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What is Spot?
A platform for manipulation of LTL formulas and ω-automata. With three interfaces.

E.g. convert an LTL formula into a neverclaim for Spin:

GFa
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a

a
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ā

a

never { /* GFa */
accept_init:

if
:: (a) -> goto accept_init
:: (!(a)) -> goto T0_S1
fi;

T0_S1:
if
:: (a) -> goto accept_init
:: (!(a)) -> goto T0_S1
fi;

}

Ï C++17 library

spot::parsed_formula pf =
spot::parse_infix_psl("GFa");

if (pf.format_errors(std::cerr))
exit(1);

spot::translator trans;
trans.set_type(spot::postprocessor::Buchi);
trans.set_pref(spot::postprocessor::SBAcc

| spot::postprocessor::Small);
spot::twa_graph_ptr aut = trans.run(pf.f);
print_never_claim(std::cout, aut) << '\n';

Ï Command-line tools

% ltl2tgba --spin GFa

Ï Python bindings

import spot
a = spot.translate('GFa', 'buchi', 'sbacc')
print(a.to_str('spin'))

Ï With graphical
representations in
Jupyter
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Architecture

libspot

ltl2tgba
ltl2tgta
randltl
ltlfilt
ltlcross

dstar2tgba
ltlgrind
randaut
autfilt
ltldo

autcross
ltlsynt
ltlmix

(ltlf2dfa)
(ltlfsynt) libspotgen libbddx

import spot
libspotltsmin

genltl
genaut import spot.gen import bdd import spot.ltsmin

SpinS divine

python / ipython / jupyter

online LTL translator Spot sandbox

Lind-Nielsen. BuDDy: A binary decision diagram package, 1999. www 3 / 23

https://spot.lre.epita.fr/ltl2tgba.html
https://spot.lre.epita.fr/ltl2tgta.html
https://spot.lre.epita.fr/randltl.html
https://spot.lre.epita.fr/ltlfilt.html
https://spot.lre.epita.fr/ltlcross.html
https://spot.lre.epita.fr/dstar2tgba.html
https://spot.lre.epita.fr/ltlgrind.html
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https://spot.lre.epita.fr/ltlmix.html
https://spot.lre.epita.fr/ltlf2dfa.html
https://spot.lre.epita.fr/ltlfsynt.html
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The evolution

1 Model checking library
(2003–2012)
Ï using TGBA for model checking
Ï pure C++ library
Ï no tools (except for the test suite)

2 Platform for LTL manip. and
model checking (2012–2015)
Ï tools with LTL/PSL input
Ï no tool reading TGBA by lack of

exchange format

3 Platform for LTL and
ω-automata (2016–)
Ï HOA format
Ï more tools

Ï major rewrite
Ï Jupyter support

4 New application: Synthesis
Ï build on existing features
Ï improves existing features
Ï adds games, mealy machines
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Fig. 7 illustrates how we have connected Spot to GreatSPN3.GreatSPN can produce a symbolic reachability graph (SRG)for a Colored Petri net by exploiting its symmetries [19]. Wehave implemented this interface as a tgba subclass whosemethods simply delegate their work to the correspondingprocedures of GreatSPN. From the point of view of Spot, anSRG appears as any other TGBA.
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Fig. 7. Interfacing third party state graph generators.

Fig. 7 also shows a concrete implementation of theautomata-theoretic approach to model checking depicted inFig. 1. The Generalized Tarjan algorithm corresponds to thealgorithm presented by Couvreur [2].
Roughly speaking, SRG exploits global symmetries of thesystem and regroups items of the system that are not distin-guished by the formula [20].
Another approach, worked out by Baarir et al. [21] doesnot consider the formula as a whole, but will rather considerthe automaton for this formula, and computes the equivalenceclasses induced by a transition of this automaton during thesynchronization. This second approach is called the SymbolicSynchronized Product (SSP), and has been connected to Spotas shown in Fig. 8.

As can be seen on that figure, the integration goes beyondsimply plugging a state graph generator. We are here using athird party synchronized product.

C. tgba as an Input Formalism
It seems important to us that our interface be based on alow-level formalism like TGBA.
Model checkers usually define their own input formalism,that preserves properties which are important to the tool. Whenit comes to integration with other tools, models have to beconverted between the various formalisms used. This turns outto be difficult when the features of each formalism are disjoint,

3http://www.di.unito.it/˜greatspn/
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Fig. 8. Interfacing third party synchronized product.

and results in the definition of a core formalism which is theintersection of all the others.
By allowing input to be given directly in our low-levelformalism (viz., TGBA) we hope to allow many high-levelformalisms to be used. For instance the GreatSPN interface isa way to convert Well-Formed Petri Nets into TGBA.Note that this is also true for formulæ. The automata-theoretic approach can be used to check any property thatcan be expressed as a TGBA. Translating an LTL formula isonly one way to produce such a TGBA.

