
Growing an ω-automaton library

Alexandre Duret-Lutz ID

LRE, EPITA, Le Kremlin-Bicêtre, France
adl@lrde.epita.fr

Abstract. This is an invited talk about the past, present, and future
of Spot, a C++ library for the manipulation of linear-time temporal logic
and ω-automata, with applications to model checking and reactive syn-
thesis. Today, most of the features of Spot revolve around its support for
transition-based Emerson-Lei automata. I discuss key developments in
the history of Spot, and recently introduced features that I find exciting.

1 Present: What is Spot?

Today, Spot is presented as a C++17 library for the manipulation of linear-
time temporal logic (LTL) and ω-automata. Calling Spot a C++ library is a
bit reductive, because users can actually use three interfaces: the C++ library,
the Python bindings, and a set of command-line tools. The Python bindings are
typically used for interactive exploration, prototyping, and scripting. C++ is for
production code, where efficiency matters. The command-line tools are designed
to follow the Unix philosophy of using text streams as input/output to enable
composition of tools using pipes. These tools may be used for scripting tasks, or
help with benchmarking algorithms. Spot also offers certain specialized tools (like
ltlcross and autcross) that help to test LTL or automata-based algorithms.

2 A Brief History in Four Steps

2.1 Infancy

Spot started as a Master and then PhD project. In 1999, Jean-Michel Couvreur
had published two algorithms related to the automata approach for LTL model
checking [5]: a translation from LTL to Transition-based Generalized Büchi Au-
tomaton (TGBA), and an emptiness check for TGBA. Model checking is tradi-
tionally done using Büchi automata (BA), where accepting runs have to visit
infinitely often a state that belongs to some acceptance set. TGBAs generalize
those automata by using accepting transitions instead of accepting states, and
by using multiple acceptance sets. As TGBAs can be more compact than BAs,
we wanted to explore their use for model checking.

The automata-theoretic approach to model checking can be described in four
steps: (1) translate some LTL specification φ into an automaton A¬φ that recog-
nizes any behavior not allowed by φ, (2) build a Kripke structure S representing

https://orcid.org/0000-0002-6623-2512

2 Alexandre Duret-Lutz

the state-space of the model that you want to check against φ, (3) build the
product A¬φ × S representing all behaviors of S that are disallowed by φ, and
finally (4) ensure that this product is empty.

Spot used the definition of TGBA as an abstract interface between all steps,
in a way that allowed on-the-fly computations. Steps (1) and (4) correspond to
Couvreur’s algorithms, and step (3) is easy to implement. That leaves us with
step (2), which depends on the language used to express the model. Since some
colleagues were working on Petri-Net tools, we built a couple of interfaces to ex-
pose the reachabilty graphs of Petri-Net constructed by those tools using Spot’s
TGBA interface. Spot was built as a library to ease the combination of such user-
supplied implementation of step (2) with the rest of the steps it provides [8].

Back them, Spot did not offer any command-line tools to its users, but it had
a couple of such tools in its test-suite. For instance one tool was called ltl2tgba

because it was meant to test step (1). However, as a testing tool, it grew a “junk
drawer” interface: a confusing set of cryptic options added without any logic,
for the purpose of testing new features as they were implemented.

Of course, people started using this tool nonetheless, because it had some
options to translate LTL into Büchi automata and print them in useful formats.
But the set of options made it very difficult to use for people who knew the kind
of output they wanted but not how to obtain it.

2.2 Spot 1.0: Introducing Command-line Tools for Users

Seeing people benchmarking ltl2tgba (the testing tool) without always using
the right options was a strong motivation to implement some command-line
tools with a sane user-interface. The old ltl2tgba tool was eventually renamed
ikwiad (“I Know What I Am Doing”) to make sure people would switch to the
brand new ltl2tgba. This one has a more friendly interface where you specify
the type of output you want, and let tool figure out what algorithms to chain
to obtain that. Other useful tools were provided along the way, like genltl

(for generating lists of LTL formulas used in various benchmarks), ltlfilt (for
filtering streams for formulas, or ltlcross (for testing LTL translators) [6].

