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1
Introduction

This document is a synthesis of the work I have done since my Ph.D.
Because of size constraints, it is written as a teaser, trying to lure the
reader into reading the cited papers to get the details.1 1 All these papers can be downloaded

from https://www.lrde.epita.
fr/~adl/dl/adl.html.The citations in this report have received a special treatment:

references to papers I co-authored are shown in the margins inside
such a blue frame, while third-party papers only appear in the final
bibliography. In addition to separating my contributions from the
existing literature, this presentation also shows that these are not
precisely my contributions, but the results of collaborative work with
several people.

Since this document is just baiting material, high-level explanations
and examples have been preferred over formal definitions, and the
reader is assumed to have some basic knowledge of linear-time
temporal logic (LTL) and ω-automata. Most of the work presented
revolves around the automata-theoretic approach for LTL model
checking (presented in the next section), and is implemented in the
Spot library (presented in the following section).

1.1 Automata-theoretic approach to LTL model checking

The automata-theoretic approach to LTL model checking [Vardi,
2007] is a way to decide whether a model M satisfies an LTL formula
ϕ. The model M is first converted into an automaton (usually a
Kripke structure) KM whose language L (KM) represents the set
of all (infinite) behaviors of M. The negation of the formula ϕ is
converted into an automaton A¬ϕ whose language L (A¬ϕ) captures
the forbidden behaviors. With these objects, testing whether M
satisfies ϕ amounts to checking the emptiness of the product KM ⊗
A¬ϕ of these two automata: if L (KM ⊗ A¬ϕ) = ∅, then M |= ϕ.

model M formula ϕ

exploration translation

Kripke KM automaton A¬ϕ

product

KM ⊗ A¬ϕ

emptiness check

ϕ holds / ϕ violated
Figure 1.1: The automata-theoretic
approach to LTL model checking. The
dashed curve shows the parts we focus
on.

In LTL model checking, words are infinite, and KM and A¬ϕ are ω-
automata. This approach can be declined in various ways depending
on the nature of these two automata, and how we implement their
product and its emptiness check.

In what follows, we will assume that KM is always a Kripke
structure, but we consider various natures for A¬ϕ, different products,
and different emptiness checks (Fig. 1.1).

https://www.lrde.epita.fr/~adl/dl/adl.html
https://www.lrde.epita.fr/~adl/dl/adl.html
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1.2 Spot

Spot is a C++ library of model-checking algorithms that we first
presented in 20042. It contains algorithms to perform the steps 2 A. Duret-Lutz and D. Poitrenaud.

SPOT: an Extensible Model Check-
ing Library using Transition-based
Generalized Büchi Automata. In MAS-
COTS’04, pp. 76–83. IEEE Computer
Society Press, 2004

discussed in the previous section. It was purely a library until
Spot 1.0, when we started distributing command-line tools for LTL
manipulation3 and translation of LTL to some generalizations of

3 A. Duret-Lutz. Manipulating LTL for-
mulas using Spot 1.0. In ATVA’13, vol.
8172 of LNCS, pp. 442–445. Springer,
2013

Büchi automata.
The latest version4, Spot 2.0, is a very large rewrite of the core

4 A. Duret-Lutz, A. Lewkowicz,
A. Fauchille, T. Michaud, E. Renault,
and L. Xu. Spot 2.0 — a framework
for LTL and ω-automata manipulation.
In ATVA’16, vol. 9938 of LNCS, pp.
122–129. Springer, 2016b

of the library, in C++11, with a focus on supporting automata with
arbitrary acceptance conditions, as we shall discuss in Chapter 4.

Spot now offers convenient command-line tools and Python
binding to access most of its algorithms. A large part of my time
over the last years has been spent trying to make these tools robust,
useful, and accessible. Even if this sounds like engineering, building
such a framework actually enables both research and teaching. Today,
we have reached the point where several research teams are using
Spot in part of their research or experiments5, and we have started 5 Cf. Appendix A, p. 51.

using it at Epita for teaching LTL, ω-automata and model checking.
Spot is a free software that can be downloaded from https:

//spot.lrde.epita.fr/. There is also a live installation of
IPython/Jupyter (a web application for interactive programming [Pérez
and Granger, 2007]) that can be used to experiment with Spot’s
command-line tools or Python bindings without installing anything:
see http://spot-sandbox.lrde.epita.fr/.

To emphasize that what we describe is not only implemented, but
also easily reusable, this document is littered with examples using
Spot from the command line. These examples are shown on a yellow
background, as this paragraph.

Spot provides the following tools, that will be used in the examples:
randltl generates random LTL/PSL6 formulas, 6 PSL is a reference to the linear

fragment of the Property Specification
Language [Eisner and Fisman, 2006]
which will only be mentioned in
Section 7.2 (p. 40).

genltl generates LTL formulas from scalable patterns,
ltlfilt filters, converts, and transforms LTL/PSL formulas,
ltl2tgba translates LTL/PSL formulas into generalized Büchi

automata or deterministic parity automata,
ltl2tgta translates LTL/PSL formulas into testing automata,
ltlcross cross-compares LTL/PSL-to-automata translators to find

bugs,
ltlgrind mutates LTL/PSL formulas to help reproduce bugs on

smaller ones,
dstar2tgba converts the Rabin or Streett automata output by the
ltl2dstar tool [Klein and Baier, 2006] into generalized Büchi
automata,

randaut generates random ω-automata,
autfilt filters, converts, and transforms ω-automata,
ltldo runs LTL/PSL formulas through other translators, providing

uniform input and output interfaces.

https://spot.lrde.epita.fr/
https://spot.lrde.epita.fr/
http://spot-sandbox.lrde.epita.fr/
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1.3 Overview of this document

Besides the introduction and conclusion, this habilitation thesis
contains five core chapters. Each of them summarizes several related
articles I co-authored.

In Chapter 2 we discuss how to translate ϕ into A¬ϕ, either as a
Transition-based Generalized Büchi Automaton, a Büchi automaton,
or a monitor. We summarize all the algorithms that have been
implemented to make Spot’s ltl2tgba one of the best off-the-shelf
LTL translator tools.

In Chapter 3 we discuss various ways to test the emptiness of
the above automata. This chapter was the topic of a Ph.D. I co-
supervised [Renault, 2014], and introduces a new emptiness check
procedure based on the union-find data structure.

In Chapter 4 we discuss a generic acceptance condition that we
introduced in the Hanoi Omega-Automata (HOA) format in order to
favor the interactions between ω-automata tools. As these acceptance
conditions supersede all conditions discussed previously, we present
some of the acceptance transformations and adjustments we had to
use to support algorithms over arbitrary acceptance in Spot.

In Chapter 5 we discuss a SAT-based technique for minimizing
deterministic automata with arbitrary acceptance conditions.

In Chapter 6 we discuss several results related to stutter-invariant
properties: how to test them, and how to implement the entire
automata-theoretic approach using another type of automata called
‘‘testing automata’’. The second part of this chapter was the topic of
a another Ph.D. I co-supervised [Ben Salem, 2014].

Some perspectives and omitted topics are gathered in Chapter 7.
Finally, a list of selected uses of Spot is provided in Appendix A.
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Translation improvements

2.1 Transition-based and generalized Büchi acceptance

Figure 2.1 shows four equivalent deterministic ω-automata that are
minimal for their respective acceptance conditions.
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Figure 2.1: Minimal deterministic
automata recognizing the LTL
formula GFa ∧ GFb. These automata
recognize infinite words over the
alphabet {āb̄, āb, ab̄, ab} (i.e., all possible
assignments of a and b). For conciseness,
edges are labeled by Boolean formulas
over a and b: they match all compatible
assignments.

Small acceptance marks like 0 or 1 are used to denote the mem-
bership of the states or transitions to different acceptance sets. In
automata using state-based acceptance (Fig. 2.1(a)–(b)), these marks
are on states. Automata with transition-based acceptance have them on
transitions (Fig. 2.1(c)–(d)).

In an automaton with Büchi acceptance (Fig. 2.1(a) and (c)), a run is
accepting if it visits infinitely many states or transitions with the mark
0 . Runs of automata with generalized Büchi acceptance (Fig. 2.1(b)
and (d)) have to visit one 0 and one 1 infinitely often. Generalized
Büchi automata can use arbitrarily many acceptance marks; but in this
particular example using more than 2 would not reduce the number
of states.

We abbreviate Büchi automaton as BA, and prefix it with G or T to
denote generalized or transition-based acceptance.

$ ltl2tgba 'GFa&GFb' >tgba
$ ltl2tgba -B 'GFa&GFb' >ba
$ randaut -Q100 -e.05 a b >k
$ autfilt --product=k tgba ba\
> --stats='%F: %s st, %e ed'

tgba: 100 st, 589 ed
ba: 284 st, 1681 ed

Example 2.2: Commands for com-
puting the size of KM ⊗ A¬ϕ when
KM is a random 100-state automaton
with an edge density of 0.05 (each
state has 5 successors on average), and
KM is either a TGBA (Fig. 2.1(d)) or a
BA (Fig. 2.1(a)).

Any of these automaton types can be used as A¬ϕ in the model
checking approach outlined in Fig. 1.1. However, the number of states
of the product S = |KM ⊗ A¬ϕ| is such that S ≤ |KM| · |A¬ϕ| so it
seems better to pick the smallest automaton possible. Example 2.2
shows how to compute these sizes with a random KM using Spot.

1

0

ā0

a 0

b̄1

b1

Figure 2.3: A TGBA interpretation of
the state-based GBA of Fig. 2.1(b).

Clearly, BAs are a particular case of GBAs. Furthermore, any
automaton with state-based acceptance can easily be converted into
an automaton with transition-based acceptance without changing its
transition structure: it suffices to push the marks of each state to all
their outgoing transitions (Fig. 2.3). With this interpretation, we can
consider automata with state-based acceptance as particular cases of
automata with transition-based acceptance.
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Finally, a TGBA with n marks and s states can be converted into
a TBA with at most n · s states or into a BA with at most (n + 1) · s
states, using a degeneralization procedure we will discuss later. This
shows that all these automata are as expressive, but that TGBAs can
be more concise. For this reason, most of our work was focused on
transition-based acceptance.1 1 Spot actually supports only transition-

based acceptance. When it outputs
automata with state-based acceptance,
it is just pretending: internally those
automata are stored using transition-
based marks, as in Figure 2.3.

2.2 Pros and cons of transition-based acceptance

From an implementation point of view, using transition-based
acceptance requires more memory, because acceptance marks
have to be stored on transitions, which are more numerous than
states2. This is true as long as the automaton is explicitly stored in 2 Except in some degenerate cases, we

work with automata that have at least
one outgoing transition per state.

memory, and this cost cannot always be compensated by the smaller
size of automata with transition-based acceptance. However, when
implementing an explicit model checker using the automata-theoretic
approach of Fig. 1.1, one should keep in mind that the product of
KM ⊗ A¬ϕ is computed on the fly, as needed by the emptiness-check
procedure, and that its transitions need not be stored: only the states
of the product have to be kept in order to remember which ones
were already visited. In that context, the only memory cost of using
transition-based acceptance marks is in the representation of A¬ϕ,
which is negligible compared to the size of KM ⊗ A¬ϕ.

Using transition-based acceptance often leads to simpler or more
natural algorithms. This observation has been made several times
in the past: for instance it is discussed by Michel [1984], Kurshan
[1987], Le Saëc and Litovsky [1994], Giannakopoulou and Lerda
[2002], and Varghese [2014]. After having taken several algorithms
originally introduced in a state-based setting and implemented them
in a transition-based framework, I can only second these observations.
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Figure 2.4: The temporal hierarchy of
Manna and Pnueli [1990], labeled by
canonical LTL properties where p can be
any subformula that uses only Boolean
operators, X, or past LTL operators.
Any persistence property (this includes
the obligation, safety, and guarantee
subclasses) can be represented by a weak
Büchi automaton and cannot benefit
from transition-based Büchi acceptance.

However, we should keep in mind that there is a large subset of
properties that do not benefit from transition-based Büchi acceptance
in any way. (Inherently) Weak automata are automata in which any
strongly connected component (SCC) contains only accepting cycles,
or only non-accepting cycles. In these automata, the acceptance
condition could be expressed directly in terms of SCCs rather than
states or transitions: an infinite run is accepting if it ultimately stays
in one of the accepting SCCs. There is also nothing to be gained by
using generalized Büchi acceptance in weak automata, or by trying
to represent the same properties using non-weak Büchi automata.
This class of automata represents properties from the persistence class
defined by Manna and Pnueli [1990] (Fig. 2.4), and can be associated
with a syntactic fragment of LTL [Černá and Pelánek, 2003].

$ genltl --dac |\
> ltlfilt --format='%[v]h' |\
> sort | uniq -c

1 guarantee
2 obligation
1 persistence
2 reactivity
12 recurrence
37 safety

Example 2.5: Classification of the 55
LTL formulas of Dwyer et al. [1998]
into their most precise class of the
temporal hierarchy. Of these formulas,
only 14 (12 recurrence and 2 reactivity
properties) may not be represented by
weak Büchi automata.

2.3 Benchmark of BA translators

Before we discuss how we translate LTL into TGBA or BA, let us make
a quick review of existing tools. Most off-the-shelf translators focus
on producing (state-based) Büchi automata, because that is what is
still commonly used.
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We consider the following translators:

spin 6.4.5 [Holzmann, 2003]
ltl2ba 1.2b1 [Gastin and Oddoux, 2001]
modella 1.5.93 [Sebastiani and Tonetta, 2003]
trans Mar.20133 [Mochizuki et al., 2014]
ltl3ba 1.1.3 [Babiak et al., 2012]
ltl2tgba Spot 2.3 [Duret-Lutz, 2014]

3 Note that these versions of modella
and trans are both known to be bogus:
modella mistranslates one formula from
our benchmark while trans produces
correct results for this benchmark but
mistranslates some other formulas.

ltl2ba was created as a drop-in replacement for the translator of
spin, and reuses part of its source. modella’s motto was that larger
automata are OK as long as they are more deterministic, because
improved determinism should benefit the product performed by a
model checker. ltl3ba is a drop-in replacement for ltl2ba where
the core of the translation has been rewritten and some optimization
were added. In particular it tries to favor more deterministic automata
by default (this can be disabled with option -M0). ltl2tgba is our
own translator: by default it favors small automata over deterministic
ones, but this can be changed with option -D. Finally, trans is a
more recent translator that, unlike ltl2ba, ltl3ba and ltl2tgba,
does not use transition-based acceptance internally.

