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Abstract
The viewable sphere corresponds to the space that surroundsus. The evolution of photography and panoramic
software and hardware has made it possible for anybody to capture the viewable sphere. It is now up to the artist
to determine what can be done with this raw material. In this paper we explore the underdeveloped field of flat
panoramas from an artistic point of view. We argue that its future lies in the exploration of conformal mappings,
specialized software, and the interaction of its practitioners via the Internet.

1. Introduction

Look around you. Barring the effects of stereoscopy, we per-
ceive our surroundings as a sphere centered somewhere in-
side our head: the viewable sphere. It is generally accepted
that our eyes perceive the world in a similar way in which a
pin-hole camera records a scene [Kub86]. This is equivalent
to mapping a section of the viewable sphere (usually a region
of field-of-view of at most 120◦) into a flat surface using a
perspective projection (also known as gnomonic, or rectilin-
ear). The perspective projection has a crucial feature: it pre-
serves straight lines as straight. Its main disadvantage isthat,
as the field-of-view increases, the regions at its edges are
heavily distorted. An image of field-of-view of 180◦would
have infinite size.

Mapping a sphere (or a large portion of it) is a problem
well-known to cartographers who have been interested in
making flat representations of the world [Sny93]. They have
envisioned dozens of different map projections that take the
sphere and project into a plane [SV89]. The choice of pro-
jection is a trade-off: one has to accept some distortion in
exchange for some properties that the projection exhibits.
For example, the Mercator Projection, one of the most fa-
mous, has been very valuable for navigational purposes be-
cause it preserves angles at any point, even if distances were
distorted. A sailor would know exactly in which direction to
set sail, even if he or she would not know how far the desti-
nation was.

The first panoramas (representations of the viewable
sphere or a large portion of it) were developed by the Egyp-

tians and the Greeks, who used the stereographic projection
for star maps [Sny93]. During the Renaissance artists devel-
oped the theory of projection, and understood its limits. It
was Robert Baker, in the late 1700’s who is credited as the
father of panoramas and who used a cylindrical room to dis-
play 360◦views of London with little distortion.

Photography, by its own nature, has been restricted to the
optical limitations of the camera obscura and lenses (rectilin-
ear, fisheye, and anamorphic). To overcome such limitations
cinematographers developed sophisticated systems, such as
Cinérama, Circarama, and Circle Vision 360◦that uses 9 or
11 cameras and a cylindrical screen to project an image of
360◦horizontal field-of-view, but less than 90 degrees ver-
tical [Mac57]. Photographers had to accept the limitations
of their medium, and present wide-angle images with heavy
distortions towards the edges; yet many used this feature as
an artistic tool.

The computer has open a new era in the creation of
panoramas. Affordable hardware and software exists to cap-
ture and create a 360◦×180◦panorama. These spherical
panoramas are usually displayed as immersive panoramas
(using software such as Apple Quicktime VR) and have
found an important market in surveillance and real estate,
by providing a "realistic" view of a space as if one was there.
Yet some photographers are interested is displaying their im-
ages flat, in a way that they can be displayed without the
need of artifacts that detract from the image, or limit its ac-
cess.

This article is written by artists who are interested in this
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challenge: how to represent the viewable sphere in a flat rep-
resentation. In section2 we introduce the notion of confor-
mal mappings which we have found to be extremely useful.
In section3 we explore the use of the stereographic projec-
tion, the oldest of the map projections, but also, and until re-
cently, the only conformal projection available in panoramic
software. In section4, we explore how Flick—a Web site to
post and view photographs—is becoming a gathering place
and a laboratory where new ideas are tested, shared and
learnt. Finally, section5 explores the merge of the software
developer, the mathematician, and the artist, and how these
skills come together to create software that can unleash the
imagination of a photographer.

2. On conformal mappings

Complex numbers. These simple words would usually make
a few artists shudder, with memories of a long gone (and per-
haps thankfully so) past. However it is with tools taken from
this part of mathematics that graphic artists could fine a gold-
mine of possibilities for the transformation of images. Com-
plex functions are a deeply profound theory with extremely
powerful theorems, and, compared to what can be done, it is
virtually unexplored. The development of fast computation
can allow for an easy and affordable exploration and use of
these functions. Before dipping into the sea of possibilities,
we should present a quick introduction of what makes com-
plex analysis so interesting for image transformations.

2.1. Complex numbers and complex functions

Everything starts with the quantityz= x+ iy, wherei is the
imaginary quantity “square root of -1”.x andy are real num-
bers, called the real and imaginary part of z, respectively.
The relationship between images and complex numbers is
simple: thex andy can represent the coordinates of a point
(x,y) in what is known as the “complex plane”. Any trans-
formation of a complex number can thus be seen as a trans-
formation of an image.