In order to interface with other tools, Spot already had parsers for several
automaton formats. For some work on SAT-based minimization of Deterministic
TBA [1] we had to write yet another parser to read Rabin automata produced by
ltl2dstar [10]. Meanwhile, other teams were working on building automata with
different acceptance conditions, and were inventing their own format, making it
difficult to combine or compare tools. At ATVA’13 in Hanoi, we gathered with a
few tool authors, and started to discuss the need of some common and flexible for-
mat. We contacted more people after the conference to draft and implement what
would eventually be called the Hanoi Omega Automaton (HOA) Format [2].

2.3 Spot 2.0: Building support for Emerson-Lei acceptance

The HOA format represents ω-automata in which the acceptance conditions is
an arbitrary Boolean formula over atoms like Fin(0) (0 should be seen finitely

Growing an ω-automaton library 3

often) or Inf(5) (5 should be seen infinitely often). Such acceptance conditions,
also known as Emerson-Lei conditions, can represent all traditional ω-automata
acceptances, but give freedom to introduce new acceptance conditions when
needed. For example, the product of two automatas with acceptance conditions
α1 and α2 (assuming, w.l.o.g, disjoint colors) can be built with a simple syn-
chronous product, setting the resulting acceptance to α1 ∧ α2.

Supporting HOA required a complete redesign of Spot, yielding version 2 [7].
Leaving the world of TGBAs, Spot started to provide algorithms that output
more complex acceptance conditions (such as Safra-based determinization). It
also opened many research objectives, to build algorithms that support generic
acceptance conditions. Notable algorithms are our generic emptiness check [3],
and our implementation of the Alternating Cycle Decomposition [4].

A second noteworthy feature of Spot 2.0 was its support for Jupyter’s rich
display system. Combined with Spot Python’s bindings, it allows calling Spot’s
algorithms in Jupyter notebooks and getting some visual result. Such notebooks
are great for prototyping algorithms, interactive exploration, teaching...

2.4 A Shift Towards Reactive Synthesis

With the support for HOA, Spot has grown into an ω-automata library, where
model checking was just one possible application. In 2018, Maximilien Colange
introduced a new application for Spot: LTL Reactive Synthesis. A new tool
was added for this purpose (ltlsynt [11]), and its development had ripple ef-
fects: several algorithms (e.g., our Safra-based determinization) were seriously
improved, but also new concepts such as games, Mealy machines, and And In-
verter Graphs (AIG) were eventually introduced in Spot [9].

3 Upcoming features

Recently, there have been a lot of developments to apply Reactive Synthesis to
LTLf (LTL over finite traces). Doing this efficiently required the introduction of
DFAs represented using Multi-Terminal Binary Decision Diagrams, similar to the
DFA representation of Mona. We plan to try to generalize such a representation
to automata with Emerson-Lei acceptance in the future.

References

1. Baarir, S., Duret-Lutz, A.: Mechanizing the minimization of deterministic gen-
eralized Büchi automata. In: Proceedings of the 34th IFIP International Confer-
ence on Formal Techniques for Distributed Objects, Components and Systems
(FORTE’14). Lecture Notes in Computer Science, vol. 8461, pp. 266–283. Springer
(Jun 2014). https://doi.org/10.1007/978-3-662-43613-4_17

2. Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Křet́ınský, J., Müller, D.,
Parker, D., Strejček, J.: The Hanoi Omega-Automata format. In: Proceedings of the
27th International Conference on Computer Aided Verification (CAV’15). Lecture
Notes in Computer Science, vol. 9206, pp. 479–486. Springer (Jul 2015). https:
//doi.org/10.1007/978-3-319-21690-4_31

https://jupyter.org/
https://www.brics.dk/mona/
https://doi.org/10.1007/978-3-662-43613-4_17
https://doi.org/10.1007/978-3-662-43613-4_17
https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-319-21690-4_31

4 Alexandre Duret-Lutz

3. Baier, C., Blahoudek, F., Duret-Lutz, A., Klein, J., Müller, D., Strejček, J.: Generic
emptiness check for fun and profit. In: Proceedings of the 17th International Sym-
posium on Automated Technology for Verification and Analysis (ATVA’19). Lec-
ture Notes in Computer Science, vol. 11781, pp. 445–461. Springer (Oct 2019).
https://doi.org/10.1007/978-3-030-31784-3_26