We should also emphasize that TGBA can be seen as asuperclass of the other Büchi automata. A Büchi automatonwith labels on states (or labels on transitions but acceptanceconditions on states) can be rewritten as TGBA of equal sizeeasily (and on-the-fly), while the converse is not true. Thismeans that Spot can reuse any algorithm that produces a Büchiautomaton, but cannot otherwise directly use algorithms thatexpect such an automaton as input, without prior conversion.

IV. OTHER USES OF SPOT

The above couplings between Spot and GreatSPN to imple-ment SRG and SSP have been successfully used to modelcheck a medium-sized model: the heart of the PolyORBmiddleware, modeled as a Well-Formed Petri Net [22]. Theseresults have yet to be published, but they are the first realisticuses of our tools.
Besides SRG and SSP, Spot is also used to drive a fewother state-graph generator methods developed in our team.An interface with the symbolic method of Haddad et al. [23]already exists, and one to the symbolic symbolic state spacerepresentation of Thierry-Mieg et al. [24] is being developed.Finally, Spot comes with a set of Python bindings thatallows the library to be used from Python scripts (often moreconvenient than C++ when experimenting). These bindingswere for instance used to implement our on-line LTL2TGBAtranslator.

Ï A bug!
Ï command-line tools
Ï SAT-based minimization

Ï Jupyter visualizations
Ï Emerson-Lei acceptance

conditions

Ï ltlsynt, ACD

Ï ltlfsynt, MTDFA

What I will presentWhat I did present

Duret-Lutz and Poitrenaud. Spot: an extensible model checking library using transition-based
generalized Büchi automata. MASCOTS’04. doi 4 / 23
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The evolution

1 Model checking library
(2003–2012)
Ï using TGBA for model checking
Ï pure C++ library
Ï no tools (except for the test suite)

2 Platform for LTL manip. and
model checking (2012–2015)
Ï tools with LTL/PSL input
Ï no tool reading TGBA by lack of

exchange format

3 Platform for LTL and
ω-automata (2016–)
Ï HOA format
Ï more tools

Ï major rewrite
Ï Jupyter support

4 New application: Synthesis
Ï build on existing features
Ï improves existing features
Ï adds games, mealy machines

ab

b̄

āb
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Fig. 7 also shows a concrete implementation of theautomata-theoretic approach to model checking depicted inFig. 1. The Generalized Tarjan algorithm corresponds to thealgorithm presented by Couvreur [2].
Roughly speaking, SRG exploits global symmetries of thesystem and regroups items of the system that are not distin-guished by the formula [20].
Another approach, worked out by Baarir et al. [21] doesnot consider the formula as a whole, but will rather considerthe automaton for this formula, and computes the equivalenceclasses induced by a transition of this automaton during thesynchronization. This second approach is called the SymbolicSynchronized Product (SSP), and has been connected to Spotas shown in Fig. 8.

As can be seen on that figure, the integration goes beyondsimply plugging a state graph generator. We are here using athird party synchronized product.

C. tgba as an Input Formalism
It seems important to us that our interface be based on alow-level formalism like TGBA.
Model checkers usually define their own input formalism,that preserves properties which are important to the tool. Whenit comes to integration with other tools, models have to beconverted between the various formalisms used. This turns outto be difficult when the features of each formalism are disjoint,
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and results in the definition of a core formalism which is theintersection of all the others.
By allowing input to be given directly in our low-levelformalism (viz., TGBA) we hope to allow many high-levelformalisms to be used. For instance the GreatSPN interface isa way to convert Well-Formed Petri Nets into TGBA.Note that this is also true for formulæ. The automata-theoretic approach can be used to check any property thatcan be expressed as a TGBA. Translating an LTL formula isonly one way to produce such a TGBA.

We should also emphasize that TGBA can be seen as asuperclass of the other Büchi automata. A Büchi automatonwith labels on states (or labels on transitions but acceptanceconditions on states) can be rewritten as TGBA of equal sizeeasily (and on-the-fly), while the converse is not true. Thismeans that Spot can reuse any algorithm that produces a Büchiautomaton, but cannot otherwise directly use algorithms thatexpect such an automaton as input, without prior conversion.

IV. OTHER USES OF SPOT

The above couplings between Spot and GreatSPN to imple-ment SRG and SSP have been successfully used to modelcheck a medium-sized model: the heart of the PolyORBmiddleware, modeled as a Well-Formed Petri Net [22]. Theseresults have yet to be published, but they are the first realisticuses of our tools.
Besides SRG and SSP, Spot is also used to drive a fewother state-graph generator methods developed in our team.An interface with the symbolic method of Haddad et al. [23]already exists, and one to the symbolic symbolic state spacerepresentation of Thierry-Mieg et al. [24] is being developed.Finally, Spot comes with a set of Python bindings thatallows the library to be used from Python scripts (often moreconvenient than C++ when experimenting). These bindingswere for instance used to implement our on-line LTL2TGBAtranslator.
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Fig. 7 also shows a concrete implementation of theautomata-theoretic approach to model checking depicted inFig. 1. The Generalized Tarjan algorithm corresponds to thealgorithm presented by Couvreur [2].
Roughly speaking, SRG exploits global symmetries of thesystem and regroups items of the system that are not distin-guished by the formula [20].
Another approach, worked out by Baarir et al. [21] doesnot consider the formula as a whole, but will rather considerthe automaton for this formula, and computes the equivalenceclasses induced by a transition of this automaton during thesynchronization. This second approach is called the SymbolicSynchronized Product (SSP), and has been connected to Spotas shown in Fig. 8.