On this complex number we can define, just as for real
numbers, functions, for examplef (z) = z2 = x2−y2 + i2xy.
The result of applying this function to an image would be
to send the point(x,y) to the point(x2 − y2,2xy). All sorts
of functions can be used: in fact, almost all usual functions
have a natural extension to the complex plane. Sinus, cos-
inus, square root, exponential, logarithms, inverse trigono-
metric functions,... all have their counterpart in the com-
plex world. In order to experiment with such functions we
use Mathmap, a plug-in for the Gimp [Pro07]. Mathmap de-
fines its own domain-specific programming language, which
is then used to implement the desired remapping function
(given the way the image is rendered one needs to program
the inverse of such function, which is not always trivial).
Mathmap provides a flexible and powerful environment for
the exploration of functions to remap an image.

2.2. Derivatives and conformality

These function can be differentiated, just like real functions:

f ′(z) = limε→0
f (z+ε)− f (z)

ε . This derivative can only be de-
fined if the real and the complex parts off are related in
some specific sense. This means that differentiation is in
fact more constraining in the complex world than in the real
world. Such a differentiable function defines on the com-
plex plane “a conformal mapping”. The characteristics nec-
essary for the function to be differentiable provide the fun-
damental property of conformal mappings: conformal map-
pings are shape-preserving, or angle-preserving, i.e., a trans-
formed angle measures the same, i.e., local shapes are pre-
served [Neh82].

This is not to say that conformal mappings show no dis-
tortion: the scale of objects is distorted, but their shapesare
preserved (and recognizable) regardless of where the ob-
ject appears in the image. Sometimes, conformality fails in
one point: the function is not differentiable there (example:
f (z) = 1/z in z= 0). At this point the preservation of angles
is not observed, and the distortion is maximal.

A good example of a conformal mapping is the so-called
“Escher Droste effect”, obtained by using the complex func-
tion f (z) = z1+iα with well chosen values ofα (see fig-
ure 1) [dSJ03]. This will transform the image into an infi-
nite recursive spiral that shows nowhere the signs of having
been distorted. Figure2 shows an example of the polynomial
transformationf (z) = z2 +2z.

Figure 1: Honey, I Escherized the Kids!Image created us-
ing the Droste effect.c©Sébastien Pérez-Duarte, used with
permission.

2.3. The power of conformality

Incredible results are possible: Riemann stated in 1851 (and
this was later shown to be true) that any reasonable simply-
connected shape can be conformally transformed into a disk.
Then Schwarz and Christoffel independently found an ex-
plicit but computationally intensive formula to transformthe
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Figure 2: Smarties: Heart Mapping. Applying the conformal
mapping f(z) = z2 + 2z; the plate was transformed from a
circle to a heart, while preserving the shape of the smarties.
c©Alexandre Duret-Lutz, used with permission.

unit circles into any polygonw of n sides [Lee76]:

w =
Z z

0
(1− sn)−2/nds

There are, however, known and simpler mappings between
the disk and a square, a triangle, a rectangle, an ellipse us-
ing Dixon and Jacobian elliptic functions [Lee76]. With a
fast computer and appropriate techniques, almost all shapes
can be transformed into other shapes, keeping always those
precious angles constant.

2.4. Conformality and the impossible flat sphere

In the accompanying exhibit to the SymposiumThe View-
able Sphereconformal mappings have been used to deal
with the frustration on the impossibility of trivially flattening
the sphere. How can we represent as truthfully as possible
the globe? One logical answer is to use a projection that is
shape-preserving, in the local scale. Here of course enter the
conformal mappings between the sphere and the plane.

The first conformal projection known is the stereographic
projection [Sny93]. This projection shows only one point
where conformality fails: the opposite pole. The sphere mi-
nus one point is projected onto a plane of infinite size. The
second conformal projection is well known: the Mercator
projection is also angle-preserving. Distortions are larger
close to the poles, where conformality fails. The sphere is
projected into an infinite band.

It is also possible to conformally represent the whole
sphere into an hemisphere, and this hemisphere can be pro-
jected as a circle by a stereographic projection (Lagrange
projection). This circle can then be transformed into a square
thanks to Schwarz’s formula (Adams World in a Square). It
is also possible to independently project each hemisphere
into a disk and square this disk (Peirce quincuncial mapping
and Guyou Doubly Periodic map—see figures3 and4).

Figure 3: Peirce Quincuncial Projection. c©Sébastien
Pérez-Duarte, used with permission.

Figure 4: Tileable Guyou-Peirce projection.c©Sébastien
Pérez-Duarte, used with permission.

In this very dynamic environment, new transformations
are just waiting to be discovered.