$ genltl --dac --sb --eh |
> ltlcross -T60 --prod=+100 \
> --csv=output.csv \
> spin ltl2ba \
> 'modella -r12 -g -e' \
> 'trans -f %[e]s >%O' \
> 'ltl3ba -M0' ltl3ba \
> 'ltl2tgba -s' \
> 'ltl2tgba -s -D'

Example 2.6: This command produces
a CSV file (output.csv) containing
all data summarized in Table 2.7. In
addition ltlcross will cross-compare
all produced automata and search for
bogus translations.

Table 2.7 compares these tools on the production of BAs. For
a given formula ϕ and a tool t we compute a BA At

ϕ and count its
number of states, non-deterministic states, edges, and transitions.
The number of transitions is obtained by counting each edge for the
number of compatible assignments of all atomic propositions.4 To

4 An edge labeled by a stands for two
transitions labeled by ab and ab̄. For
instance, the BA in Fig. 2.1(a) has 8 edges
that represent 12 transitions.

measure the behavior of At
ϕ in a model checking context, we compute

100 products Mi ⊗ At
ϕ, using 100 randomly generated automata

(Mi)1≤i≤100 (the same automata are used for all tools), and retain the
median size of these products. For each tool, the table sums all the
sizes over 178 formulas taken from the literature.

Spot’s ltl2tgba produces Büchi automata that are noticeably
smaller and more deterministic than those produced by other tools,
but the additional simplifications it performs have a cost. It takes
nearly two seconds to translate all formulas, and that is three times
the time needed by ltl3ba.

Table 2.7: Comparison of the Büchi
automata produced by various
translators from 89 formulas (and
their negation) taken from the literature.
Column # shows how many formulas
could be translated within the 60
seconds timeout; except for that column,
smaller values are always better. ndet
counts the number of non-deterministic
automata produced.

automaton size product size

# ndet time (s) states ndstates edges trans states trans

spin 167 162 220.66 1440 1236 7238 46033 259313 9433430
ltl2ba 178 169 0.32 1000 801 3338 29974 190898 5616566
modella -r12 -g -e 178 109 18.47 1244 577 4116 23474 210494 4033414
trans 178 119 0.46 957 398 4674 16798 172246 3276714
ltl3ba -M0 178 167 0.72 794 591 2193 21170 150776 4325221
ltl3ba 178 115 0.72 829 307 2389 14322 155220 2913043
ltl2tgba -s 178 49 1.85 666 102 1643 10346 129419 2399328
ltl2tgba -s -D 178 44 1.87 671 96 1667 10456 129804 2401471
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2.4 Translating LTL formulas into Büchi automata: an overview

The operations chained in Spot to translate an LTL formula into a
Büchi automaton can be grouped into four steps:

1. Simplify the LTL formula syntactically. E.g., rewrite FFa (a 3-state
automaton) into Fa (2 states).

2. Translate the simplified formula into a TGBA.
3. Post-process the resulting TGBA, e.g., by pruning useless SCCs, or

running various simulation-based reductions or minimizations.
4. If desired (and still needed after the previous post-processing)

degeneralize the TGBA into a Büchi automaton.

These steps are summarized in the next four sections, but more
details can be found in our IJCCBS paper5. 5 A. Duret-Lutz. LTL translation

improvements in Spot 1.0. Int. J. on
Critical Computer-Based Systems, 5(1/2):
31–54, 20142.5 LTL simplifications

Spot implements several types of rewritings:

$ ltlfilt --simplify \
> -f 'a U (b | G(a) | c)'
a W (b | c)

Example 2.8: ltlfilt --simplify
will apply all rules to simplify the
given formula(s). This could be used as
a preprocessor for another tool.

Trivial identities are applied at any time during the construction of a
formula (e.g., while they are parsed). These are all based on idem-
potence of some operators (e.g., FFa ≡ Fa), or neutral/absorbent
operands (e.g., X⊥ ≡ ⊥, f ∧⊥ ≡ ⊥, f ∧> ≡ >, etc.).

Basic rewritings are unconditional rewriting rules, like moving the X

operators to the front (as in GX f ≡ XG f ).
Eventual and universal rewritings apply only when some subformulas

are purely universal or pure eventualities [Etessami and Holzmann,
2000], or are what Babiak et al. [2012] have called alternating
formulas. As an example FGFa can be rewritten as GFa because
the latter is a pure eventuality.

Implication-based rewritings apply only in cases where one subformula
can be shown to imply another subformula. For instance, under
the hypothesis that f → g, we have f U g ≡ g. There are two
ways to detect such implications: they can be approximated
syntactically [Somenzi and Bloem, 2000], or decided exactly using
automata-based language containment checks [Tauriainen, 2006].

Not all the rewriting rules found in the literature are necessarily
good to apply6: some were written with the goal of reducing the 6 An exhaustive list of all simplification

rules implemented in Spot can be found
in https://spot.lrde.epita.fr/
tl.pdf

size or the depth of the formula, but these metrics do not always
correlate with the size of the automaton. For instance the rewriting
of F(ϕ ∧ GFψ) into (Fϕ) ∧ (GFψ) suggested by Somenzi and Bloem
[2000] is actually harmful in our context: our translation works better
with the first formula, where it is clear that GFψ does not need to be
checked before ϕ holds.

2.6 Translating LTL to TGBA

The core translation algorithm implemented is based on an original
algorithm by Couvreur [1999] that uses binary decision diagrams

https://spot.lrde.epita.fr/tl.pdf
https://spot.lrde.epita.fr/tl.pdf
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(BDDs) to represent the outgoing transition of each individual
state. With this representation two states that have exactly the same
successors have the same BDD representation and can be merged.
This algorithm has been improved in a couple of ways:

import spot
f = spot.formula('GFa->GFb')
aut = spot.ltl_to_tgba_fm(f,
spot._bdd_dict)

print(aut.to_str('HOA'))

Example 2.9: The core LTL translation
algorithm cannot be easily accessed
from the command-line: the ltl2tgba
tool will always perform some amount
of formula and automaton simplifica-
tion, even in its lowest settings. Exper-
iments with this low-level algorithm
can be done in C++ or Python (above)
by calling the ltl_to_tgba_fm()
function.

• It uses the BDD representation to improve the determinism of
the resulting automaton. Briefly, this comes from the fact that
a formula a ∨ (b ∧ Xϕ) where the choice between a and b is
not exclusive (both could hold) can also be interpreted as the
equivalent a ∨ (ā ∧ b ∧ Xϕ) where the choice between a and āb is
exclusive.

• When it is syntactically obvious that the property translated is
persistent (Fig. 2.4), it forces the output automaton to be weak, as
suggested by Černá and Pelánek [2003].

Our IJCCBS paper7 describes a few other minor improvements (faster 7 A. Duret-Lutz. LTL translation
improvements in Spot 1.0. Int. J. on
Critical Computer-Based Systems, 5(1/2):
31–54, 2014

translation for subformulas of G, early simplification of the number of
acceptance sets) that are harder to present without going into details.

2.7 Simplifying TGBAs

The TGBAs resulting from the above translation can often be simpli-
fied. We have implemented three types of simplifications. The first
three of these steps are described in detail in our Spin’13 paper.8 8 T. Babiak, T. Badie, A. Duret-Lutz,

M. Křetínský, and J. Strejček. Com-
positional approach to suspension and
other improvements to LTL translation.
In SPIN’13, vol. 7976 of LNCS, pp.
81–98. Springer, 2013a

1. SCC-based simplifications use the fact that accepting runs of
Büchi automata will ultimately end in one (accepting) SCC of the
automaton. States that cannot reach an accepting SCC are useless
and can be removed. SCCs that are not accepting do not need
acceptance marks.

2. Acceptance mark simplifications: if the set of transitions with
1 includes the set of transitions with 0 , then the mark 1 is
superfluous and can be removed from the transition structure
as well as from the acceptance condition. This inclusion check can
be refined on an SCC-per-SCC basis.

3. Simulation-based relations can be used to merge states and remove
transitions. Spot implements direct and reverse simulations; and
those work with arbitrary acceptance conditions. The imple-
mentation of this reduction uses a BDD-based representation
of a ‘‘signature’’ of each state, that (as in the case of the main
translation), automatically prunes redundant transitions, and
improves the determinism of the resulting automaton.

4. Weak and deterministic Büchi automata (WDBA) can be minimized
efficiently by an algorithm due to Löding [2001]. Even if the result
of the core translation does not give a WDBA, any obligation property
(cf. Fig. 2.4) can be represented by a WDBA and Dax et al. [2007]
show how to obtain it, if it exists.

$ spin -f 'X<>a' |
> autfilt --stats=%s
4
$ spin -f 'X<>a' | autfilt \
> -B --small --stats=%s
3

Example 2.10: Spin translates XFa
into a 4-state BA. Simplifying that
automaton with autfilt produces a
3-state BA.

All these optimizations can be applied to any automaton using the
autfilt tool (Ex. 2.10).

The use of WDBA-minimization is probably the main reason for
the success of ltl2tgba in Table 2.7. In many cases, the minimal
WDBA obtained is smaller than the non-deterministic automaton
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produced by the core translation algorithm. The other cases raise an
interesting question (cf. Fig. 2.11): should a small non-deterministic
automaton be preferred to a larger deterministic one? ltl2tgba
and autfilt leave that decision to the user: the -D option favors
deterministic automata even when larger.

$ ltl2tgba 'Ga | Gb | Gc'

a b c

a b c

0 0 0

$ ltl2tgba -D 'Ga | Gb | Gc'

abc

ābc ab̄c abc̄

bc ac ab

b̄c bc̄ āc ac̄ āb ab̄

c b a

0

0 0 0

0 0 0

Figure 2.11: Top: non-deterministic
BA for Ga ∨ Gb ∨ Gc. Bottom: minimal
equivalent WDBA.

2.8 From TGBA to BA

Because several model checking tools only work with (state-based)
Büchi automata, Spot has a rather evolved degeneralization routine.

Transforming the TGBA of Figure 2.1(d) (p. 9) into the BA of
Figure 2.1(a) can be done with a classical procedure that duplicates
the original TGBA n + 1 times where n is the number of acceptance
marks. Improvements to this text-book procedure were discussed
by Gastin and Oddoux [2001], and this can be used to build the BA of
Figure 2.12(b).

At SPIN’13 we presented two additional optimizations that use
information about SCCs in the TGBA to avoid creating some useless
states in the resulting BA.9 This optimized degeneralization procedure

9 T. Babiak, T. Badie, A. Duret-Lutz,
M. Křetínský, and J. Strejček. Com-
positional approach to suspension and
other improvements to LTL translation.
In SPIN’13, vol. 7976 of LNCS, pp.
81–98. Springer, 2013abuilds the BA of Figure 2.12(c).
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with classical degeneralization
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(c) Equivalent BA produced by
SCC-aware degeneralization

Figure 2.12: An input TGBA, and two
degeneralizations into BA. Assuming
automaton (a) is input, the Büchi
automaton (b) can be built by disabling
some optimizations with
$ autfilt -B input \
-x'!degen-reset,!degen-lcache'

while automaton (c) is built by default
with
$ autfilt -B input .

2.9 Optimizing BA for Spin

The previous result was a collaboration with the authors of ltl3ba,
and we continued this collaboration by exploring how the shape of
the BA could influence the performance of the spin model checker.
This line of work produced two articles, at Spin’14 and Spin’15.

In the first one10, we compared several automata produced by off- 10 F. Blahoudek, A. Duret-Lutz,
M. Křetínský, and J. Strejček. Is there
a best Büchi automaton for explicit
model checking? In SPIN’14, pp. 68–76.
ACM, 2014

the-shelf translators, as done for example in Fig. 2.13, and observed
that using them with Spin to model-check an actual model from the
BEEM benchmark [Pelánek, 2007] gives some counterintuitive results.
As can be seen in Table 2.14 the size of the property automaton does
not correlate with the run time of Spin. Automata D2 and D4 have
the same size (for all metrics used in this table), but show a two-fold
difference in model-checking performance. Automaton D7 is slightly
worse than D6 despite having fewer edges.

Considering the problem from the point of view of the emptiness
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āb̄ab̄
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āb̄ab̄
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āb̄

0

(D12)

>
b̄

ab̄
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Figure 2.13: BAs for the formula
¬(GFa → GFb), as produced by
off-the-shelf translators, or by hand.

automaton size statistics from Spin’s execution

states ndst edges trans stored states visited trans time

D1 Spin 3 2 6 12 1577846 7680k 6.04s
D2 LTL2BA 3 3 6 12 1577440 7684k 5.95s
D3 MoDeLLa 5 2 8 18 1580893 7670k 6.13s
D4 LTL3BA 3 3 6 12 2299250 15583k 12.10s
D5 LTL3BA (det) 4 1 7 14 2297625 15561k 12.00s
D6 LTL2TGBA 3 1 6 9 848641 2853k 2.26s
D7 LTL2TGBA (no jmp) 3 1 5 9 852094 2863k 2.34s
D8 3 1 6 9 848641 2853k 2.43s
D9 3 3 6 11 852094 2878k 2.43s
D10 3 1 7 10 1575844 7658k 7.38s
D11 3 1 6 10 1577440 7657k 7.07s
D12 3 1 6 10 2297625 15561k 12.30s

Table 2.14: Statistics about generated
automata in Fig. 2.13 and the
corresponding run of Spin on the empty
product with model peterson.4.pm.check algorithm used by Spin, which is based on two nested depth-

first searches [Holzmann et al., 1996], we realized that the location of
accepting states in the automaton is important.