As can be seen on that figure, the integration goes beyondsimply plugging a state graph generator. We are here using athird party synchronized product.

C. tgba as an Input Formalism
It seems important to us that our interface be based on alow-level formalism like TGBA.
Model checkers usually define their own input formalism,that preserves properties which are important to the tool. Whenit comes to integration with other tools, models have to beconverted between the various formalisms used. This turns outto be difficult when the features of each formalism are disjoint,
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and results in the definition of a core formalism which is theintersection of all the others.
By allowing input to be given directly in our low-levelformalism (viz., TGBA) we hope to allow many high-levelformalisms to be used. For instance the GreatSPN interface isa way to convert Well-Formed Petri Nets into TGBA.Note that this is also true for formulæ. The automata-theoretic approach can be used to check any property thatcan be expressed as a TGBA. Translating an LTL formula isonly one way to produce such a TGBA.

We should also emphasize that TGBA can be seen as asuperclass of the other Büchi automata. A Büchi automatonwith labels on states (or labels on transitions but acceptanceconditions on states) can be rewritten as TGBA of equal sizeeasily (and on-the-fly), while the converse is not true. Thismeans that Spot can reuse any algorithm that produces a Büchiautomaton, but cannot otherwise directly use algorithms thatexpect such an automaton as input, without prior conversion.

IV. OTHER USES OF SPOT

The above couplings between Spot and GreatSPN to imple-ment SRG and SSP have been successfully used to modelcheck a medium-sized model: the heart of the PolyORBmiddleware, modeled as a Well-Formed Petri Net [22]. Theseresults have yet to be published, but they are the first realisticuses of our tools.
Besides SRG and SSP, Spot is also used to drive a fewother state-graph generator methods developed in our team.An interface with the symbolic method of Haddad et al. [23]already exists, and one to the symbolic symbolic state spacerepresentation of Thierry-Mieg et al. [24] is being developed.Finally, Spot comes with a set of Python bindings thatallows the library to be used from Python scripts (often moreconvenient than C++ when experimenting). These bindingswere for instance used to implement our on-line LTL2TGBAtranslator.
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Fig. 7 also shows a concrete implementation of theautomata-theoretic approach to model checking depicted inFig. 1. The Generalized Tarjan algorithm corresponds to thealgorithm presented by Couvreur [2].
Roughly speaking, SRG exploits global symmetries of thesystem and regroups items of the system that are not distin-guished by the formula [20].
Another approach, worked out by Baarir et al. [21] doesnot consider the formula as a whole, but will rather considerthe automaton for this formula, and computes the equivalenceclasses induced by a transition of this automaton during thesynchronization. This second approach is called the SymbolicSynchronized Product (SSP), and has been connected to Spotas shown in Fig. 8.

As can be seen on that figure, the integration goes beyondsimply plugging a state graph generator. We are here using athird party synchronized product.

C. tgba as an Input Formalism
It seems important to us that our interface be based on alow-level formalism like TGBA.
Model checkers usually define their own input formalism,that preserves properties which are important to the tool. Whenit comes to integration with other tools, models have to beconverted between the various formalisms used. This turns outto be difficult when the features of each formalism are disjoint,
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and results in the definition of a core formalism which is theintersection of all the others.
By allowing input to be given directly in our low-levelformalism (viz., TGBA) we hope to allow many high-levelformalisms to be used. For instance the GreatSPN interface isa way to convert Well-Formed Petri Nets into TGBA.Note that this is also true for formulæ. The automata-theoretic approach can be used to check any property thatcan be expressed as a TGBA. Translating an LTL formula isonly one way to produce such a TGBA.

We should also emphasize that TGBA can be seen as asuperclass of the other Büchi automata. A Büchi automatonwith labels on states (or labels on transitions but acceptanceconditions on states) can be rewritten as TGBA of equal sizeeasily (and on-the-fly), while the converse is not true. Thismeans that Spot can reuse any algorithm that produces a Büchiautomaton, but cannot otherwise directly use algorithms thatexpect such an automaton as input, without prior conversion.