4. Casares, A., Duret-Lutz, A., Meyer, K.J., Renkin, F., Sickert, S.: Practical ap-
plications of the Alternating Cycle Decomposition. In: Proceedings of the 28th
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS’22). Lecture Notes in Computer Science, vol. 13244, pp.
99–117 (Apr 2022). https://doi.org/10.1007/978-3-030-99527-0_6

5. Couvreur, J.M.: On-the-fly verification of temporal logic. In: Wing, J.M., Wood-
cock, J., Davies, J. (eds.) Proceedings of the World Congress on Formal Methods
in the Development of Computing Systems (FM’99). Lecture Notes in Computer
Science, vol. 1708, pp. 253–271. Springer-Verlag (Sep 1999). https://doi.org/10.
1007/3-540-48119-2_16

6. Duret-Lutz, A.: Manipulating LTL formulas using Spot 1.0. In: Proceedings
of the 11th International Symposium on Automated Technology for Verifica-
tion and Analysis (ATVA’13). Lecture Notes in Computer Science, vol. 8172,
pp. 442–445. Springer, Hanoi, Vietnam (Oct 2013). https://doi.org/10.1007/
978-3-319-02444-8_31

7. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 — a framework for LTL and ω-automata manipulation. In: Proceedings of
the 14th International Symposium on Automated Technology for Verification and
Analysis (ATVA’16). Lecture Notes in Computer Science, vol. 9938, pp. 122–129.
Springer (Oct 2016). https://doi.org/10.1007/978-3-319-46520-3_8

8. Duret-Lutz, A., Poitrenaud, D.: Spot: an extensible model checking library us-
ing transition-based generalized Büchi automata. In: Proceedings of the 12th
IEEE/ACM International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS’04). pp. 76–83. IEEE
Computer Society, Volendam, The Netherlands (Oct 2004). https://doi.org/10.
1109/MASCOT.2004.1348184

9. Duret-Lutz, A., Renault, E., Colange, M., Renkin, F., Aisse, A.G., Schlehuber-
Caissier, P., Medioni, T., Martin, A., Dubois, J., Gillard, C., Lauko, H.: From
Spot 2.0 to Spot 2.10: What’s new? In: Proceedings of the 34th International
Conference on Computer Aided Verification (CAV’22). Lecture Notes in Computer
Science, vol. 13372, pp. 174–187. Springer (Aug 2022). https://doi.org/10.1007/
978-3-031-13188-2_9

10. Klein, J., Baier, C.: On-the-fly stuttering in the construction of determ. ω-
automata. In: Holub, J., Žďárek, J. (eds.) Proceedings of the 12th International
Conference on the Implementation and Application of Automata (CIAA’07). Lec-
ture Notes in Computer Science, vol. 4783, pp. 51–61. Springer (2007). https:
//doi.org/10.1007/978-3-540-76336-9_7

11. Michaud, T., Colange, M.: Reactive synthesis from LTL specification with Spot.
In: Proceedings of the 7th Workshop on Synthesis, SYNT@CAV 2018. Electronic
Proceedings in Theoretical Computer Science (2018)

https://doi.org/10.1007/978-3-030-31784-3_26
https://doi.org/10.1007/978-3-030-31784-3_26
https://doi.org/10.1007/978-3-030-99527-0_6
https://doi.org/10.1007/978-3-030-99527-0_6
https://doi.org/10.1007/3-540-48119-2_16
https://doi.org/10.1007/3-540-48119-2_16
https://doi.org/10.1007/3-540-48119-2_16
https://doi.org/10.1007/3-540-48119-2_16
https://doi.org/10.1007/978-3-319-02444-8_31
https://doi.org/10.1007/978-3-319-02444-8_31
https://doi.org/10.1007/978-3-319-02444-8_31
https://doi.org/10.1007/978-3-319-02444-8_31
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1109/MASCOT.2004.1348184
https://doi.org/10.1109/MASCOT.2004.1348184
https://doi.org/10.1109/MASCOT.2004.1348184
https://doi.org/10.1109/MASCOT.2004.1348184
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-540-76336-9_7
https://doi.org/10.1007/978-3-540-76336-9_7
https://doi.org/10.1007/978-3-540-76336-9_7
https://doi.org/10.1007/978-3-540-76336-9_7

	Growing an -automaton library