We concluded that when the product KM ⊗ A¬ϕ is expected to
be empty (ϕ should hold), the best automaton A¬ϕ for Spin should
have accepting states that are hard to reach from the initial state as
it will lessen the chance to trigger a nested DFS. On the contrary, if
the product KM ⊗ A¬ϕ contains an accepting cycle, Spin can find
it faster if the accepting states of A¬ϕ are easy to reach from the
initial state and the accepting cycles are short. It turns out that the
degeneralization procedure discussed in the previous section can be
adjusted for both cases.

In a second paper11, we remarked that if an automaton A¬ϕ is

11 F. Blahoudek, A. Duret-Lutz, V. Rujbr,
and J. Strejček. On refinement of Büchi
automata for explicit model checking.
In SPIN’15, vol. 9232 of LNCS, pp.
66–83. Springer, 2015going to be used to verify a model M by constructing the product
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KM ⊗ A¬ϕ, then A¬ϕ can be simplified by taking into account some
knowledge of M. Typically we can use the fact that some of the atomic
propositions used in ϕ are mutually exclusive in M: for instance x = 5
and x > 10 cannot both hold at once, and a process cannot be in two
different locations at the same time.

$ f='F(Ga | (GFb <-> GFc))'
$ ltl2tgba -B "$f"

0 0

0

a

a

>
b̄c̄

b ∨ c

b̄c̄

c̄
b̄c

bc
b̄b

b̄c

c̄

bc

(B1)

$ f='F(Ga | (GFb <-> GFc))'
$ ltl2tgba -B "$f" |
> autfilt -B --small \
> --exclusive-ap=a,b,c \
> --symplify-exclusive-ap

0

0

b̄c̄

>

b ∨ c

b̄c̄

c̄

c

b̄
b

c

c̄

(B2)
Figure 2.15: Automata for ϕ = F(Ga ∨
(GFb ↔ GFc)). Automaton B2 is a
simplified version of B1 assuming that
a, b and c are mutually exclusive.

Using such a priori knowledge about the model, we can simplify the
automaton, as illustrated by Fig. 2.15. The simplifications performed
are two-fold.

First, the automaton can be refined by removing or merging useless
transitions: for instance under the assumption that two propositions
among {a, b, c} cannot both hold at once, the behaviors captured by
the top-left state of automaton B1 are included in those captured by
its top-right state, allowing the former state to be removed. This type
of simplification entailed an average 28% reduction of the number of
transitions visited by Spin on the empty products of our benchmark.

A second simplification is to shorten the Boolean formulas which
label the transitions in order to limit the number of evaluations of
atomic propositions performed by the model checker: for instance
under the same assumptions, b̄c can be rewritten c, testing a single
atomic proposition instead of two. This type of subtle change
improved the run time of Spin by 3.5%.

2.10 Building unambiguous automata

An automaton is unambiguous if any word can be recognized by
at most one accepting run. This can be understood as a weaker
notion than determinism: in a deterministic automaton any word
should be recognized by at most one run of the automaton (that
could be a rejecting run). Unambiguous Büchi automata are as
expressive as Büchi automata [Arnold, 1984, Theorem IV-1], and
can be exponentially more succinct than deterministic BA [Bousquet
and Löding, 2010, Remark 2].

Probabilistic model checking of an LTL property ϕ against a
Markov chain M is classically done using an ω-automaton Aϕ that
is deterministic in order to guarantee that M ⊗ Aϕ is a Markov
chain [Baier and Katoen, 2008, Section 10.3]. However, unambiguous
automata are an attractive alternative, since the probabilities really
only have to be computed along accepting runs [Baier et al., 2016b].

As seen in Table 2.7, Spot is already good at producing small
automata that are often deterministic (hence unambiguous). However,
it also implements a variant of its translation algorithm that always
outputs unambiguous TGBAs. The technique extends an idea
described by Benedikt et al. [2013] to all operators supported by
Spot.

This idea can be quickly explained as follows. When translating
the LTL formula αU β as an automaton, this formula is normally
interpreted as the equivalent formula β ∨ (α ∧ X(αU β)), meaning
that a state recognizing the language L (αU β) will usually have
two outgoing transitions for L (β) and L (α ∧X(αU β)). To obtain an
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unambiguous automaton, it suffices to make these two later languages
disjoint. So in practice αU β would now be seen as β ∨ (α ∧ ¬β ∧
X(αU β)), therefore representing two outgoing transitions for the
languages L (β) and L (α ∧ ¬β ∧ X(αU β)). This idea has to be
generalized to all operators that involve a non-deterministic choice.

$ ltl2tgba 'GFa -> GFb'

0

2

1>

ā

b

0 ā

0 b

b̄

Figure 2.16: An ambiguous BA for
GFa → GFb. Note that the word
āb; āb; āb; . . . has an infinite number of
accepting runs.

$ ltl2tgba -U 'GFa -> GFb'

0

1

2

34

>
āb̄

a ∨ b
āb̄

0 b

b̄
0 āb̄

a ∨ b

āb̄

āb̄
a ∨ b āb̄

Figure 2.17: An unambiguous BA for
GFa → GFb. Here the word āb; āb; āb; . . .
has a unique accepting run.

Figure 2.16 shows an ambiguous BA resulting from the translation
of GFa → GFb ≡ FG¬a ∨ GFb. One can readily see that the sub-
automaton consisting of the states {0, 1} recognizes L (GFb) while
the sub-automaton {0, 2} recognizes L (FG¬a). Those two languages
both contain the word āb; āb; āb; . . ., and the >-labeled self-loop on
state 0 makes it possible to build an infinite number of accepting runs
over this word in any of these two sub-automata.

In the unmabiguous BA of Figure 2.17, the sub-automaton {0, 1}
still recognizes L (GFb), but the sub-automaton {0, 2, 3, 4} now
recognizes L (FG¬a ∧¬GFb) which is disjoint. The word āb; āb; āb; . . .
is now accepted by a unique run that goes through states 0 and 1.

Baier et al. [2016b] used unambiguous Büchi automata generated
by Spot in their experiments12, showing that they were a viable

12 Additionally, Baier et al. [2016a,
Appendix F.4] shows some experimental
data comparing the size of the (non-
deterministic) Büchi automata and
unmabiguous Büchi automata produced
by Spot.

alternative to probabilistic model checking using deterministic Rabin
automata. To our knowledge, the only other existing tool that can
build unambiguous automata from LTL is Tulip [Lenhardt, 2013]
however its website is not responsive anymore, and it was not clear
if using its built-in LTL translator as a standalone tool was possible.
Therefore we have never performed any tool comparison between
unambiguous automata produced by Spot and those of any other
tool.

2.11 Building monitors

$ ltl2tgba -M '(Xa&Fb)|Gc'

0

1 2

3

>

c

a

>

c

Figure 2.18: A non-deterministic monitor
generated for (Xa ∧ Fb) ∨Gc. Note that
Fb is not a monitorable property, so this
automaton accepts L (Xa ∨ Gc), which
is a superset of the original language.

$ ltl2tgba -M -D '(Xa&Fb)|Gc'

0

1 2

3 4

c̄

c

a

>a

āc

c

Figure 2.19: A minimal deterministic
monitor generated for (Xa ∧ Fb) ∨Gc.

Let us define monitors as a subclass of generalized Büchi automata
where no acceptance sets are used, i.e., all runs are accepting. Since
the only way to reject words is to use automata that are incomplete,
monitors can be used to detect ‘‘bad prefixes’’: the expressive power
of monitors corresponds to the Safety class of Figure 2.4 (p. 10).

In the context of online runtime verification, a monitor for a correct-
ness property ϕ can be run alongside a live system to monitor its
events, and signal any execution whose current (finite) prefix cannot
be extended into an infinite word that is correct for ϕ.

D’Amorim and Roşu [2005] and Tabakov and Vardi [2010] explore
this usage, and describe algorithms to construct monitors (and
deterministic monitors) that reject the bad prefixes of any LTL formula
ϕ. Once a TGBA13 for ϕ has been obtained, it suffices to remove all

13 Tabakov and Vardi [2010] start from a
BA instead, but since the BA is obtained
by degeneralizing a TGBA in our case, it
is more efficient to start from that TGBA.

useless SCCs, then remove all acceptance sets, and then optionally
determinize and minimize the result. Even if ϕ is not a safety property
this procedure will build a monitor recognizing a superset of L (ϕ),
effectively capturing the monitorable parts of ϕ.

These transformations are implemented in Spot; ltl2tgba can
generate monitors with option -M, and deterministic monitors with
options -M -D, as illustrated by Figures 2.18 and 2.19.





3
Emptiness checks

This chapter was the subject of E. Renault’s Ph.D thesis [2014] which
I co-supervised with F. Kordon and D. Poitrenaud.

3.1 Introduction

If an ω-automaton accepts a word, it necessarily contains an accepting
cycle (i.e., a cycle visiting all acceptance marks in the case of general-
ized Büchi) that is reachable from the initial state. Emptiness check
algorithms search for the existence of such a cycle.

Automata with generalized Büchi acceptance can be tested
for emptiness by a slight modification of SCC-enumeration algo-
rithms [Couvreur, 1999, Geldenhuys and Valmari, 2005]. Büchi
automata can be checked using the same algorithms, but their
simpler acceptance can also be verified using two nested depth-
first search (NDFS) [Holzmann et al., 1996] with a smaller memory
footprint. When the property to verify is more concisely expressed
using generalized Büchi acceptance, it is preferable to use SCC-based
algorithms over degeneralizing the automaton to use an NDFS.1

1 J.-M. Couvreur, A. Duret-Lutz, and
D. Poitrenaud. On-the-fly emptiness
checks for generalized Büchi automata.
In SPIN’05, vol. 3639 of LNCS, pp.
143–158. Springer, 2005

3.2 Strength-based decompositions

Some subclasses of automata enable more efficient emptiness checks.
In particular, weak automata (already discussed page 10, along with
Fig. 2.4) can be tested for emptiness using a simple DFS [Černá and
Pelánek, 2003].

Terminal automata form a subclass of weak automata in which
accepting SCCs are complete. When the model M has no deadlock
(each state has at least one successor) and the property automaton
A¬ϕ is known to be terminal, the emptiness check of the product
becomes a simple reachability problem: detecting cycles is not even
necessary.

Based on these notions, we proposed2 to split an arbitrary automa-

2 E. Renault, A. Duret-Lutz, F. Kordon,
and D. Poitrenaud. Strength-based
decomposition of the property Büchi
automaton for faster model checking.
In TACAS’13, vol. 7795 of LNCS, pp.
580–593. Springer, 2013b

ton A¬ϕ into possibly three automata AS, AW , and AT of different
strengths: AT contains the terminal behaviors, AW the weak behaviors
that are not terminal, and AS the rest (the strong part).

$ ltl2tgba '(Ga->Gb)W c' >aut
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āc̄
0

ac̄

abc̄

b
0

ac̄āc̄ 0
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$ autfilt --decompose=t aut
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ac̄āc̄

ac

a

ā
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$ autfilt --decompose=w aut

0 1

2

C1 āc̄
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$ autfilt --decompose=s aut

0 1
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0

ac̄
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Figure 3.1: Decomposition of (Ga →
Gb)W c into three automata: a terminal,
a weak, and a strong one.

This is illustrated by Figure 3.1: the initial automaton, at the top,
contains four SCCs. C1 is strong, because it mixes accepting and
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rejecting cycles. C2 is weak, because all its transitions have the same
marks. C3 is terminal, because it is weak and accepts all words. C4

is rejecting. For any automaton using generalized Büchi acceptance,
extracting a subautomaton of a given force can be done by taking all
SCCs of that force unchanged, as well as their parents stripped from
acceptance marks. For instance, the terminal automaton of Figure 3.1
has a verbatim copy of the terminal component C3, plus ‘‘naked’’
versions of its parents C1 and C4.

This decomposition naturally ensures that L (A¬ϕ) = L (AT) ∪
L (AW)∪L (AS). In particular, instead of checking L (KM ⊗ A¬ϕ) =

∅, a model checker could check L (KM ⊗ AS) = ∅ ∧L (KM ⊗ AW) =

∅ ∧L (KM ⊗ AT) = ∅ instead. This has several advantages:
• In the case of KM ⊗ AW , and KM ⊗ AT , emptiness checks special-

ized for weak or terminal automata can be used.
• The three emptiness checks can be parallelized.

$ autfilt --decompose=s \
> --small aut

āc̄ 0 ac̄

Figure 3.2: Simplified automaton for the
strong part of (Ga → Gb)W c. Compare
with the last automaton of Fig. 3.1.

• Each one of AS, AW , and AT is simpler than the original automa-
ton, so it may be easier to simplify than the original (Fig. 3.2). This
is particularly true for the weak (and terminal) automata, where
the WDBA-minimization discussed on page 13 can be applied.

It should be noted that the languages of these three automata are
not necessarily disjoint: some words could be accepted by more than
one automaton. Nonetheless each product KM ⊗ AS, KM ⊗ AW , and
KM ⊗ AT is at most as big as the original KM ⊗ A¬ϕ, so testing the
emptiness of the former three products by running three model-
checkers in parallel can only be faster than checking KM ⊗ A¬ϕ using
one model checker. In our benchmark, we observed speedup factors
between 2 and 4 when the products are empty (i.e., the emptiness
checks have to construct the entire product). Speedups greater than
3 come from the fact that decomposed automata can be simplified
further.

This decomposition technique could be generalized to produce one
automaton for each accepting SCC of the original automaton.