IV. OTHER USES OF SPOT

The above couplings between Spot and GreatSPN to imple-ment SRG and SSP have been successfully used to modelcheck a medium-sized model: the heart of the PolyORBmiddleware, modeled as a Well-Formed Petri Net [22]. Theseresults have yet to be published, but they are the first realisticuses of our tools.
Besides SRG and SSP, Spot is also used to drive a fewother state-graph generator methods developed in our team.An interface with the symbolic method of Haddad et al. [23]already exists, and one to the symbolic symbolic state spacerepresentation of Thierry-Mieg et al. [24] is being developed.Finally, Spot comes with a set of Python bindings thatallows the library to be used from Python scripts (often moreconvenient than C++ when experimenting). These bindingswere for instance used to implement our on-line LTL2TGBAtranslator.
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Fig. 7 illustrates how we have connected Spot to GreatSPN3.GreatSPN can produce a symbolic reachability graph (SRG)for a Colored Petri net by exploiting its symmetries [19]. Wehave implemented this interface as a tgba subclass whosemethods simply delegate their work to the correspondingprocedures of GreatSPN. From the point of view of Spot, anSRG appears as any other TGBA.
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Fig. 7 also shows a concrete implementation of theautomata-theoretic approach to model checking depicted inFig. 1. The Generalized Tarjan algorithm corresponds to thealgorithm presented by Couvreur [2].
Roughly speaking, SRG exploits global symmetries of thesystem and regroups items of the system that are not distin-guished by the formula [20].
Another approach, worked out by Baarir et al. [21] doesnot consider the formula as a whole, but will rather considerthe automaton for this formula, and computes the equivalenceclasses induced by a transition of this automaton during thesynchronization. This second approach is called the SymbolicSynchronized Product (SSP), and has been connected to Spotas shown in Fig. 8.

As can be seen on that figure, the integration goes beyondsimply plugging a state graph generator. We are here using athird party synchronized product.

C. tgba as an Input Formalism
It seems important to us that our interface be based on alow-level formalism like TGBA.
Model checkers usually define their own input formalism,that preserves properties which are important to the tool. Whenit comes to integration with other tools, models have to beconverted between the various formalisms used. This turns outto be difficult when the features of each formalism are disjoint,
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and results in the definition of a core formalism which is theintersection of all the others.
By allowing input to be given directly in our low-levelformalism (viz., TGBA) we hope to allow many high-levelformalisms to be used. For instance the GreatSPN interface isa way to convert Well-Formed Petri Nets into TGBA.Note that this is also true for formulæ. The automata-theoretic approach can be used to check any property thatcan be expressed as a TGBA. Translating an LTL formula isonly one way to produce such a TGBA.

We should also emphasize that TGBA can be seen as asuperclass of the other Büchi automata. A Büchi automatonwith labels on states (or labels on transitions but acceptanceconditions on states) can be rewritten as TGBA of equal sizeeasily (and on-the-fly), while the converse is not true. Thismeans that Spot can reuse any algorithm that produces a Büchiautomaton, but cannot otherwise directly use algorithms thatexpect such an automaton as input, without prior conversion.

IV. OTHER USES OF SPOT

The above couplings between Spot and GreatSPN to imple-ment SRG and SSP have been successfully used to modelcheck a medium-sized model: the heart of the PolyORBmiddleware, modeled as a Well-Formed Petri Net [22]. Theseresults have yet to be published, but they are the first realisticuses of our tools.
Besides SRG and SSP, Spot is also used to drive a fewother state-graph generator methods developed in our team.An interface with the symbolic method of Haddad et al. [23]already exists, and one to the symbolic symbolic state spacerepresentation of Thierry-Mieg et al. [24] is being developed.Finally, Spot comes with a set of Python bindings thatallows the library to be used from Python scripts (often moreconvenient than C++ when experimenting). These bindingswere for instance used to implement our on-line LTL2TGBAtranslator.
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Fig. 7 also shows a concrete implementation of theautomata-theoretic approach to model checking depicted inFig. 1. The Generalized Tarjan algorithm corresponds to thealgorithm presented by Couvreur [2].
Roughly speaking, SRG exploits global symmetries of thesystem and regroups items of the system that are not distin-guished by the formula [20].
Another approach, worked out by Baarir et al. [21] doesnot consider the formula as a whole, but will rather considerthe automaton for this formula, and computes the equivalenceclasses induced by a transition of this automaton during thesynchronization. This second approach is called the SymbolicSynchronized Product (SSP), and has been connected to Spotas shown in Fig. 8.

As can be seen on that figure, the integration goes beyondsimply plugging a state graph generator. We are here using athird party synchronized product.

C. tgba as an Input Formalism
It seems important to us that our interface be based on alow-level formalism like TGBA.
Model checkers usually define their own input formalism,that preserves properties which are important to the tool. Whenit comes to integration with other tools, models have to beconverted between the various formalisms used. This turns outto be difficult when the features of each formalism are disjoint,

3http://www.di.unito.it/˜greatspn/

LTL→TGBA

LT
L

Generalized
Tarjan

TG
B

A

GreatSPN
SSP

TG
B

A

Fi
le

Fig. 8. Interfacing third party synchronized product.

and results in the definition of a core formalism which is theintersection of all the others.
By allowing input to be given directly in our low-levelformalism (viz., TGBA) we hope to allow many high-levelformalisms to be used. For instance the GreatSPN interface isa way to convert Well-Formed Petri Nets into TGBA.Note that this is also true for formulæ. The automata-theoretic approach can be used to check any property thatcan be expressed as a TGBA. Translating an LTL formula isonly one way to produce such a TGBA.

