of LNCS,
Springer, Nice, France. Invited paper.

Notes

1Promises should not be mistaken for co-Büchi acceptance conditions. A co-Büchi
acceptance condition F accepts runs that stay in F continuously; conversely a promise
accepts runs that do not make the promise continuously.

2See the file doc/tl/tl.pdf in the Spot distribution.
3http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

4After installing Spot, this formula can be generated with genltl
--rv-counter-linear=3.

http://www.tcs.hut.fi/Software/maria/tools/lbt/
http://www.tcs.hut.fi/Software/maria/tools/lbt/
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

	Introduction
	Two kinds of Büchi automata
	From LTL to TGBA
	Basic translation
	Using r to identify states
	Better determinism
	Speeding up the translation of `3́9`42`"̇613A``45`47`"603AG formulas
	Simplifying promises

	Pre-processings
	A harmful rewriting rule
	Handling the `3́9`42`"̇613A``45`47`"603AW and `3́9`42`"̇613A``45`47`"603AM operators
	Implementation of LTL formulas

	Post-processings
	SCC pruning
	Minimization of Weak Deterministic Büchi Automata
	Simulation-based reductions
	Degeneralization
	The complete post-processing chain

	Benchmarks
	184 LTL formulas from the literature
	Some formulas for which the minimal Büchi automaton is known
	LTL counter

	Conclusion