3. On the Stereographic Projection

The Stereographic Projection is the oldest conformal map-
ping known. It projects the surface of a sphere on a plane that
is tangent to the sphere’s pole. To calculate the projectionof
a point P of the sphere, imagine a straight line between the
opposite pole of the sphere (center of the projection) and P:
the point where this line intersects the plane is the stereo-
graphic projection of P. The hemisphere tangent to the pro-
jection plane is thus mapped into a disc that is twice as big
as the equator of the sphere, while the other hemisphere fills
the rest of the plane.

When used to display 360◦×180◦panoramas, this projec-
tion yields pictures with a planetoïd look such as in figure5,
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or, if you switch the two poles, that have a tunnel feeling as
in figure6. In any case the center of the projection is never
seen, because it would be projected on the plane to the infi-
nite (in all directions).

Figure 5: Notre-Dame de Paris, using the stereographic pro-
jection where the plane of projection is at the nadir, and the
point of projection at the zenith.c©Alexandre Duret-Lutz,
used with permission.

Figure 6: Anti-G Tunnel, using the stereographic projection
where the plane of projection is at the zenith, and the point
of projection at the nadir.c©Emmanuel Pérez-Duarte, used
with permission.

Being conformal, the projection preserves local angles;
but what makes the projection unique is that it will also pre-
serve circles and vertical lines. Any circle on the original
sphere (that doesn’t pass through a pole) will be projected as
a circle on the plane: this is a property few other projections
share. The meridians of the sphere (circles that pass through
the center of projection), that support the vertical lines of
the scene photographed, will appear as straight lines coming

out of the origin of the projection plane. In photographs, it
means footballs will stay round (unless they are American)
and the vertical edges of buildings will remain straight.

The projection can be tweaked by moving the projection
plane, or rotating the original sphere. Moving the projection
plane in parallel, to change its distance to the source of the
projection (i.e., so it either intersects the sphere at somecon-
stant latitude, or doesn’t touch the sphere), will only affect
the scale of the projection. This can be used to zoom in or
zoom out the panorama to frame it properly.

When rotating the sphere, the center of the plane will no
longer be located at a pole (the zenith, or the nadir). This
means that vertical lines of the original scenery are no longer
preserved. Off centering the projection a bit can give a jelly
look to buildings, as in figure7. It is also an option when
both poles should be shown.

Figure 7: Planet Grain Mill, using an oblique stereographic
projection. Many of the vertical lines appear curved.c©Josh
Sommers, used with permission.

4. On Flickr

Art is, by its own nature, evolutionist. Artists have always
being influenced by their environment and the artistic styles
of others. Paris, for example, has an ample tradition incubat-
ing art. Monet, Renoir, Basille and Sisley were students of
Gleyre, who was a student of Delaroche. Cézanne, Manet,
Monet, Pissarro, Renoir, Sisley, Gauguin and Degas knew
each other and their art. In the 1800’s and early 1900’s Mont-
martre, in Paris, became one of the most important artistic
centers in the world. Mattisse, Van Gogh, Renoir, Degas,
Toulouse-Lautrec, and Picasso had studios there. For many
artists Paris became the place-to-be.

In the past, communication was slow, hence, artists were
more likely to move to the places where they could improve
their art, and find potential buyers. The Internet has revolu-
tionized the way we communicate, and the way that artists
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interact. Artists started using mailing lists to communicate;
as the Web developed, specialized sites were created for this
purpose.

In the past we felt lucky if a few people were able to see
our photos, and even then it was only because we would
show a friend or family member a photo on a computer, or
hanging on a wall. At first sight Flickr is a Web site to share
your snapshots with your friends and relatives. But it is in its
social interaction, and its ability to link strangers that its real
power lies.

Flickr has permitted the creation of groups of photog-
raphers in particular niches of interest to develop. Among
those niches, we think of course about the spherical panora-
mas and their multiple representations. Gathering around
this wonderful new tool, artists around the world are able
to share their art, and their techniques with others. The re-
sulting artistic world is therefore one of greater diversity and
originality—an artistic world in which everyone can find his
own “little planet”.

To explore other’s photographs on Flickr is a unique expe-
rience. The vast collection of images on Flickr seems seem-
ingly infinite and we soon started to stumble across images
that blew our mind. Many of the images we found on Flick
have become a source of fascination, and more important, in-
spiration. We post our images regularly and from the work of
others, we explore and learn new techniques at a very rapid
pace. As time went on, our photo streams have attracted the
attention of other Flickr members and our work is getting
attention from all over the world.

Each of the Flickr groups are communities and that comes
with all of the benefits of any other community, and yet,
Flickr allows its members to move across communities, vis-
iting, and in many cases joining and participating in a partic-
ular one.

Flick is a place to share your artwork with peers from
around the world, and see the work of others from around
the world too. It is a place of learning and of teaching, a
place to inspire and be inspired. For us, Flickr is perhaps the
only way that our work could have been seen by so many
people, from so many places in such a short amount of time.