We should also emphasize that TGBA can be seen as asuperclass of the other Büchi automata. A Büchi automatonwith labels on states (or labels on transitions but acceptanceconditions on states) can be rewritten as TGBA of equal sizeeasily (and on-the-fly), while the converse is not true. Thismeans that Spot can reuse any algorithm that produces a Büchiautomaton, but cannot otherwise directly use algorithms thatexpect such an automaton as input, without prior conversion.

IV. OTHER USES OF SPOT

The above couplings between Spot and GreatSPN to imple-ment SRG and SSP have been successfully used to modelcheck a medium-sized model: the heart of the PolyORBmiddleware, modeled as a Well-Formed Petri Net [22]. Theseresults have yet to be published, but they are the first realisticuses of our tools.
Besides SRG and SSP, Spot is also used to drive a fewother state-graph generator methods developed in our team.An interface with the symbolic method of Haddad et al. [23]already exists, and one to the symbolic symbolic state spacerepresentation of Thierry-Mieg et al. [24] is being developed.Finally, Spot comes with a set of Python bindings thatallows the library to be used from Python scripts (often moreconvenient than C++ when experimenting). These bindingswere for instance used to implement our on-line LTL2TGBAtranslator.
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A memorable bug

(Reported in 2007; fixed in 2009.)
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Abstract. We report here on an experimental investigation of LTL satisfiabil-

ity checking via a reduction to model checking. By using large LTL formulas,

we offer challenging model-checking benchmarks to both explicit and symbolic

model checkers. For symbolic model checking, we use both CadenceSMV and

NuSMV. For explicit model checking, we use SPIN as the searchengine, and we

test essentially all publicly available LTL translation tools. Our experiments result

in two major findings. First, most LTL translation tools are research prototypes

and cannot be considered industrial quality tools. Second,when it comes to LTL

satisfiability checking, the symbolic approach is clearly superior to the explicit

approach.

1 Introduction

Model-checkingtools are successfully used for checking whether systems have desired

properties [11]. The application of model-checking tools to complex systems involves

a nontrivial step of creating a mathematical model of the system and translating the de-

sired properties into a formal specification. When the modeldoes not satisfy the speci-

fication, model-checking tools accompany this negative answer with a counterexample,

which points to an inconsistency between the system and the desired behaviors. It is

often the case, however, that there is an error in the system model or in the formal spec-

ification. Such errors may not be detected when the answer of the model-checking tool

is positive: while a positive answer does guarantee that themodel satisfies the speci-

fication, the answer to the real question, namely, whether the system has the intended

behavior, may be different.

The realization of this unfortunate situation has led to thedevelopment of several

sanity checksfor formal verification [29]. The goal of these checks is to detect errors in

the system model or the properties. Sanity checks in industrial tools are typically sim-

ple, ad hoc, tests, such as checking for enabling conditionsthat are never enabled [31].

Vacuity detectionprovides a more systematic approach. Intuitively, a specification is sat-

isfied vacuously in a model if it is satisfied in some non-interesting way. For example,

the linear temporal logic (LTL) specification�(req→ ♦grant) (“every request is even-

tually followed by a grant”) is satisfied vacuously in a modelwith no requests. While

⋆ Work contributing to this paper was completed at Rice University, Cambridge University, and

NASA Langley Research Center, and was supported in part by the Rice Computational Re-

search Cluster (Ada), funded by NSF under Grant CNS-0421109and a partnership between

Rice University, AMD and Cray.
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We found that the existing literature on LTL to automata translation provides little

information on actual tool performance. We saw that most LTLtranslation tools, with

the exception of SPOT, are research prototypes which cannotbe considered industrial

quality tools. The focus in the literature has been on minimizing automata size, rather

than evaluating overall performance. Focusing on overall performance reveals a large

difference between LTL translation tools. In particular, we showed that symbolic tools

have a clear edge over explicit tools with respect to LTL satisfiability checking.

While the focus of our study was on LTL satisfiability checking, there are a cou-

ple of conclusions that apply to model checking in general. First, LTL translation tools
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Abstract. We report here on an experimental investigation of LTL satisfiabil-

ity checking via a reduction to model checking. By using large LTL formulas,

we offer challenging model-checking benchmarks to both explicit and symbolic

model checkers. For symbolic model checking, we use both CadenceSMV and

NuSMV. For explicit model checking, we use SPIN as the searchengine, and we

test essentially all publicly available LTL translation tools. Our experiments result

in two major findings. First, most LTL translation tools are research prototypes

and cannot be considered industrial quality tools. Second,when it comes to LTL

satisfiability checking, the symbolic approach is clearly superior to the explicit

approach.

1 Introduction

Model-checkingtools are successfully used for checking whether systems have desired

properties [11]. The application of model-checking tools to complex systems involves

a nontrivial step of creating a mathematical model of the system and translating the de-

sired properties into a formal specification. When the modeldoes not satisfy the speci-

fication, model-checking tools accompany this negative answer with a counterexample,

which points to an inconsistency between the system and the desired behaviors. It is

often the case, however, that there is an error in the system model or in the formal spec-

ification. Such errors may not be detected when the answer of the model-checking tool

is positive: while a positive answer does guarantee that themodel satisfies the speci-

fication, the answer to the real question, namely, whether the system has the intended

behavior, may be different.