3.3 Using Union-find for Emptiness Checks

SCC-based emptiness checks use SCC enumeration algorithms such
as the algorithm of Tarjan [1971, 1972] or the lesser known algorithm
of Dijkstra [1973, 1976]. For instance, Couvreur [1999] implements
Dijkstra’s algorithm (despite the paper presenting it as a variant of
Tarjan) while Geldenhuys and Valmari [2004] uses Tarjan.

Another SCC enumeration algorithm was suggested by Gabow
[2000, p. 109]3 and uses the union-find data structure [Tarjan, 1975].

3 The main algorithm of Gabow’s paper
is a reinvention of Dijkstra’s algorithm.
What we call Gabow’s algorithm here
is the idea evoked on page 109 of that
paper.In this algorithm, a DFS of a graph is performed, and the union-find

data structure is used to build a partition of the vertices of the graph
into SCCs: initially each node is considered to be in its own class of
the partition, but whenever a cycle is detected, all states on that cycle
are merged into the same class.

In a paper presented at LPAR’134, we described a Union-Find-

4 E. Renault, A. Duret-Lutz, F. Kordon,
and D. Poitrenaud. Three SCC-based
emptiness checks for generalized Büchi
automata. In LPAR’13, vol. 8312 of
LNCS, pp. 668–682. Springer, 2013a

based emptiness check extending Gabow’s algorithm, and suggested
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some optimizations for Tarjan and Dijkstra-based algorithms.
This was presented in a sequential context, where the three

algorithm give roughly equivalent run times; however our ultimate
goal was to investigate these algorithms in a parallel context.

3.4 Parallelisation of SCC-based emptiness checks

Several parallel emptiness checks have been proposed over the last
years [Brim et al., 2001, 2004, Černá and Pelánek, 2003, Barnat et al.,
2003, 2005, 2009]. These algorithms are mainly BFS-like (or at least
‘‘non-DFS’’) explorations of the state space. Multi-core adaptations of
these algorithms with lock-free data structure have been discussed,
but not evaluated [Barnat et al., 2010a].

Recent publications show running multiple NDFS-based al-
gorithms with the swarming technique [Holzmann et al., 2011]
scale better in practice [Evangelista et al., 2011, Laarman et al.,
2011, Laarman and van de Pol, 2011, Evangelista et al., 2012]. In
swarming, each thread executes the same algorithm, but uses a
different exploration order.

We investigated what could be done with SCC-based emptiness
checks in a parallel setting.5 Although Gabow’s algorithm can be

5 E. Renault, A. Duret-Lutz, F. Kordon,
and D. Poitrenaud. Parallel explicit
model checking for generalized Büchi
automata. In TACAS’15, vol. 9035 of
LNCS, pp. 613–627. Springer, 2015

seen as an implementation of Dijkstra’s algorithm using a union-find,
we realized that in a parallel context the union-find could serve as a
global data structure in which all threads can contribute knowledge
about the partition of the states into different SCCs. This shared data
structure could be filled by threads running either some variant of
Dijkstra or of Tarjan; possibly mixing the two algorithms.

In a parallel setting with N threads, it makes sense to combine this
with the decomposition technique described Section 3.2. We tried
that6 using two different strategies:

6 E. Renault, A. Duret-Lutz, F. Kordon,
and D. Poitrenaud. Variations on
parallel explicit model checking for
generalized Büchi automata. Int. J.
on Software Tools for Technology Transfer
(STTT), 2016. DOI 10.1007/s10009-
016-0422-5

S1: if the property automaton can be decomposed into P ∈ {1, 2, 3}
automata, then each product will be checked using N

P threads.
In this context the decomposition improves the spread of the
swarming technique by ensuring that groups of threads focus on
behaviors of different strengths.

S2: use all N threads for the product KM ⊗ AT , then if no counterex-
ample is found, use N threads for KM ⊗ AW , and finally KM ⊗ AS.
In this strategy, the automata are ordered by strengths so that more
complex emptiness checks are avoided when possible. threads
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Figure 3.3: Speedups of running
Dijkstra with 1, 2, 4, 8, and 12 threads
(base). Without decomposition, or with
decomposition using one of the two
described strategies. All speedups are
relative to Dijkstra with 1 thread, and
averaged over 775 empty products
(plain lines) or 1074 non-empty product
(dashed lines).

Figure 3.3 shows the effect of these two strategies compared to
our base parallelization of Dijkstra, in a benchmark derived from
BEEM [Pelánek, 2007]. Strategy S1 is not used with 1 or 2 threads,
as the decomposition could produce 3 automata. Nonetheless, S1
appears good in both empty products (the full product had to be
explored to prove the formula satisfied) and non-empty product (one
thread found a counterexample and other threads could be stopped
immediately).

http://doi.org/10.1007/s10009-016-0422-5
http://doi.org/10.1007/s10009-016-0422-5




4
Generic acceptance

So far, we have discussed automata with generalized Büchi accep-
tance, or subclasses of this acceptance (like plain Büchi). In this
chapter we enlarge the notion of acceptance condition to also include
acceptance conditions such as co-Büchi, Rabin, Streett, or any Boolean
combination of those.

4.1 The HOA format

We shall specify the acceptance condition of an automaton as a
formula, using a syntax introduced in the Hanoi Omega Automaton
(HOA) format1. In this format, the acceptance condition is a formula

1 T. Babiak, F. Blahoudek, A. Duret-
Lutz, J. Klein, J. Křetínský, D. Müller,
D. Parker, and J. Strejček. The Hanoi
Omega-Automata format. In CAV’15,
vol. 9206 of LNCS, pp. 479–486.
Springer, 2015. See also http://adl.
github.io/hoaf/

over terms such as Inf(x) or Fin(x) indicating respectively that for a
run to be accepting the acceptance mark x should be visited infinitely
often, or finitely often.2

2 A similar formalism was already used
long ago by Emerson and Lei [1987]:

they write
∞
F (p0) ∧

∞
G(p1) when we

write Inf( 0 )∧Fin(¬ 1 ). Safra and Vardi
[1989] named automata with similar
acceptance conditions ‘‘EL automata’’.

Table 4.1 shows some examples.

Büchi: Inf(0)
generalized Büchi 3: Inf(0) ∧ Inf(1) ∧ Inf(2)
co-Büchi: Fin(0)
generalized co-Büchi 3: Fin(0) ∨ Fin(1) ∨ Fin(2)
Rabin (2 pairs): (Fin(0) ∧ Inf(1)) ∨ (Fin(2) ∧ Inf(3))
Streett (2 pairs): (Fin(0) ∨ Inf(1)) ∧ (Fin(2) ∨ Inf(3))
parity min even 5: Inf(0) ∨ (Fin(1) ∧ (Inf(2) ∨ (Fin(3) ∧ Inf(4))))

Table 4.1: Example of traditional
acceptance conditions, specified using
the HOA syntax.

$ ltl2tgba 'a U b'
HOA: v1
name: "a U b"
States: 2
Start: 1
AP: 2 "a" "b"
acc-name: Buchi
Acceptance: 1 Inf(0)
properties: trans-labels
explicit-labels state-acc
deterministic
stutter-invariant terminal

--BODY--
State: 0 {0}
[t] 0
State: 1
[1] 0
[0&!1] 1
--END-- 1 0

>ab̄

b
0

Inf( 0 )

Example 4.2: A Büchi automaton
generated for aU b in the HOA format,
and its graphical representation.

The HOA format was created jointly with other tools authors, as a
way to facilitate the interactions between our tools. Existing formats,
such as the DSTAR format of ltl2dstar [Klein and Baier, 2006] or
the XML-based format of Goal [Tsai et al., 2013] support different
acceptance conditions that can only be selected from a predefined
list of names. One particular motivation for HOA was that tools
like ltl3dra [Babiak et al., 2013b] and Rabinizer [Křetínský and
Esparza, 2012] had introduced a new acceptance condition that they
called generalized Rabin and were each using a custom output format
for this new type of automata. The HOA format was designed not to
be restricted to a list of known acceptance conditions: specifying the
acceptance condition using a formula rather than by name, so that
the semantics are always known.

http://adl.github.io/hoaf/
http://adl.github.io/hoaf/


24 contribution to ltl and ω-automata for model checking

4.2 Why use generic acceptance?

First, it should be pointed out that using more complex acceptance
conditions does not necessarily imply slower procedures. In the
context of model checking, we have already discussed the fact that
using generalized-Büchi instead of Büchi could be faster.3 Similarly, it 3 J.-M. Couvreur, A. Duret-Lutz, and

D. Poitrenaud. On-the-fly emptiness
checks for generalized Büchi automata.
In SPIN’05, vol. 3639 of LNCS, pp.
143–158. Springer, 2005

has been shown that using the generalized Rabin condition can speed
up probabilistic model checking by orders of magnitude [Chatterjee
et al., 2013, Komárková and Křetínský, 2014].

Second, not being tied to a particular acceptance condition makes
some ω-automata operations easier. For instance, the product or
union of two deterministic (and complete) automata is trivial to
define without the constraint of producing the same acceptance (as
we will discuss below).

Finally, providing algorithms that support generic acceptance
opens up a wide research area, the results of which can also benefit
to people working on specific subclasses of acceptance.

4.3 Transition-based acceptance revisited

In section 2.4 we discussed the fact that transition-based accep-
tance was not useful to weak Büchi automata, and therefore to
all persistence properties. That is true as long as it is clear we are
talking about automata with Büchi acceptance (even generalized).
However, persistence properties can benefit from transition-based
acceptance if we consider acceptance conditions involving Fin(x). The
typical example is the property FGa that can be reduced to a 1-state
(deterministic) transition-based co-Büchi automaton (Fig. 4.3).

>

a

a

0

Inf( 0 )

ā

aā

a

0

Fin( 0 )

0
ā

a

Fin( 0 )

Figure 4.3: Three minimal automata for
FGa, using: state-based Büchi acceptance,
state-based co-Büchi acceptance, and
transition-based co-Büchi acceptance.

4.4 Generic algorithms
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Figure 4.4: Depending on how we
define the acceptance condition of the
synchronous product of A and B we can
intersect or merge their languages.

Figure 4.4 shows two deterministic and complete Streett automata
A and B, along with their synchronous product. If we name C1 the
product equipped with the acceptance condition (Fin( 0)∨Inf( 1)) ∧
(Fin( 2)∨Inf( 3)), then C1 is a Streett automaton verifying L (C1) =

L (A)∩L (B). However, if we call C2 the product equipped with the
acceptance condition Fin( 0)∨Inf( 1) ∨ Fin( 2)∨Inf( 3), then C2 verifies
L (C2) = L (A) ∪L (B). Note that the acceptance condition of C2 is
not Streett, and does not correspond to any ‘‘traditional’’ acceptance
condition.

This construction for the intersection or union of two ω-automata
works regardless of the acceptance condition, and also on non-
deterministic automata. The union only requires complete automata.

$ S="ltl2dstar \
> --automata=streett"
$ ltldo "$S" -f 'G(a->Fb)' >A
$ ltldo "$S" -f 'GFb->GFa' >B
$ autfilt --product-and A B>C1
$ autfilt --product-or A B>C2

Example 4.5: How to construct the
two input automata of Fig. 4.4, using
ltl2dstar, and build the two flavors
of the product.

Complementing a deterministic and complete automaton is as
simple as complementing its acceptance condition and applying the
rules ¬Fin(x) ≡ Inf(x) and ¬Inf(x) ≡ Fin(x).

Completing an ω-automaton is trickier than it sounds: after a
sink state is added, it should be given a set of acceptance marks
that does not satisfy the acceptance condition. An automaton can
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therefore be completed without changing its acceptance condition
unless that acceptance is a tautology. If the acceptance is a tautology,
like Fin(0) ∨ Inf(0), then the input automaton contains only accepting
cycles, and the output automaton can be given the Büchi condition in
order to mark all states except the sink as accepting.

$ echo G a | ltl2dstar - - |
> autfilt -D -C -S \
> --stats='in %S, out %s'
in 3, out 2

Example 4.6: ltl2dstar 0.5.3 trans-
lates Ga into a 3-state complete deter-
ministic state-based Rabin automaton.
Passing this automaton to autfilt
for simplification with instructions
to output a deterministic (-D) and
complete (-C) automaton with state-
based acceptance (-S), yields a 2-state
automaton. In this case, autfilt
applied the algorithm of Dax et al.
[2007] (generalized to work on Rabin
automata) to detect that the input
automaton represents an obligation
property and can therefore be mini-
mized into a 1-state weak deterministic
Büchi automaton. This automaton has
2 states once completed.

Many of the simplification algorithms that we discussed in
Chapter 2 (such as simulation-based reductions, WDBA minimiza-
tion, SCC-based simplifications) can be easily adapted to generic
acceptance: in Spot they are therefore implemented for automata
with arbitrary acceptance (Example 4.6).

For algorithms that are harder to generalize (e.g., determinization,
emptiness checks), it is always possible to build an equivalent au-
tomaton with a more constrained acceptance condition, as discussed
in the next section.

4.5 Fin-less acceptance

The SCC-based emptiness-check discussed in Chapter 3 were
presented in the context of automata using generalized Büchi
acceptance. However, these emptiness checks will also work with
automata whose acceptance condition is a disjunction of generalized
Büchi acceptance conditions. We call this subclass of acceptance
conditions ‘‘Fin-less acceptance’’, because is it simply a positive Boolean
combination of Inf(x) terms.

A simple transformation can be used to transform an automaton
with arbitrary acceptance condition into an automaton with Fin-less
acceptance. Let us assume, without loss of generality4, that the input

4 If the input acceptance does not satisfy
these assumptions, it can be easily
modified by adding some Inf(z) terms
and adding the mark z everywhere.

acceptance condition is under the following disjunctive normal form:∨
i

(
Fin(xi1) ∧ . . . ∧ Fin(xini ) ∧ Inf(yi1) ∧ . . . ∧ Inf(yimi )

)
where ni ≥ 0 and mi ≥ 1 for all i, and that the sets of Inf marks of
each clause Yi = {yi1, . . . , yimi} are such that no set is a superset of
another one: ∀i,@j, Yi ⊆ Yj.