This is the beauty of Flickr. It is so much more than a place
to post photos. Flickr groups are the Internet’s Montmartres.

5. Flexify: Building software with an artistic vision

By Lloyd Burchill, Flaming Pear Software
http://www.flamingpear.com.

Computers can grasp the formal properties of pictures—
shape, colour, perhaps 3D scene structure—but have next to
no ability to understand their meaning. Flaming Pear’s chal-
lenge in building graphics software, then, is to emotionally
transform pictures via formal manipulation.

One way software can do this is to steal techniques from
traditional painting and photography. For example, a crisp
photo can be made remote and moody by softening fo-
cus, vignetting edges, subduing color, reducing contrast,and
adding grain. Less explored, and more interesting, are ma-
nipulations which only software can do and which let people
see the world in new ways. To do this Flaming Pear pilfers
methods from medical imaging, satellite photography, and
scientific image processing and perverts them to aesthetic
ends. Cartography in particular offers much to plunder for
panoramic photos.

After the technical hurdles of building a spherical
panorama comes the problem of how to present it accept-
ably to human eyes. Though there’s little tradition of fine-art
spherical imagery to draw upon, there’s some luck: flattening
a photo-sphere onto paper is the same problem as making a
flat map of the world.

Flaming Pear’s panorama software Flexify, a plug-in for
Adobe Photoshop built upon Adobe’s plug-in SDK, can
warp equirectangular panoramas into traditional map “pro-
jections”. Typically these maps are designed to suit condi-
tions which don’t much benefit a photograph: they avoid in-
terrupting continents, or they simplify marine navigationby
showing straight rhumb lines.

In response we’ve tried to invent several new projections
which do suit photos. These new views aim either to present
the whole scene clearly, or to draw out the vertiginous,
dizzying, hyper-wide-angle quality of spherical panoramas.

Such panoramas are often beset by serious compositional
problems: a sparsity of interesting features or lack of a clear
focus for the viewer’s gaze. Ordinary pictures solve this
with cropping, but to discard part of the picture misses the
point of a complete spherical view. Ransacking some ob-
scure, unpopular map forms from the late 19th and early 20th
centuries allows the creation of unusual panoramas which
improve the compositional problem. For example, the Lee
Tetrahedric map [Lee76] applied to a photo produces the St
Dunstan image shown in figure8

These are conformal projections: they preserve local
shapes but greatly distort scale. World maps made this way
tend be objectionably warped, but a photograph processed
the same way is much more pleasing. The scale variation
which is a flaw cartographically is an asset photographically
since it allows the user to magnify interesting parts of the
image and shrink the rest. So this type of projection is the
one most favoured by panoramic photographers.

The abandonment of cartographic constraints in favor
of aesthetic freedom has complicated Flexify’s underlying
math. The Peirce Quincuncial and other polygonally-shaped
projections involve the Schwarz-Christoffel transform (see
section2.3). Calculating the inverse tranforms—from the
output projection back to the disk, which in turn trivially
maps to a sphere—is slow. A typical 4-megapixel image can
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Figure 8: St Dustan. Spherical panorama projected using
the Lee Tetrahedric Map projection.c©Lloyd Burchill, used
with permission.

take several minutes on a current 2 GHz consumer PC. This
can be greatly accelerated by breaking up the output poly-
gon into triangles whose barycentric coordinates are used
as indices into a lookup table calculated offline. In practice,
coarse tables of about 50x50 entries, linearly interpolated,
reduce render times from minutes to seconds with no per-
ceptible loss of image quality. High-quality resampling is
achieved through the Feline algorithm [MRPaJ99] and sinc
filtering [Tur90].

Despite these issues the software is quite simple to use.
The user loads an image into Photoshop, starts Flexify, and
through pop-up menus describes the input image supplied
and can cycle through the different output projections with
the help of a low resolution preview. Sliders tumble the im-
age sphere, letting the user rapidly evaluate various options
and discover the projection which flatters the photograph
best. Figure9 shows Flexify in action.

Figure 9: Screenshot of Flexify’s graphical user interface

The software is a paintbrush, not a painting, and tools are
not talent, so the creative onus lies now as ever with the hu-
man user. But it helps to have good equipment with strange
new capabilities.

6. Conclusion

We feel like trailblazers exploring new artistic worlds. One
day panoramic images created using conformal mappings
might share wall space in galleries and museums along some
masterpieces of our civilization. In the meantime we are dig-
ging into the treasure chests of geometry, geography, cartog-
raphy, complex number theory and psychology (to name a
few fields) trying to find tools that will lead us towards novel
ways in which we can represent the viewable sphere.

We invite the viewer to visit the accompanying electronic
exhibit for CaE 2007:Flattening the Viewable Sphereat
http://turingmachine.org/viewableSphere
where we showcase our images and those of other panorama
artists.
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