The realization of this unfortunate situation has led to thedevelopment of several

sanity checksfor formal verification [29]. The goal of these checks is to detect errors in

the system model or the properties. Sanity checks in industrial tools are typically sim-

ple, ad hoc, tests, such as checking for enabling conditionsthat are never enabled [31].

Vacuity detectionprovides a more systematic approach. Intuitively, a specification is sat-

isfied vacuously in a model if it is satisfied in some non-interesting way. For example,

the linear temporal logic (LTL) specification�(req→ ♦grant) (“every request is even-

tually followed by a grant”) is satisfied vacuously in a modelwith no requests. While

⋆ Work contributing to this paper was completed at Rice University, Cambridge University, and

NASA Langley Research Center, and was supported in part by the Rice Computational Re-

search Cluster (Ada), funded by NSF under Grant CNS-0421109and a partnership between

Rice University, AMD and Cray.
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Triggering the bug with “counter formulas”
Cn is a 2-variable LTL formula describing a loop over all values of an n-bit counter.

C3 =¬b ∧m ∧G(m →X(¬m ∧X(¬m ∧Xm)))∧X(¬b ∧X¬b)∧G((¬b ∧m) →
X(XXb ∧ ((¬m ∧ (b ↔XXXb))Um)))∧G((b ∧m) →X(XX¬b ∧ ((b ∧¬m∧
XXX¬b)U (m ∨ (¬b ∧¬m ∧X(XXb ∧ ((¬m ∧ (b ↔XXXb))Um)))))))
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The mininal automaton for Cn has n2n states.

Kristin’s issue with Spot 0.3:

C1 SAT C5 SAT C9 SAT

C2 SAT C6 SAT C10 UNSAT

C3 SAT C7 SAT C11 SAT

C4 SAT C8 SAT C12 SAT

C10 needs at least 10240 states and (back

then) Spot already needs a couple of min-

utes to build the erroneous automaton.

The one-character fix!

bool operator<(const formula* left,
const formula* right)

{
size_t l = left->hash();
size_t r = right->hash();

- if (1 != r)
+ if (l != r)

return l < r;
return left->dump() < right->dump();}
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The aftermath

Ï I’m now very picky about the font I use in my
terminal and editor. (Iosevka is great! www )

Ï Realized that the representation of LTL
formulas in Spot 0.4 was really inefficient.

Ï Divided translation time by ≈ 3 after fixing
the bug, by improving formula representations.

Ï Today Cn can be generated by Spot’s
genltl tool.

5 classes of formulas
This benchmark consists in 5 parameterized classes of formulas studied by Cichoń et al. (DEPCOS’09). Each
class is translated with parameter n ranging from 1 to 20, so that makes a total of 100 formulas. Each of the
tools below produces the theoretically smallest Büchi Automaton, so we only measure the total time it takes
to translate these 100 formulas. See bench/ltlclasses/README to reproduce.

Spot 0.8.3 562 seconds
Spot 0.9 315 seconds
Spot 0.9.1 198 seconds
ltl3ba 1.0.1 77 seconds

For the above translations Spot is configured with basic LTL rewritings enabled (-r1).
ltl3ba is run with its default options, except for the family of formulas of the form fn “ Fpp1 ^ Fpp2 ^
...Fppnqqq ^ Fp11 ^ Fpq2 ^ ...Fpqnqqq where LTL simplifications have been disabled.1

Spot 0.9 and 0.9.1 actually spend all their time translating the class of formulas representing weak fairness
constraints: gn “ Źn

i“1 GF pi. The other four classes are translated instantaneously, or nearly so: the worst
formula outside the gn class is f20 and it takes 2.5s to translate. Spot 0.9 needs 215s to translate g20. Thanks to
an improved translation of the G operator, Spot 0.9.1 needs only 109s to translate g20 (45% of this time is spent
in the degeneralization procedure which is really inefficient). Comparatively, ltl3ba, which has a specific
handling of subformulas that have the form of gn, will translate g20 in only 42s!

Rozier’s LTL Counters
This parameterized family of LTL formulas, Cn, describes circular automata with n2n states and as much
transitions. These formulas are quite heavy; e.g. C3 “ ppa ^ pGpa Ñ pXp a ^ Xp a ^ X aqqqqqq ^ pp bq ^
Xp b^ X bqq ^ pGppa^ bq Ñ pXppXX bq ^ ppp aq ^ pb Ñ XXX bq ^ pp bq Ñ pXXX bqqqU aqqqqq ^ pGppa^
bq Ñ pXppXX bq ^ ppb^ p aq ^XXX bqUpa_ pp aq ^ p bq ^ pXppXX bq ^ ppp aq ^ pb Ñ XXX bq ^ pp bq Ñ
XXX bqqU aqqqqqqqqqqq. See bench/ltlcounter/README for references. The following plots (two zoom levels
for the same data) show the time it takes to generate a TGBA for increasing n. A timeout was set at 10 minutes,
so values above that are not shown.
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The values for spot-0.6 and spot-0.7.1, not shown, are the same as those for spot-0.5. Spot-0.9.1, not shown, is
only 2% faster than Spot-0.9: this difference is too small to be seen on such a plot. Spot is run without any
pre- or post-processings: they are not needed to translate these formulas. ltl2ba is run with options -p -l