0
a

1
b

2
c

b
(Fin( 0 )∧Inf( 1 ))∨(Fin( 1 )∧Inf( 0 ))∨Inf( 2 )

$ autfilt --remove-fin in >out

a

b
2
c

b

1
b

c

b

0
a c

b

c

c

b

b
a

Inf( 0 )∨Inf( 1 )∨Inf( 2 )

Figure 4.7: Transformation of the top
automaton into an equivalent automaton
(at the bottom) with Fin-less acceptance.
The dashed transitions correspond to
non-deterministic jumps added between
the original automaton and its clones,
each recognizing a different clause of
the acceptance condition.

Under these assumptions, the input automaton can be transformed
into another automaton with

∨
i
(
Inf(yi1) ∧ . . . ∧ Inf(yimi )

)
as accep-

tance condition. The transformation is as follows: For each SCC Cj of
the original automaton and each clause i whose Fin marks are present
in Cj, create a clone Dij of the SCC Cj, remove from that clone all
transitions (or states) that have some marks in Xi = {xi1, . . . , xini}, and
add at least one non-deterministic jump from Cj to Dij per elementary
cycle of Dij. Finally, in the SCCs that correspond to the original
automaton, leave only the marks that belong to some Xi for which
Yi = ∅.

To avoid the complexity of enumerating the elementary cycles of
Dij, our implementation creates one non-deterministic jump each time
a back-edge is found during a depth-first search of Cj. This potentially
creates more nondeterministic jumps than needed. Fig. 4.7 gives an
example of such transformation (note that the bottom right state
generated by this construction is superfluous).
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Spot implements a variant of this construction that guarantees that
if the input acceptance needs to be ‘‘fixed’’ to satisfy the assumptions,
the output acceptance uses at most one additional mark. Additionally,
we have implemented some transformations that are specific to some
subclasses of acceptance conditions and that are automatically used
when applicable: for instance state-based Rabin automata can be
converted to Büchi automata, preserving determinism whenever
possible, using a variant of an algorithm by Krishnan et al. [1994].

As already mentioned, automata with Fin-less acceptance condi-
tions can be easily checked for emptiness using readily available
emptiness checks, such as those discussed in Chapter 3. Those
emptiness checks are not appropriate for automata that use Fin.
The emptiness check of automata with generic acceptance has been
considered long ago: Emerson and Lei [1985] studied the problem
of detecting fair states in a finite system under a fairness hypotheses
defined as a Boolean function using operators similar to Inf and Fin.
Their result translates immediately to the emptiness check problem
for ω-automata: emptiness check with generalized acceptance is
NP-complete, but they provide a polynomial algorithm for a large
subclass of acceptance conditions: all conditions that can be encoded
as a disjunction of Streett acceptance (this encompasses Rabin and
generalized-Rabin).

We plan to investigate these ‘‘generic emptiness checks’’ in
the future. In the meantime, using our Fin-removal procedure in
front of more traditional emptiness checks is enough to provide a
usable system. The only part of our procedure that does not have a
polynomial complexity is the conversion of the acceptance condition
into disjunctive normal form, which we implement using binary
decision diagrams to prune redundant terms.

$ autfilt --tgba in >out
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b
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0
b

c

b

0
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c

c

b

b
a

Inf( 0 )

Figure 4.8: Converting the automaton
of Figure 4.7 to use generalized Büchi
acceptance, or in this case, Büchi
acceptance.

Finally, it should be noted that a Fin-less acceptance can be
converted into generalized Büchi acceptance by first converting
it into conjunctive normal form, and then replacing each clause
Inf(x1i) ∨ . . . ∨ Inf(xini ) by a single Inf(yi) where yi is a mark that
should label all transitions (or states) marked with any of x1i, . . . , x1ni .
In the case of the automaton of Figure 4.7, the resulting acceptance is
already a single-clause CNF, so it can be trivially converted into Büchi
acceptance as in Figure 4.8.

4.6 Example tool benefiting from generic acceptance conditions

Spot distributes a tool called ltlcross5, that started as a reim- 5 A. Duret-Lutz. Manipulating LTL for-
mulas using Spot 1.0. In ATVA’13, vol.
8172 of LNCS, pp. 442–445. Springer,
2013

plementation of the no-longer-maintained lbtt: a randomized
test-bench for translators of LTL formulas into (generalized) Büchi
automata [Tauriainen and Heljanko, 2002]. The current version of
ltlcross of course supports arbitrary acceptance conditions. It
is regularly used to test Spot’s translation algorithms, but also has
been used for instance by the authors of ltl3ba [Babiak et al., 2012],
ltl3dra [Babiak et al., 2013b], ltl2dstar [Klein and Baier, 2006,
2007], or Rabinizer3 [Komárková and Křetínský, 2014] to test
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$ genltl --eh=9 | ltlcross --verbose -D modella ltl2tgba
-:1: G((p0) & (X(F((p1) & (X(F((p2) & (X(F(p3))))))))))
Running [P0]: modella 'lcr-i0-pMSiff' 'lcr-o0-8NvGid'
Running [P1]: ltl2tgba -H 'G((p0) & (X(F((p1) & (X(F((p2) & (X(F(p3))))))))))'>'lcr-o1-Dsr1mb'
Running [N0]: modella 'lcr-i0-BZJdu9' 'lcr-o0-eVhqB7'
Running [N1]: ltl2tgba -H '!(G((p0) & (X(F((p1) & (X(F((p2) & (X(F(p3)))))))))))'>'lcr-o1-vDjcJ5'
info: collected automata:
info: P0 (1 st.,0 ed.,1 sets) deterministic
info: N0 (10 st.,18 ed.,1 sets)
info: P1 (5 st.,19 ed.,3 sets)
info: N1 (5 st.,9 ed.,1 sets)
Performing sanity checks and gathering statistics...
info: complementing non-deterministic automata via determinization...
info: N0 (10 st.,18 ed.,1 sets) -> (27 st.,432 ed.,2 sets) Comp(N0)
info: P1 (5 st.,19 ed.,3 sets) -> (16 st.,136 ed.,1 sets) Comp(P1)
info: N1 (5 st.,9 ed.,1 sets) -> (8 st.,128 ed.,2 sets) Comp(N1)
info: getting rid of any Fin acceptance...
info: Comp(N0) (27 st.,432 ed.,2 sets) -> (38 st.,220 ed.,2 sets)
info: Comp(P1) (16 st.,136 ed.,1 sets) -> (30 st.,163 ed.,1 sets)
info: Comp(N1) (8 st.,128 ed.,2 sets) -> (14 st.,55 ed.,2 sets)
info: check_empty P0*N0
info: check_empty Comp(N0)*Comp(P0)
error: Comp(N0)*Comp(P0) is nonempty; both automata accept the infinite word

cycle{p0 & !p1 & p2; p0 & !p1 & p3; p0 & p1}
info: check_empty P0*N1
info: check_empty P1*N0
info: check_empty P1*N1
info: check_empty Comp(N1)*Comp(P1)

The formula to translate

Positive and negative translations are obtained from the
two translators. Here ltl2tgba outputs generalized
Büchi acceptance with up to 3 sets, and modella
outputs Büchi automata. Note that P0 has no edges.

Complementing by deter-
minization creates ‘‘parity
min even’’ automata. This is
equivalent to ‘‘co-Büchi’’ for
1 acceptance set, and ‘‘1-pair
Streett’’ for two sets.

Removing Fin sets as seen
on Fig. 4.7.

Testing various products for emptiness, a bug is quickly
found: the product Comp(N0)*Comp(P0) should have
been empty. The issue obviously comes from the fact
that automaton P0 has no edge, so it recognizes the
empty language.

Example 4.9: Verbose execution of
ltlcross -D finding a bug in modella
1.5.9.recent versions of their tools.

Given a formula ϕ and a list of translators T1, . . . , Tm producing
ω-automata from formulas, ltlcross calls each tool on ϕ and its
negation, yielding a positive automaton Pi = Ti(ϕ) and a negative
automaton Ni = Ti(¬ϕ).

Now ltlcross (like lbtt did for generalized Büchi) will make
sure that L (Pi ⊗ Nj) = ∅ for all i and j. It could be the case that
Pi is a Rabin automaton, and that Nj is a Streett automaton, but
clearly building the product Pi ⊗ Nj and testing its emptiness for
arbitrary acceptance condition can be done using the techniques
discussed in this chapter. However, this test is not enough to prove
that all translators produce equivalent automata: for instance if
one translator always returns empty automata, this test will pass.
Therefore ltlcross also tests L (Pi ⊗ Ni) = ∅: when Pi and Ni

are deterministic, complementing them is as simple as completing
the automaton and complementing its acceptance condition. For
non-deterministic automata, ltlcross offers the (potentially costly)
option to determinize them, as illustrated by Figure 4.9.

Our determinization procedure currently takes transition-based
Büchi automata as input (so we may have some preprocessing to
do if the input has a different acceptance), and outputs automata
with transition-based parity acceptance. It mixes the construction
of Redziejowski [2012] with some optimizations of ltl2dstar [Klein
and Baier, 2006, 2007] and a few of our own6. It would be nice to be 6 Yet unpublished.

able to determinize automata with arbitrary acceptance conditions;
Varghese [2014] offers some clues.
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SAT-based minimization of deterministic automata

LTL Synthesis [Finkbeiner and Schewe, 2005] and Probabilistic LTL
Model Checking [Baier and Katoen, 2008] are two areas where it is
useful to express linear-time temporal properties as deterministic
ω-automata. Because it is well known that not all Büchi automata
can be made deterministic, these applications use other acceptance
conditions such as Rabin or Streett.

In this chapter we discuss the minimization of such deterministic
automata, with arbitrary acceptance conditions. This is the result of
an ongoing collaboration with Soheib Baarir.

5.1 Existing results

Minimizing deterministic Büchi automata, deterministic co-Büchi
automata, and deterministic parity automata is known to be NP-
complete [Schewe, 2010], so we should not hope for efficient mini-
mizations that work for arbitrarily complex acceptance conditions.

However, and as already pointed out on page 13, minimizing
automata that are weak and deterministic can be done in polynomial
time [Löding, 2001]. For this subclass of automata, it does not even
matter what the acceptance condition is: any (inherently) weak and
deterministic can be rewritten as a Büchi or co-Büchi automaton
without changing the transition structure.

For more complex automata, we do not know of efficient min-
imization procedures. Tools usually apply simplifications that do
not guarantee a minimal result. Being able to see how far those
simplifications are from the minimal automata would provide a good
help to improve them.

5.2 Minimization via SAT-solving

A technique (and tool) for minimizing (state-based) deterministic
Büchi automata was first presented by Ehlers [2010]. His tool, called
DBAminimizer, will take deterministic Rabin automata produced by
ltl2dstar, will convert it into a deterministic Büchi automaton if it
exists [Krishnan et al., 1994], and finally will minimize the resulting
Büchi automaton using a SAT-solver.

The tool implements a minimization loop, in which each iteration
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tries to synthesize an automaton that has one less state than the
previous automaton.

The SAT-based synthesis of an equivalent automaton works as
follows. A set of variables denoting the existence of each possible
transition and the acceptance of each state in the ‘‘candidate’’
automaton. These variables are used to derive the values of another
set of variables encoding a product between the reference automaton,
and the candidate automaton. Finally, constraints are added such
that for each cycle of the product automaton, its projection on the
reference automaton is accepting if and only if its projection on the
candidate automaton is also accepting.

5.3 Our improvements

We added several improvements to the above minimization technique
when we implemented it in Spot.

• First, Spot is able to detect obligation properties, so we can avoid
SAT-solvers and use a polynomial minimization in this case.

• Second, while Spot will not always produce a deterministic Büchi
automaton from an LTL formula when such automaton exists, it
will often do so. And since the deterministic automata produced
this way are usually much smaller than the Rabin automata
produced by ltl2dstar from determinization, it made sense to
first try that, and to adapt the minimization technique to transition-
based acceptance.

• Third, we improve Ehlers [2010]’s encoding by adding several
optimizations to reduce the number of variables and clauses
needed by the encoding. Some of these optimizations are based
on the knowledge of the strongly connected components of the
original automaton (there is no need to track cycles outside of
those), and knowing which strongly connected components of the
original automaton are weak.

• Finally, we generalize the technique to deal with transition-based
generalized Büchi acceptance1, and then arbitrary acceptance

1 S. Baarir and A. Duret-Lutz. Mech-
anizing the minimization of deter-
ministic generalized Büchi automata.
In FORTE’14, vol. 8461 of LNCS, pp.
266–283. Springer, 2014

conditions2. These generalizations come at the cost of additional

2 S. Baarir and A. Duret-Lutz. SAT-
based minimization of deterministic
ω-automata. In LPAR’15, vol. 9450 of
LNCS, pp. 79–87. Springer, 2015

clauses and variables.

Currently, the implementation has two different encodings: a
simple one that works with deterministic transition-based Büchi
automata as input and output, and a more general encoding that
can input deterministic automata with an arbitrary acceptance, and
output possibly another arbitrary acceptance. Both encodings can be
configured to use state-based acceptance if needed.

$ ltlfilt -l -f 'GFa->GFb' |
> ltl2dstar - dra
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$ a='acc="parity max even 3"'
$ autfilt -S \
> --sat-min="$a,colored" dra
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āb̄

b
a ∨ b̄

b̄

1 0

2
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Figure 5.1: Minimization of an
automaton output by ltl2dstar
(the top one), using various acceptance
conditions.

Figure 5.1 shows how a 4-state deterministic Rabin automaton
constructed by ltl2dstar can be minimized into a deterministic
Rabin automaton with 3 states if state-based acceptance is used,
or just 1-state if transition-based acceptance is used. The bottom
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example of Figure 5.1 shows how we can also force an arbitrary
acceptance condition on the output: here we want parity acceptance
with numbers 0, 1, 2 such that a run is accepting if the maximum
number seen infinitely often is even. The colored option constrains
each state to belong to exactly one acceptance set (this is translated
into additional constraints for the SAT solver), which is what one
expects from a parity automaton.

