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Abstract. We introduce neco-spot, an LTL model checker for Petri net models.
It builds upon Neco, a compiler turning Petri nets into native shared libraries that
allows fast on-the-fly exploration of the state-space, and upon Spot, a C++ library
of model-checking algorithms. We show the architecture of Neco and explain how
it was combined with Spot to build an LTL model checker.

1 Introduction

Neco is a suite of Unix tools to compile high-level Petri net models into shared libraries
that can then be used to check reachability properties (building only the set of reachable
states), or check any LTL property (synchronizing the reachability graph with a prop-
erty automaton). It is based on SNAKES, a general Petri net Python library [12], which
key feature is the use of arbitrary Python objects as tokens and Python expressions as
net annotations. This allows a great amount of expressivity at the cost of slow execution
times, Python being an interpreted language. Neco uses this library as a frontend allow-
ing this high degree of expressivity but also notably speeds up the execution, efficiently
compiling the models to native libraries. This compilation step allows Neco to compete
with state-of-the-art tools [7,10].

Originally, Neco did only reachability analysis. In this paper, we explain how we
connected it with the Spot library to perform LTL model checking. Beside presenting
Neco, this paper can therefore be seen as presenting a use-case of Spot, showing how
to build an LTL model checker for a custom formalism.

2 Architecture of Neco

To perform model-checking, Neco provides three tools: neco-compile, neco-check,
and neco-spot. Each of these tools handle a specific task and the whole tool set allows
for a simple workflow as presented in Figure 1.

First, neco-compile builds an exploration engine (net.so) from a high-level Petri
net model. The model can be programmatically specified in Python using the SNAKES
toolkit [12], specified in the ABCD formalism [11], or provided in PNML format [9].
This step uses model specific information (inferred or provided by the user) to generate
optimized data structures and exploration functions on a per-model basis [7,8].
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Fig. 1. The architecture of Neco.

Next, we set up an atomic proposition checker. Because Spot is a general model-
checking library, it does not provide a language for atomic propositions. So each tool
using Spot has to provide its atomic proposition language, but also functions to check
these. This is the role of neco-check tool. It takes a LTL formula as an input, then
decomposes it in order to extract atomic propositions. During this step a simplified
formula where all atomic propositions were replaced by simple identifiers is produced
(spot formula). The tool keeps the track of these atoms using an identifier-atomic
proposition map, which can also be used to understand the simplified formula. The
exploration engine being model-specific, neco-check cannot make any assumption
about the Petri net marking structure or memory layout. Fortunately net.so exports
some metadata (compilation trace) about the marking structure that is used by
neco-check to generate check functions for each atomic proposition. The last function
we produce is a main check function that serves as an interface for the whole mod-
ule. It returns the value of atomic propositions based on their identifiers and a provided
states. All functions generated, we can compile the code producing the shared library
checker.so.

The model-checking procedure is performed by the third and last tool: neco-spot.
This tool takes as inputs: the LTL formula to check (spot formula), the exploration
engine library to build the reachability graph on demand (net.so), and the atomic
proposition checker module to check atomic proposition values (checker.so). Then
using the Spot library outputs a counterexample if one exists, and builds the whole state
space otherwise.



3 Bridge between Neco and Spot

We now describe how we built our LTL model-checking tool, neco-spot, combining
Neco’s exploration engine with the model-checking algorithms of Spot [4].

Spot handles Transition-based Generalized Büchi Automata (TGBA), which, as the
name suggests are Büchi automata with transition-based generalized acceptance condi-
tions. TGBA allows for more compact representation of LTL properties [3], and can be
checked for emptiness efficiently [2]. The TGBA is also an abstract C++ class, tgba,
with an interface that allows on-the-fly exploration. Kripke structures are viewed as a
subclass of tgba without acceptance sets.

The automata-theoretic approach is implemented by neco-spot as follows:
1. A wrapper of net.so and checker.so that presents the reachability graph of the

model as a subclass of Spot’s kripke class. The interface boils down to three
functions: get init state() returns the initial state, succ iter(s) returns an
iterator on the successors of the state s, and state condition(s) returns the val-
uation of the atomic propositions for the state s. Note that this interface allows an
on-the-fly exploration of the state space, computing the results of succ iter(s)
and state condition(s) on demand, by simply calling the relevant functions
compiled in net.so and checker.so.

2. The LTL formula is simplified, converted into a TGBA, which is in turn also sim-
plified. All these operations are functions offered by Spot [3].

3. The previous two automata are synchronized using the class tgba product of Spot
(another subclass of tgba). This synchronous product object is actually constructed
in constant time, and delays its computation until it is actually explored.

4. The synchronous product is checked for emptiness using any of the emptiness
check algorithms implemented by Spot [4]. It is this emptiness check procedure
that will trigger the on-the-fly computation of the product, which will in turn con-
struct the part of the reachability graph that need to be explored.

5. If the product was empty, a counterexample is computed and displayed.
The most important part of the work for building neco-spot therefore consisted

in implementing the interface for Spot’s kripke class; the rest is just chaining calls to
various algorithms of Spot.

4 Possible Evolutions

There are a couple features of Spot that we do not use in neco-spot, and that will
constitute some easy extensions.

A first one is the support of the linear fragment of the Property Specification Lan-
guage [1] (PSL), a superset of LTL. Spot has built-in support for PSL, and all it would
require is an extension of Neco’s parser of formulas.

A second extension would be to support for weak fairness properties [5] in the
model. Currently, neco-spot presents its model as an instance of the kripke class,
which is just a TGBA without acceptance conditions, but it could present the model
as a fair kripke where states can be associated to acceptance sets representing weak
fairness constraints.



We also plan to add reductions by symmetries [6] which have been already proto-
typed in Python, but are not available for LTL model checking yet. This would improve
both exploration times and state-space sizes, leading to smaller product automata when
performing model checking with Spot.

Furthermore, in order to easily debug models, we would like to implement fast
simulation within Neco. This would also allow to replay couterexamples provided by
neco-spot.

5 Availability

Neco is free software. Documentation and installation instructions can be found at

http://code.google.com/p/neco-net-compiler/.

A test-suite is also supplied.
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Büchi automata. In: Godefroid, P. (ed.) Proceedings of the 12th International SPIN Workshop
on Model Checking of Software (SPIN’05). Lecture Notes in Computer Science, vol. 3639,
pp. 143–158. Springer (Aug 2005)

3. Duret-Lutz, A.: LTL translation improvements in Spot. In: Proceedings of the 5th Interna-
tional Workshop on Verification and Evaluation of Computer and Communication Systems
(VECoS’11). Electronic Workshops in Computing, British Computer Society, Tunis, Tunisia
(Sep 2011), http://ewic.bcs.org/category/15853

4. Duret-Lutz, A., Poitrenaud, D.: SPOT: an Extensible Model Checking Library using
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