-c -U disabling pre- and post- processings that would unfairly increase the runtime; similarly ltl3ba is run
with options -p -l -c -C -U. Both tools have been patched to add the option -U so they exit immediately
after the TGBA has been constructed. This way we measure the actual translation from LTL to TGBA without
any extra cost of translating it to a Büchi automaton.

All experiments were ran under GNU/Linux on an Intel Core2 Q9550 running at 2.83GHz with 8GB of RAM.
1 These simplifications have no effect on this class. The problem is actually twofold. Spot handles ^ as a commutative operator so it is

unable to distinguish between Fpp1 ^ Fpp2 ^ Fpp3qqq and FpFpFpp3q ^ p2q ^ p1q which have exactly the same internal representation.
Therefore when Spot constructs these benchmarking formulas, it may output one of these two forms. ltl3ba on the other hand,
distinguishes these two formulas and its LTL simplifications are much slower (1h versus 1s for f17) when the latter order is used.

2

benchmark from 2012
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https://github.com/be5invis/Iosevka
https://www.lre.epita.fr/dload/spot/bench-0.9.1.pdf
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Command-line Tools

Objectives:
Ï Easy access to Spot’s algorithms
Ï Providing convenient tools for day-to-day experiments
Ï Support streaming (a.k.a., pipelining) and scripting (i.e., useful exit codes)
Ï Have coherent options among tools
Ï Have good defaults
Ï Have good error reporting

10 / 23



SAT-based minimization
of deterministic TGBA

11 / 23



From LTL to Minimal D[T][G]BA
Output: DBA. (Ehlers’ setup.)
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Ehlers. Minimising deterministic Büchi automata precisely using SAT solving. SAT’10. doi 12 / 23

http://dx.doi.org/10.1007/978-3-642-14186-7_28
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Klein and Baier. On-the-fly stuttering in the construction of determ. ω-automata. CIAA’07. doi

Krishnan, Puri, and Brayton. Determ. ω-automata vis-a-vis determ. Büchi automata. ISAAC’94.
doi 12 / 23
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From LTL to Minimal D[T][G]BA
Output: DTGBA (m > 1) or DTBA (m = 1). Our setup.
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Baarir and Duret-Lutz. Mechanizing the minimization of deterministic generalized Büchi automata.
FORTE’14. doi 12 / 23
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Spot 2
HOA + Jupyter =⇒ major rewrite
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The Hanoi Omega-Automata Format

Original motivations
Ï Unify output formats for different tools/acceptance conditions
Ï Allow new acceptance conditions

Tool support at publication
ltl2dstar 0.5.3
ltl3ba 1.1.2
ltl3dra 0.2.2

PRISM 4.3
Rabinizer 3.1
Spot 1.99.2

jhoafparser
cpphoafparser

Resulting challenge
Can we build tools that process automata with arbitrary acceptance conditions?

positive Boolean formulas ofInf(x) and Fin(y) terms,a.k.a. Emerson-Lei acceptance

Babiak et al. The Hanoi Omega-Automata format. CAV’15. doi 14 / 23

http://dx.doi.org/10.1007/978-3-319-21690-4_31
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Generic Intersections and Unions
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āb̄

a

2 3

20 30 0

Fin(2 )∨Inf(3 )

Fin(0 )∨Inf(1 )∨Fin(2 )∨Inf(3 )

ab̄

ā ∨b

b

b̄

1

0

1

0

2

2

Fin(0 )∨Inf(1 )

∨Fin(2 )∨Inf(3 )

āb
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āb
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āb

āb̄

āb
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āb
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āb

ab
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Other Operations
automata simplifications

Most of Spot’s simplifications have been generalized already.

complementation
Trivial on any deterministic ω-automata.
What about non-deterministic ω-automata?

emptiness check
Easy for “Fin-less acceptance”.
Generic Emptiness Check implemented since Spot 2.7.

acceptance conversions
Many are implemented.
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(Jupyter demo)
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Reactive Synthesis in a Nutshell

A reactive controller produces output as a reaction to its input

āaaā ...
bbb̄b̄ ...

x̄ x x x ...
ȳ y ȳ ȳ ...

input signals output signals

The reactive synthesis problems
Given a specification relating input signals and output signals over time:
Realizability: decide if a controller exist; Synthesis: construct it.

LTL Synthesis Competition www

Ï the specification is an LTL formula, over ω-words such as
“āb̄x̄ ȳ ; ab̄x y ; abx ȳ ; ...”