5.4 Applications

Let us assume an alphabet of size |Σ|. To minimize an automaton that
uses an n states and m acceptance sets into another automaton that
uses n′ states and m′ acceptance sets, our SAT encoding requires at
most O(n2 × n′2 × 2m+m′

) variables and O(n2 × n′3 × 22m+m′ × |Σ|)
clauses.

For this reason the minimization procedure is not very practical for
automata with a large number of states, or more that 5–6 acceptance
sets. However, automata used in model checking are usually quite
small, so attempting a SAT-based minimization can be worth a try.

Our main use case however, is to ‘‘mine’’ sub-optimal automata
in the output of other tools. Indeed, it is easier to improve an LTL
translator when you are provided with a list of formulas for which
the output is far from optimal. Our papers contain experiments
showing lists of formulas for which existing translators fail to produce
reasonably-sized automata: looking at those automata can suggest
improvements to the algorithms.

$ ltl2tgba '(GFa&GFb) | GFc'
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1

c
01

ab
0 1

ab̄ 0

āb
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$ ltl2tgba 'GF(a|c)&GF(b|c)'

c ∨ ab
0 1

ab̄c̄ 0

ābc̄
1

āb̄c̄

Figure 5.2: The translation offered
for (GFa ∧ GFb) ∨ GFc is inferior to
that given for the equivalent formula
GF(a ∨ c) ∧GF(b ∨ c).

As a simple example, we discovered that Spot translates the LTL
formula ϕ = (GFa ∧ GFb) ∨ GFc into a 3-state non-deterministic
transition-based generalized Büchi automaton with 2 acceptance
sets (Fig. 5.2). However, after determinizing this automaton and
minimizing it, we discovered that there exists a 1-state deterministic
automaton with the same acceptance. The equivalent formula GF(a ∨
c) ∧ GF(b ∨ c) is translated to the minimal automaton directly.

This suggests that implementing LTL simplification rules that
distribute through GF terms would be an improvement. But that is
not the only option.

Since this technique works with arbitrary acceptance conditions
as input and output, it can also be used to search of sub-optimal au-
tomata produced by other algorithms such as acceptance conversions,
and other transformations.
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Model checking of stutter-invariant properties

An ω-regular language is stutter-invariant if it is closed under the
operation that duplicates some letter in a word or that removes some
duplicate letter [Etessami, 1999].

We say that a formula is stutter-invariant if its language is. Stutter-
invariant formula form an important subclass of temporal properties,
as they enable model checkers to apply partial-order reduction
techniques (e.g., [Clarke et al., 2000, Ch. 10] or [Baier and Katoen,
2008, Ch. 8]) to reduce the set of behaviors they must explore. Such
partial-order reductions are implemented by explicit model checkers
such as Spin [Holzmann, 2003, Ch. 9], LTSmin [Laarman et al., 2014],
or DiVinE [Barnat et al., 2010b], to cite a few. Detecting stutter-
invariant properties has also uses beyond partial-order reductions;
for instance it is used to optimize the determinization construction
implemented in ltl2dstar [Klein and Baier, 2007].

In this chapter, we present two results related to stutter invariance:
the first is an efficient algorithm for deciding whether a property is
stutter-invariant, the second is a generalization of a type of automata
known as ‘‘testing automata’’ that can only represent stutter-invariant
properties.

6.1 Stutter-invariance checks

$ ltlfilt --remove-x \
> -f 'F(a&X(!a&b))'

F(a ∧ ((a ∧ (aU(¬a ∧ b))∧ ((¬bU¬a)∨
(bU¬a))) ∨ (¬a ∧ (¬aU(a ∧ ¬a ∧ b)) ∧
((¬bU a)∨ (bU a)))∨ (b∧ (bU(¬a∧ b∧
¬b)) ∧ ((¬aU¬b) ∨ (aU¬b))) ∨ (¬b ∧
(¬bU(¬a ∧ b)) ∧ ((¬aU b) ∨ (aU b))) ∨
(¬a ∧ b ∧ (G¬a ∨Ga) ∧ (G¬b ∨Gb))))

$ ltlfilt --remove-x \
> -f 'F(a&XX(!a&b))'

F(a ∧ ((a ∧ ((¬bU¬a) ∨ (bU¬a)) ∧
(aU(¬a ∧ ((a ∧ (aU(¬a ∧ b)) ∧
((¬bU¬a) ∨ (bU¬a))) ∨ (¬a ∧
(¬aU(a ∧ ¬a ∧ b)) ∧ ((¬bU a) ∨
(bU a))) ∨ (b ∧ (bU(¬a ∧ b ∧ ¬b)) ∧
((¬aU¬b) ∨ (aU¬b))) ∨ (¬b ∧
(¬bU(¬a ∧ b)) ∧ ((¬aU b) ∨ (aU b))) ∨
(¬a ∧ b ∧ (G¬a ∨ Ga) ∧ (G¬b ∨
Gb)))))) ∨ (¬a ∧ ((¬bU a) ∨ (bU a)) ∧
(¬aU(a ∧ ((a ∧ (aU(¬a ∧ b)) ∧
((¬bU¬a) ∨ (bU¬a))) ∨ (¬a ∧
(¬aU(a ∧ ¬a ∧ b)) ∧ ((¬bU a) ∨
(bU a))) ∨ (b ∧ (bU(¬a ∧ b ∧ ¬b)) ∧
((¬aU¬b) ∨ (aU¬b))) ∨ (¬b ∧
(¬bU(¬a ∧ b)) ∧ ((¬aU b) ∨ (aU b))) ∨
(¬a ∧ b ∧ (G¬a ∨ Ga) ∧ (G¬b ∨
Gb))))))∨ (b ∧ ((¬aU¬b)∨ (aU¬b))∧
(bU(¬b ∧ ((a ∧ (aU(¬a ∧ b)) ∧
((¬bU¬a) ∨ (bU¬a))) ∨ (¬a ∧
(¬aU(a ∧ ¬a ∧ b)) ∧ ((¬bU a) ∨
(bU a))) ∨ (b ∧ (bU(¬a ∧ b ∧ ¬b)) ∧
((¬aU¬b) ∨ (aU¬b))) ∨ (¬b ∧
(¬bU(¬a ∧ b)) ∧ ((¬aU b) ∨ (aU b))) ∨
(¬a ∧ b ∧ (G¬a ∨ Ga) ∧ (G¬b ∨
Gb)))))) ∨ (¬b ∧ ((¬aU b) ∨ (aU b)) ∧
(¬bU(b ∧ ((a ∧ (aU(¬a ∧ b)) ∧
((¬bU¬a) ∨ (bU¬a))) ∨ (¬a ∧
(¬aU(a ∧ ¬a ∧ b)) ∧ ((¬bU a) ∨
(bU a))) ∨ (b ∧ (bU(¬a ∧ b ∧ ¬b)) ∧
((¬aU¬b) ∨ (aU¬b))) ∨ (¬b ∧
(¬bU(¬a ∧ b)) ∧ ((¬aU b) ∨ (aU b))) ∨
(¬a ∧ b ∧ (G¬a ∨ Ga) ∧ (G¬b ∨
Gb)))))) ∨ ((G¬a ∨ Ga) ∧ (G¬b ∨ Gb) ∧
((a ∧ (aU(¬a ∧ b)) ∧ ((¬bU¬a) ∨
(bU¬a))) ∨ (¬a ∧ (¬aU(a ∧ ¬a ∧ b)) ∧
((¬bU a)∨ (bU a)))∨ (b∧ (bU(¬a∧ b∧
¬b)) ∧ ((¬aU¬b) ∨ (aU¬b))) ∨ (¬b ∧
(¬bU(¬a ∧ b)) ∧ ((¬aU b) ∨ (aU b))) ∨
(¬a ∧ b ∧ (G¬a ∨Ga)∧ (G¬b ∨Gb))))))
Example 6.1: Etessami’s procedure on
two formulas that differ by one X.

It is widely known that any LTL formula that does not use the
next-step operator X (a.k.a. an LTL\X formula) is stutter-invariant;
this check is trivial to implement. Unfortunately there exist formulas
using X that are stutter-invariant and whose usage is desirable [Păun
and Chechik, 2003]. For instance, the stutter-invariant formula F(a ∧
X(¬a ∧ b)) specifies that b will be true at a moment where a was just
switched off.

Dallien and MacCaull [2006] built a tool that recognizes a stut-
tering LTL formula if (and only if) it matches one of the patterns
of Păun and Chechik [2003]. This syntactical approach is efficient, but
incomplete, as not all stutter-invariant formulas follow the recognized
patterns.

A more definite procedure was given by Peled and Wilke [1997] as
a construction that inputs an LTL formula ϕ with |ϕ| symbols and n
atomic propositions, and outputs an LTL\X formula ϕ′ with O(4n|ϕ|)
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symbols, such that ϕ and ϕ′ are equivalent iff they represent a stutter-
invariant property. This construction, which proves that any stutter-
invariant formula can be expressed without X, was later improved to
nO(k)|ϕ| symbols, where k is the X-depth of ϕ, by Etessami [2000] (see
Example 6.1). If a disjunctive normal form is desired, Tian and Duan
[2009] give a variant with size O(n2n|ϕ|). To decide if an LTL formula
ϕ is stutter-invariant, we build ϕ′ using one of these constructions,
and then check the equivalence of ϕ and ϕ′. This equivalence check
can be achieved by translating these formulas into automata.

$ ltlfilt --remove-x -f "$f" \
> --equivalent-to "$f" -c
1
$ ltlfilt --remove-x -f "$g" \
> --equivalent-to "$g" -c
0

Example 6.2: Continuing the exam-
ple of Fig 6.1, we can test whether a
formula is stutter-invariant by testing
whether it is equivalent to its rewriting
by Etessami’s procedure.This approach, based on Etessami’s procedure, was implemented

in old versions of Spot1 (and can still be performed explicitly, as
1 A. Duret-Lutz. Manipulating LTL for-
mulas using Spot 1.0. In ATVA’13, vol.
8172 of LNCS, pp. 442–445. Springer,
2013

in Example 6.2). However, two issues motivated us to look into
alternative directions:

• As seen in Example 6.1, Etessami’s rewriting function (called
τ′) can generate very large formulas. Testing equivalence via
translation of these formulas can therefore be very costly.

• Etessami’s procedure only works for LTL, but we wanted to decide
the stutter invariance of PSL2 properties as well. Dax et al. [2009], 2 Cf. Sec. 7.2 p. 40.

proposed a rewriting technique that is to PSL what Etessami’s
procedure is to LTL, however after implementing it we discovered
it was incorrect, and no fix has been found so far.

Instead we took inspiration from the procedure used in ltl2dstar
[Klein and Baier, 2007], where stutter-invariance is decided at the
automaton level. Given an formula ϕ, they first build an equivalent
Büchi automaton Aϕ, then they construct an automaton A′

ϕ that
accepts the smallest stutter-invariant language over-approximating
the language of ϕ. The property ϕ is stutter-invariant iff Aϕ and A′

ϕ

have the same language, which can be checked by ensuring that the
product A′

ϕ ⊗ A¬ϕ has an empty language.
In a paper published at Spin’153, we proposed several alternatives

3 T. Michaud and A. Duret-Lutz.
Practical stutter-invariance checks for
ω-regular languages. In SPIN’15, vol.
9232 of LNCS, pp. 84–101. Springer,
2015

to this construction.
An easy intuition can be provided by seeing the construction of

A′
ϕ as A′

ϕ = cl(sl(Aϕ)), where sl (for ‘‘self-loopize’’) transforms the
automaton so it accepts all the original words plus those you can
obtain by duplicating some letters, and cl (for ‘‘closure’’) transforms
the automaton so it additionally accepts words obtained by omitting
duplicate letters (Fig 6.3).
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Figure 6.3: Examples of application of
the cl and sl operators.

Because L (cl(sl(Aϕ)) ⊆ L (Aϕ) by construction, testing the
equivalence of the two automata can be done by testing just that
L (A¬ϕ ⊗ cl(sl(Aϕ))) = ∅. In this setup, our main result can be
expressed as follows:

Theorem S. Let ϕ be a property expressed as a ω-automaton A, and assume
we know how to obtain A. Testing ϕ for stutter-invariance is equivalent to
testing the emptiness of any of the following products: cl(sl(A)) ⊗ A,
sl(cl(A))⊗ A, cl(sl2(A))⊗ A, sl2(cl(A))⊗ A, sl(A)⊗ sl(A), sl2(A)⊗
sl2(A), or cl(A)⊗ cl(A).



model checking of stutter-invariant properties 35

|AP| = 1 |AP| = 2 |AP| = 3

L (Aτ′(ϕ) ⊗ A¬ϕ) = ∅ ∧L (A¬τ′(ϕ) ⊗ Aϕ) = ∅ 0.32s 40.62s >4801s (OOM)
L (A¬(ϕ↔τ′(ϕ))) = ∅ 1.18s 3347.92s
L (cl(sl(Aϕ))⊗ A¬ϕ) = ∅ 0.61s 1.91s 6.14s
L (sl(cl(Aϕ))⊗ A¬ϕ) = ∅ 0.61s 1.91s 6.10s
L (cl(sl2(Aϕ))⊗ A¬ϕ) = ∅ 0.61s 1.89s 5.97s
L (sl2(cl(Aϕ))⊗ A¬ϕ) = ∅ 0.61s 1.91s 5.97s
L (sl(Aϕ)⊗ sl(A¬ϕ)) = ∅ 0.61s 1.92s 6.18s
L (sl2(Aϕ)⊗ sl2(A¬ϕ)) = ∅ 0.61s 1.90s 5.99s
L (cl(Aϕ)⊗ cl(A¬ϕ)) = ∅ 0.60s 1.89s 5.94s

number of stutter-invariant formulas found 234 162 112

Table 6.4: Time to classify 500 random
LTL formulas that all use the X operator
and have the given number of atomic
propositions.In this theorem, sl2 is an alternative construction that produces

automata with the same language as those output by sl.
The surprise of this theorem is in the last three products: it is

indeed possible to test stutter-invariance by implementing any one
of the three functions cl, sl, sl2, while previous work is equivalent to a
combination of two [Klein and Baier, 2007].

In the context of deciding stutter invariance for LTL formulas, our
experimental benchmark in the case of LTL formulas showed all the
decision procedures of this theorem are orders-of-magnitude faster
than our previous decision procedure based on Etessami’s rewriting
(Table 6.4). The reason is that all these procedures spend most of
their time translating the LTL formulas in automata, so it is better to
keep these formulas short.

$ ltlfilt --stutter-inv \
> -f "$f" -f "$g"
F(a & X(!a & b))

Example 6.5: Continuing the ex-
ample of Fig 6.1 and Fig 6.2: the
--stutter-invariant option filters
stutter-invariant formulas using the last
check of Theorem S.

If we ignore the translation time, which is common to all the checks
mentioned in Theorem S, we observe that L (cl(Aϕ)⊗ cl(A¬ϕ)) = ∅
is the most efficient in our implementation (see Table 6.6). As a
consequence, this is now the default stutter-invariance check in Spot.

6.2 Generalized Testing Automata

This section was the subject of A. E. Ben Salem’s Ph.D. thesis [2014]
which I co-supervised with F. Kordon. However, the presentation
of the material, using the notations of Chapter 4 to discuss the

Table 6.6: Cross-comparison of the
checks of Theorem S on 40000 random
LTL formulas with X. A value v on line
(x) and column (y) indicates that there
are v cases where check (x) was more
than 10% slower than check (y). In other
words, a line with many small numbers
indicates a check that is usually faster
than the others.

run time
(1) (2) (3) (4) (5) (6) (7) total median

L (cl(sl(Aϕ))⊗ A¬ϕ) = ∅ (1) 24615 38158 38593 1999 35200 39660 45.8s 162µs
L (sl(cl(Aϕ))⊗ A¬ϕ) = ∅ (2) 244 38343 38832 91 34965 39813 34.9s 135µs
L (cl(sl2(Aϕ))⊗ A¬ϕ) = ∅ (3) 536 419 7413 67 10297 29495 11.0s 57µs
L (sl2(cl(Aϕ))⊗ A¬ϕ) = ∅ (4) 264 163 671 30 10223 28880 10.2s 55µs
L (sl(Aϕ)⊗ sl(A¬ϕ)) = ∅ (5) 33410 39112 39746 39909 38403 39977 59.4s 208µs
L (sl2(Aϕ)⊗ sl2(A¬ϕ)) = ∅ (6) 2689 2564 16896 18621 580 26693 11.7s 64µs
L (cl(Aϕ)⊗ cl(A¬ϕ)) = ∅ (7) 16 13 3487 2993 11 2409 7.3s 39µs
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acceptance condition, is new.
Testing automata were introduced by Hansen et al. [2002] as an

alternative to Büchi automata for the automata theoretic approach
to model checking (Fig. 1.1, p. 5). Contrary to Büchi automata which
test the values of the different atomic propositions of the system
(either ‘‘light is on’’ or ‘‘light is off’’), testing automata may only
detect the changes of those values (‘‘the status of light was changed’’).
Testing automata should remain in their current state as long as
none of the observed properties of the system change. This has two
consequences: first, testing-automata naturally capture only stutter-
invariant properties, and second, they need two forms of accepting
runs. They use a Büchi acceptance condition to accept some runs
where atomic propositions are changing infinitely often, and another
‘‘livelock acceptance condition’’ to capture runs where no observed
atomic proposition change.

$ ltl2tgta --ta 'a U Gb'

ab

ab̄

āb

{b}{b}

{a, b}
{a}

{a}

{a}

{a}

1

1

0 1

Figure 6.7: A testing automaton for
aUGb. The initial state should be
selected according to the initial value of
a and b in the system. Transitions are
labeled by sets of variables whose value
must change in the system. If a and b
do not change in the system, the testing
automaton stutters in the current state.
Infinite runs that stutter continuously in
a 1 -state are ‘‘livelock accepting’’. Runs
that do not stutter continuously can also
be Büchi-accepted if they visit 0 -states
infinitely often.

Figure 6.7 shows an example of testing automata and presents the
two different acceptances. Because the two forms of acceptance have
to distinguish runs that stutter continuously from those that do not,
the acceptance condition cannot precisely be expressed in terms of the
Fin and Inf operators introduced in Chapter 4. However, if we make
the stuttering explicit in the automaton and use transition-based
acceptance, as in Figure 6.8, then the acceptance condition is similar
to a Streett condition with a single pair.

ab

ab̄

āb

∅
1

{b}{b}

{a, b}
∅

∅
1

{a}

{a}

{a}

{a}0

∅
1

Inf( 0 ) ∨ Fin(¬ 1 )

Figure 6.8: If stuttering actions are
explicitly represented using ∅-labeled
self-loops, then the livelock acceptance
can be specified as visiting finitely many
transitions not labeled by 1 .

Algorithms for constructing testing automata from LTL formulas
(via Büchi automata), for constructing the product between a Kripke
structure and a testing automaton, and for testing their emptiness
were discussed by Hansen et al. [2002] and Geldenhuys and Hansen
[2006]. In the general case, the emptiness check requires two passes:
one pass for testing Büchi acceptance, and one pass for testing livelock
acceptance. However, to prove the absence of ∅-labeled cycles, one
has to make a dedicated pass on the product between the Kripke
structure and the testing automaton.

Our first contribution was to implement testing automata, and
reproduce the results observed by Geldenhuys and Hansen [2006]:
although testing automata are usually larger than the corresponding
Büchi automata, they usually yield smaller products with the system,
and counterexamples are found quicker on average.4 However,

4 A. E. Ben Salem, A. Duret-Lutz, and
F. Kordon. Generalized Büchi automata
versus testing automata for model
checking. In SUMO’11, vol. 726 of
Workshop Proceedings. CEUR, 2011

proving the absence of counterexample takes more time due to the
2-pass emptiness check. We also compared the testing automaton
approach against one using transition-based generalized Büchi
automata and found similar results.

However, once the stuttering self-loops are explicitly represented,
one can more easily realize that the Fin(¬ 1) acceptance can be
removed from the automaton by adding a new state dedicated to
accepting stuttering behaviors, and making non-deterministic jumps
into this state (Fig. 6.9).
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{a}

{a}

{a}0
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{a}

{b},{a, b}

Inf( 0 )

Figure 6.9: A 1-pass testing automaton
can be obtained by using non-
determinism (dashed lines) to capture
stuttering runs into a dedicated state.

This construction should look similar to the Fin-removal of
Section 4.5, except we introduce non-deterministic jumps before
entering a livelock state so that the non-deterministic jumps are not
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labeled by ∅: the only reason for that is to stay compatible with the
testing automaton formalism, where stuttering should not move
the automaton to another state. Note that states that are both Büchi
accepting and livelock accepting can be fixed without introducing a
new transition.

In practice, the product between these 1-pass testing automata
and a Kripke structure can be seen as a Büchi automaton labeled
by changesets, and can be checked for emptiness using any Büchi
emptiness check, because emptiness checks do not look at labels.
The second pass is no longer needed, since livelock acceptance is
not used anymore. However, the extra state and non-deterministic
transitions introduced in the automaton will synchronize with the
same part of the Kripke structure that a second pass would have to
explore; however since everything is explored at once, it requires
more memory. Experiments show that 1-pass testing automata are
comparable to classical testing automata as far as run time goes [Ben
Salem, 2014, Sec. 4.4]. This is therefore a trade-off between ease
of implementation (reusing existing emptiness checks for Büchi
acceptance) and memory footprint.

We generalized 1-pass testing automata in a very natural way:
instead of constructing them from state-based Büchi automata, we
generate them from transition-based generalized Büchi automata,
keeping the generalized Büchi acceptance. The result, which we call
Transition-based Generalized Testing Automata5 (TGTA), combines the

5 A. E. Ben Salem, A. Duret-Lutz, and
F. Kordon. Model checking using
generalized testing automata. Trans-
actions on Petri Nets and Other Models of
Concurrency (ToPNoC VI), 7400:94–112,
2012

advantages of TGBAs (the conciseness illustrated on Fig. 2.1(d), p. 9)
with the use of changeset labels from testing automata. Furthermore,
because we create TGTA from TGBA, which are transition-based, we
can output smaller automata even when when generalized Büchi is
not used. Figure 6.10 shows an example.

$ ltl2tgta 'a U Gb'

ab

ab̄

āb

ab, āb

∅

{b}{b}

{a, b}
∅

∅

{a}

{a}

{a}
{a}

0

∅
0

{b},{a, b}

Inf( 0 )
Figure 6.10: A Transition-based
Generalized Testing Automaton for
aUGb. Here the acceptance condition
use a single Büchi set, but it could use
more.

Experiments reveal that TGTA are generally better than TGBA,
as seen on Figure 6.11. On empty products (i.e., verified properties

) emptiness checks using TGTAs visit on the average 17.3% fewer
transitions than emptiness checks using TGBAs, and 13.4% fewer
transitions than those using TAs. For non-empty products (i.e., a
counterexample exists ), the picture is less clear, due to the fact
that a different order of transitions can help to find a counterexample
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Figure 6.11: Comparison of the TGTA
approach against the TA and TGBA
approaches on a sample of 2049
pairs (model, formula) where the
formula is verified ( ) and 2049 pairs
(model, formula) where the formula is
violated ( ). We compare the number
of transitions visited by the emptiness
checks. TGTA are better for all the dots
below the diagonal. Refer to Ben Salem
et al. [2012] for the experimental setup.
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earlier: the differences can be so important that averaging them would
make no sense. Let us just notice than the TGTA approach looses over
the TGBA approach in nearly 39% of the non-empty ( ) cases.

The above experiment, done in the context of explicit model
checking was also successfully transposed to a symbolic setting and
produced similar results.6 In symbolic model checking, all variants of 6 A. E. Ben Salem, A. Duret-Lutz, F. Ko-

rdon, and Y. Thierry-Mieg. Symbolic
model checking of stutter invariant
properties using generalized testing
automata. In TACAS’14, vol. 8413 of
LNCS, pp. 440–454. Springer, 2014

testing automata offer the nice guarantee that one can always stutter
on any state. This can be used by saturation techniques [Ciardo et al.,
2003, Thierry-Mieg et al., 2009] to speed up the construction of the
stuttering part of the product.



7
Conclusion

7.1 Summary and Perspectives

In this document, I have presented a selected subset of the work I
achieved since 2007. Some topics have been left out for reasons that
will be discussed in Section 7.2.

Most of the contributions can probably be described as ‘‘practical
improvements to a well-known theory’’. This comes from the fact
that my motivation is to implement a toolbox (Spot) of efficient and
reusable algorithms that are useful to researchers and teachers in the
domain of ω-automata and model checking.

Let us quickly summarize and present perspectives for each
chapter.

Chapter 2 presented all the techniques that have been implemented
to make ltl2tgba one of the best tools to translate LTL formulas into
small automata with few nondeterministic choices. While we do not
believe there is a lot of room for improvement in the core algorithm
used for translation, we think that the pre- and post-processings
can be improved. Firstly, section 5.4 already hinted that better LTL
simplifications could be found. Secondly, the simulation-based
automata-reduction algorithm currently implemented only use
‘‘direct’’ or ‘‘backward’’ simulation-relations, but there exist coarser
relations that can also be used for quotienting [Mayr and Clemente,
2013]. Most of these coarser relations have only be studied in the
context of Büchi automata, or maybe generalized Büchi automata,
but it would be interesting to extend those to generalized acceptance.
Lastly, we should keep in mind that most LTL translators so far have
tried to produce smaller automata or more deterministic automata,
but we have shown (Section 2.9) that it makes sense to tune the
generation of these automata according to how they will be used
(e.g., the location of accepting states can affect model checkers using
emptiness checks based on a nested-DFS). Working on translations
from LTL to automata with different acceptance conditions (not
generalized Büchi) is another interesting perspective, especially to
produce deterministic automata, which is desirable for probabilistic
model checking.

Chapter 3 presented some new ideas to parallelize emptiness
checks for generalized Büchi automata. One is to decompose the
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property automaton in sub-automata of different strengths that can
each be checked using an emptiness check algorithm tailored to this
particular strength. This decomposition could in fact be pushed
further in automata with many SCCs: there is no reason to restrict
ourselves to one automaton per strength. A second idea was to use
the union-find data structure to implement an SCC-based emptiness
check: such a data structure is well-suited to be shared between
multiple threads that explore the automaton. This work was the
subject of Étienne Renault’s Ph.D. thesis.

Chapter 4 discussed our adoption of automata with generalized
acceptance condition, so that Spot would be usable with third-party
tools that produce automata with various acceptance conditions. Do-
ing so, we established a common format for exchanging ω-automata.
We have shown how we can make some acceptance transformation in
order to realize certain operations (like emptiness checks) for which
Spot does not yet support any acceptance conditions. Working on
an emptiness check that works for general acceptance is definitely
on our agenda; in fact this is a topic we have started to work on with
colleagues from the Dresden University of Technology, and from the
Masaryk University of Brno.

Chapter 5 briefly presented a SAT-based technique to minimize
deterministic ω-automata. This expensive procedure can be used
to obtain minimal automata when that is desirable, and to discover
areas where LTL translation and automata-simplification algorithms
can be improved. We have also found this to be a useful tool to
explore various generalized acceptance conditions, since we can
now take a deterministic automaton with any acceptance and
attempt to synthesize an equivalent automaton with another given
acceptance condition. As these lines are written, an intern from EPITA
is working towards making this minimization process more efficient
using a better SAT-solver integration, some incremental SAT-solving
techniques, and some new encoding ideas.