Ï the controller should be an And-Inverter Graph

19 / 23
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Reactive Synthesis Example
1. LTL Spec.

a ↔ F(x)

2. DPA

āx̄ 0

x̄ 1

ax̄
0 x̄0

x0
ax
0

⊤1
Fin( 0 )∨ Inf( 1 )

Determinism is
required, so we
cannot use Büchi
acceptance

3. Parity Game

a
ā

x̄
0

⊤ x̄1
x
0

⊤⊤ 1x̄0⊤

Fin( 0 )∨ Inf( 1 )Parity games:

Ï have memory-less

strategies

Ï can be solved in near

polynomial time

4. Winning Strategy = Mealy

a/x
ā/x̄

⊤/⊤⊤/x̄

5. Simplify Mealy

ā/x̄

a/x ⊤/x̄

6. Output AIG

latch
xa
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How to turn an LTL formula into a DPA?
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Procedures
implemented
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These paritization
procedures are all
improved by ACD!
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The evolution

1 Model checking library
(2003–2012)
Ï using TGBA for model checking
Ï pure C++ library
Ï no tools (except for the test suite)

2 Platform for LTL manip. and
model checking (2012–2015)
Ï tools with LTL/PSL input
Ï no tool reading TGBA by lack of

exchange format

3 Platform for LTL and
ω-automata (2016–)
Ï HOA format
Ï more tools

Ï major rewrite
Ï Jupyter support

4 New application: Synthesis
Ï build on existing features
Ï improves existing features
Ï adds games, mealy machines
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āb

ā
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āb
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Fig. 7 illustrates how we have connected Spot to GreatSPN3.GreatSPN can produce a symbolic reachability graph (SRG)for a Colored Petri net by exploiting its symmetries [19]. Wehave implemented this interface as a tgba subclass whosemethods simply delegate their work to the correspondingprocedures of GreatSPN. From the point of view of Spot, anSRG appears as any other TGBA.
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Fig. 7. Interfacing third party state graph generators.

Fig. 7 also shows a concrete implementation of theautomata-theoretic approach to model checking depicted inFig. 1. The Generalized Tarjan algorithm corresponds to thealgorithm presented by Couvreur [2].
Roughly speaking, SRG exploits global symmetries of thesystem and regroups items of the system that are not distin-guished by the formula [20].
Another approach, worked out by Baarir et al. [21] doesnot consider the formula as a whole, but will rather considerthe automaton for this formula, and computes the equivalenceclasses induced by a transition of this automaton during thesynchronization. This second approach is called the SymbolicSynchronized Product (SSP), and has been connected to Spotas shown in Fig. 8.

As can be seen on that figure, the integration goes beyondsimply plugging a state graph generator. We are here using athird party synchronized product.

C. tgba as an Input Formalism
It seems important to us that our interface be based on alow-level formalism like TGBA.
Model checkers usually define their own input formalism,that preserves properties which are important to the tool. Whenit comes to integration with other tools, models have to beconverted between the various formalisms used. This turns outto be difficult when the features of each formalism are disjoint,

3http://www.di.unito.it/˜greatspn/
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Fig. 8. Interfacing third party synchronized product.

and results in the definition of a core formalism which is theintersection of all the others.
By allowing input to be given directly in our low-levelformalism (viz., TGBA) we hope to allow many high-levelformalisms to be used. For instance the GreatSPN interface isa way to convert Well-Formed Petri Nets into TGBA.Note that this is also true for formulæ. The automata-theoretic approach can be used to check any property thatcan be expressed as a TGBA. Translating an LTL formula isonly one way to produce such a TGBA.

We should also emphasize that TGBA can be seen as asuperclass of the other Büchi automata. A Büchi automatonwith labels on states (or labels on transitions but acceptanceconditions on states) can be rewritten as TGBA of equal sizeeasily (and on-the-fly), while the converse is not true. Thismeans that Spot can reuse any algorithm that produces a Büchiautomaton, but cannot otherwise directly use algorithms thatexpect such an automaton as input, without prior conversion.

IV. OTHER USES OF SPOT

The above couplings between Spot and GreatSPN to imple-ment SRG and SSP have been successfully used to modelcheck a medium-sized model: the heart of the PolyORBmiddleware, modeled as a Well-Formed Petri Net [22]. Theseresults have yet to be published, but they are the first realisticuses of our tools.
Besides SRG and SSP, Spot is also used to drive a fewother state-graph generator methods developed in our team.An interface with the symbolic method of Haddad et al. [23]already exists, and one to the symbolic symbolic state spacerepresentation of Thierry-Mieg et al. [24] is being developed.Finally, Spot comes with a set of Python bindings thatallows the library to be used from Python scripts (often moreconvenient than C++ when experimenting). These bindingswere for instance used to implement our on-line LTL2TGBAtranslator.

Ï A bug!
Ï command-line tools
Ï SAT-based minimization

Ï Jupyter visualizations
Ï Emerson-Lei acceptance

conditions

Ï ltlsynt, ACD

Ï ltlfsynt, MTDFA

What I will presentWhat I did present

23 / 23