Finally in Chapter 6 we have presented some efficient ways to
detect stutter invariant properties, and some results on using a
generalization of what is known as testing automata. While the latter
work (the subject of A. E. Ben Salem’s Ph.D. thesis) was done before
we started working with generalized acceptance, it is now much
easier to present using these notions, as has been done in Section 6.2.
In fact, a complete generalization of testing automata would be to
implement them as ω-automata with arbitrary acceptance condition,
but using changeset-labeled edges. It should be pointed out that the
precise reason why the emptiness check using (generalized) testing
automata is often better than using (generalized) Büchi automata is
still unclear, and deserves further study.

7.2 Omitted Contributions

Four topics have been omitted from this document. The first two have
not yet been published.
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PSL, the Property Specification Language [Eisner and Fisman, 2006],
is a huge industrial standard [PSL] that contains a linear fragment
that is more expressive than LTL: it adds operators that allow using
ω-regular expressions to denote finite prefixes that should be followed
by some temporal properties. Spot supports some these PSL operators
and the LTL translator has been extended to deal with the PSL
operators and ω-regular expressions in some non-trivial ways, and
some specific PSL simplifications have been added. The supported
PSL fragment is comparable to the Linear Dynamic Logic introduced
by Vardi [2011]. Although the techniques we have implemented have
been presented in two invited talks1, we have yet to write an article 1 At the Masaryk University of Brno in

2012, and at the Dresden University of
Technology in 2015

about it.
As mentioned on Section 4.6, Spot implements a determinization

procedure that inputs transition-based Büchi automata and outputs
automata with transition-based parity acceptance. The algorithm is
based on the construction of Redziejowski [2012], augmented with
some optimizations from ltl2dstar [Klein and Baier, 2006, 2007],
as well as a few of our own. The most important improvement is to
take the strongly connected components of the input automaton into
account during the determinization. This would deserve at least a
tool paper.

The next two topics have been published, but were omitted from
this document for size reason.

In 2011, we studied two new ‘‘hybrid’’ model-checking approaches23, 2 A. Duret-Lutz, K. Klai, D. Poitrenaud,
and Y. Thierry-Mieg. Self-loop aggrega-
tion product — a new hybrid approach
to on-the-fly LTL model checking.
In ATVA’11, vol. 6996 of LNCS, pp.
336–350. Springer, 2011b

3 A. Duret-Lutz, K. Klai, D. Poitrenaud,
and Y. Thierry-Mieg. Combining
explicit and symbolic approaches for
better on-the-fly LTL model checking.
Technical Report 1106.5700, arXiv,
2011a. URL http://arxiv.org/
abs/1106.5700. Extended version
of our ATVA’11 paper, presenting two
new techniques instead of one

i.e., some techniques that are midway between explicit model
checking (where the product KM ⊗ A¬ϕ is represented as a graph)
and symbolic model checking (where the product is represented
symbolically, usually with decision diagrams). The two new tech-
niques we presented, SOP (Symbolic Observation Product) and SLAP
(Self-Loop Aggregation Product), both represent the product as a graph
of aggregates: the nodes are symbolic sets of states of the original
automata. Our experiment have shown that these techniques often
outperform other existing hybrid or fully symbolic approaches.

Finally, we recently published a study of several provisos for Partial-
Order Reductions.4 POR techniques are used during emptiness check

4 A. Duret-Lutz, F. Kordon, D. Poitre-
naud, and E. Renault. Heuristics for
checking liveness properties with par-
tial order reductions. In ATVA’16, vol.
9938 of LNCS, pp. 340–356. Springer,
2016a

to reduce the subset of KM that needs to be explored. They do so
by locally ignoring some outgoing transitions whose corresponding
action in the model M is guaranteed to still be enabled later on.
Ignoring such transitions can only be done if we guarantee that the
corresponding action may not be continuously expanded along a
cycle. A typical way to satisfy this constraint is to ensure that on
each cycle, at least one state is fully expanded (i.e., none of its outgoing
transitions are ignored). We reviewed several existing provisos to
achieve this goal, and suggested new ones; discussing a total of 46
provisos.

http://arxiv.org/abs/1106.5700
http://arxiv.org/abs/1106.5700
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A
Selected uses of Spot

At the time of writing Google Scholar reports more than 126 citations
of the paper in which we originally presented Spot in 20041. This 1 A. Duret-Lutz and D. Poitrenaud.

SPOT: an Extensible Model Check-
ing Library using Transition-based
Generalized Büchi Automata. In MAS-
COTS’04, pp. 76–83. IEEE Computer
Society Press, 2004

paper has remained the main paper to cite about Spot for 9 years,
until we published some tool papers about Spot 1.0 in 20132 (cited

2 A. Duret-Lutz. Manipulating LTL for-
mulas using Spot 1.0. In ATVA’13, vol.
8172 of LNCS, pp. 442–445. Springer,
2013

21 times) and Spot 2.0 in 20163. Not all these 147 citations are actual

3 A. Duret-Lutz, A. Lewkowicz,
A. Fauchille, T. Michaud, E. Renault,
and L. Xu. Spot 2.0 — a framework
for LTL and ω-automata manipulation.
In ATVA’16, vol. 9938 of LNCS, pp.
122–129. Springer, 2016b

uses of Spot. In this appendix, we review a sample of the some work
that have been built using Spot in some way.

A.1 Spot as an LTL-to-BA translator

Spot is used as an off-the-shelf translator from LTL to Büchi automata,
or to generalized Büchi automata in context such as:
• creation of automata for monitoring C code [Staats and Heimdahl,

2008],
• generation of initial BA before SAT-based minimization [Ehlers

and Finkbeiner, 2010],
• generation of automata before conversion to monitor [Tabakov and

Vardi, 2010, Tabakov et al., 2012] before Spot could do it, or direct
conversion to monitor [Bucur, 2012, Arcaini et al., 2013, Dutta and
Vardi, 2014] now that it can,

• generation of DFA from LTL formulas that are guarantee proper-
ties [He et al., 2015],

• generation of BA before conversion to deterministic Rabin au-
tomata [Blahoudek et al., 2013, Sickert et al., 2016]

• generation of a GBA in a probabilistic model checker [Hahn et al.,
2014] (they hope for a determinisic GBA, but will determinize the
result to Rabin if not).

Spot has been used in several translation benchmarks, either by
authors of other translators [Babiak et al., 2012, Mochizuki et al.,
2014, Shan et al., 2014, e.g.,], or by authors of benchmarks [Rozier
and Vardi, 2007, Cichoń et al., 2009].

Some of those benchmarks are difficult to interpret because they do
not always mention the version of Spot and the options used. Before
Spot 1.0, there were no public command-line utility to translate LTL
formulas into automata: Spot had a program called ltl2tgba in
its test suite, which is what people used for benchmarking, but this

https://scholar.google.fr/scholar?oi=bibs&hl=fr&cites=14494065957429457598&as_sdt=5
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badly named binary was a crude front-end to most of the algorithms
available in Spot, and it required a careful selection of several cryptic
options to produce an optimized output. Today this testing program
has been renamed, and there is a public tool called ltl2tgba that
only does translation and has all optimizations turned on by default
(favoring quality over execution time).

The benchmark of Rozier and Vardi [2007] and of Cichoń et al.
[2009] have played some important role in the history of Spot, as
we used them (after publication) to improve its performance. Some
benchmarks released alongside Spot 0.9.1 show that the time needed
to translate 100 formulas from Cichoń et al. [2009] was divided by
2.83 between version 0.8.3 and version 0.9.1.4 4 https://www.lrde.epita.fr/

dload/spot/bench-0.9.1.pdfFinally, Rozier and Vardi [2007] presents Spot 0.3 as the only tool of
their benchmark that ‘‘can be considered an industrial quality tool’’ and
consider Spot as ‘‘the best explicit LTL translator in our experiments’’.
Nonetheless using explicit translators (i.e., translator that creates
automatas represented as graphs) for satisfiability checking is less
efficient than using symbolic translators, so Spot is not the ideal tool
to use for this task. Further work by Li et al. [2013] has built upon
those two quotes to justify comparing a new LTL satisfiability solver
against Spot; however, there exists more challenging tools that are
actually dedicated to LTL satisfiability [Schuppan and Darmawan,
2011].

A.2 Spot as a research/development toolbox

Tools distributed with Spot have many features that are convenient
building-blocks for experiments. Here are some examples of uses:
• Generation of random LTL formulas [Molnár et al., 2015],
• Filtering of unique BAs up to one isomorphism [Blahoudek et al.,

2016],
• Simplification of BAs [Blahoudek et al., 2016],
• Syntax conversion of LTL formulas [Maoz and Ringert, 2015],
• The ltlcross tool was used by the authors of ltl3ba, ltl3dra,

ltl2dstar, and Rabinizer3 to test recent version of their
translators.5 5 Personal communications with those

tools’ authors.

A.3 Spot as a library to build model checkers

As Spot offers the bare minimum needed to build a model checker
over a custom state-space, it was used in a couple of tools for this
purpose.

MC-SOG [Klai and Poitrenaud, 2009] is a model-checker based on
symbolic observation graphs (SOG), in which each state symbolically
encodes a set of states of the model. MC-SOG uses Spot for the
dashed area of Figure 1.1 (p. 5), and implements the rest.

Neco, a compiler for turning Petri nets into native shared libraries
that allow fast on-the-fly exploration of the state-space, was similarly
linked with Spot to provide model-checking capabilities.6

6 Ł. Fronc and A. Duret-Lutz. LTL
model checking with Neco. In
ATVA’13, vol. 8172 of LNCS, pp.
451–454. Springer, 2013. Code moved
to https://github.com/Lvyn/
neco-net-compiler

https://www.lrde.epita.fr/dload/spot/bench-0.9.1.pdf
https://www.lrde.epita.fr/dload/spot/bench-0.9.1.pdf
https://github.com/Lvyn/neco-net-compiler
https://github.com/Lvyn/neco-net-compiler
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As already mentioned in Section 7.2 we generalized the SOG idea
to Self-Loop Aggregation Product7 (SLAP) and Symbolic Observation 7 A. Duret-Lutz, K. Klai, D. Poitrenaud,

and Y. Thierry-Mieg. Self-loop aggrega-
tion product — a new hybrid approach
to on-the-fly LTL model checking.
In ATVA’11, vol. 6996 of LNCS, pp.
336–350. Springer, 2011b

Product8 (SOP). A model checking using these techniques has been

8 A. Duret-Lutz, K. Klai, D. Poitrenaud,
and Y. Thierry-Mieg. Combining
explicit and symbolic approaches for
better on-the-fly LTL model checking.
Technical Report 1106.5700, arXiv,
2011a. URL http://arxiv.org/
abs/1106.5700. Extended version
of our ATVA’11 paper, presenting two
new techniques instead of one

implemented in ITS-Tools [Thierry-Mieg, 2015]. This time ITS-
Tools provides an on-the-fly interface for building those hybrid
products on-the-fly, and Spot is used over this interface to perform
the emptiness check.

A.4 Spot as an LTL or ω-automaton library
Brotherston et al. [2012] used Spot in a theorem prover called Cyclist
in which proof trees may be cyclic (hence the name) and need to sat-
isfy some transition-based Büchi acceptance. Spot 0.8 was used since
it was able to provide emptiness-checks for this type of acceptance,
and also because it implemented a complementation algorithm (via a
transition-based version of Safra’s determinization [Safra, 1989]). The
current version of Cyclist now uses Spot 2 and its new transition-
based determinization.

In the context of executing a workflow over multiple replicas for
failure recovery, Schäfer et al. [2014] used the LTL translation routine
of Spot to synthesize structurally different replicas from an identical
LTL specification of the workflow. They modified the translation
routine of Spot to include another parameter needed for their work.

Lemieux et al. [2015] use Spot just to parse LTL formulas and
explore their syntactic tree.

Bauch [2015] and Barnat et al. [2016] used Spot as a C++ library
for translating LTL formulas into automaton in a tool called Looney
to check the sanity of real-world sets of requirements. They report
that the translator they used before was inefficient on large formulas,
and that switching to Spot ‘‘accelerated the process by several orders of
magnitude on larger sets of formulae’’.

Very recently, Blahoudek et al. constructed two tools using Spot:
• ltl3hoa9 translates LTL formulas into small non-deterministic 9 The code is at https://github.

com/jurajmajor/ltl3hoa and they
submitted an article to LICS’17.

automata using arbitrary acceptance conditions (as suggested by
the LTL formula). It reuses the LTL parsing and simplification
routines of Spot, as well as all the automata simplification routines;
this way they focus only on their translation algorithm.

• seminator10 converts ω-automata into semi-deterministic au- 10 The code is at https://github.
com/mklokocka/seminator and they
submitted an article to LPAR-21.

tomata. They reuse the automaton parser of Spot, and its automata
simplification routines. Again, they only needed to focus on the
determinization-algorithms they wanted to implement.

A.5 Spot as a teaching environment
We use Spot at EPITA in an introductory lecture on model checking.
Using the Python bindings in the IPython/Jupyter notebook, a web
application for interactive programming [Pérez and Granger, 2007],
the students can experiment with LTL and automata, and they can
even build a small model checker by assembling the operations of
Figure 1.1 (p. 5) in a few lines of Python code. Examples are given in
Figure 2 of our ATVA’16 tool paper.11

11 A. Duret-Lutz, A. Lewkowicz,
A. Fauchille, T. Michaud, E. Renault,
and L. Xu. Spot 2.0 — a framework
for LTL and ω-automata manipulation.
In ATVA’16, vol. 9938 of LNCS, pp.
122–129. Springer, 2016b

http://arxiv.org/abs/1106.5700
http://arxiv.org/abs/1106.5700
https://github.com/jurajmajor/ltl3hoa
https://github.com/jurajmajor/ltl3hoa
https://github.com/mklokocka/seminator
https://github.com/mklokocka/seminator
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