
ALGO: Exercises for Tutorial Classes

October 21–25, 2019. EPITA. ING1

Send any mistake to Alexandre Duret-Lutz <adl@lrde.epita.fr>.

Picture by Randall Munroe (http://xkcd.com/1185/) — Creative Commons by-nc 2.5 License.

K Day 1 k

1.1 Small Loops

How many lines are printed by the following loops? Give

your answer as a function of N.

1. for (int i = 0; i < N; ++i)
for (int j = 1; j <= N; ++j)
puts("Loop 1");

2. for (int i = 0; i < N; ++i)
for (int j = N/2; j > 0; --j)
puts("Loop 2");

3. for (int i = 0; i < N; ++i)
for (int j = i; j >= 0; j--)
puts("Loop 3");

4. for (int i = 0; i < N; ++i)
for (int j = 1; j < N; j *= 2)
puts("Loop 4");

Hint: rewrite the inner loop so it increments by 1
while still performing the same number of iterations.

5. for (int i = 0; i < N; ++i)
for (int j = i; j < N - 2; j++)
puts("Loop 5");

6. for (int i = 0; i < N; ++i)
for (int j = i; j >= 0; j -= 2)
puts("Loop 6");

Hint: rewrite the inner loop so it increments by 1.

Then distinguish between odd and even N.

1.2 House

How many ‘#’ are printed by ‘house(n)’? Give your answer

as a function of n.

1 void house(unsigned n)
2 {
3 for (unsigned y = 0; y < n; ++y)
4 {
5 for (unsigned x = 1; x < n - y; ++x)
6 putchar(' ');
7 for (unsigned x = n - y; x <= n + y; ++x)
8 putchar('#');
9 putchar('\n');

10 }
11 for (unsigned y = 1; y < n; ++y)
12 {
13 for (unsigned x = 1; x < 2 * n; ++x)
14 putchar('#');
15 putchar('\n');
16 }
17 }

1.3 Simple Computations

1. Sum the first 1000 odd natural numbers.

2. Compute log10(42) to two decimal places by hand.

You may use a pocket calculator, but assume that its

log key is broken and cannot be used.

3. 9 Compute log2(42) similarly.

1.4 Binary Trees

Consider non-empty full binary trees (i.e., internal nodes
always have two children, and leaf nodes have no children).

Let h denote the height of the tree (a single-node tree has

h = 0), ni the number of internal nodes, ` the number of

leaves, and n = ni + ` the total number of nodes.

1. Express ni as a function of `.

2. Give lower and upper bounds for:

• ` as a function of h,

• ni as a function of h,

• n as a function of h.

Keep in mind that (even full) binary trees are not

always balanced.

3. Deduce some lower bounds for:

• h as a function of `,
• h as a function of ni,

• h as a function of n.

Since h is an integer, use b·c or d·ewhen appropriate.

1.5 Decision Tree 9

Let’s construct a tree that represents some sorting algorithm

for an array of size n. Each internal node is labeled by a

question of the form “A[i] ≤ A[j]?” for some given i and j.
The left child is used when the answer is negative, while

the right child is used when the answer is positive. Each

leaf is labeled by a possible answer of the sorting algorithm,

i.e., the order in which values should be rearranged to be

sorted. Several leaves may have identical labels.

For instance here is a sorting algorithm for an array of 2
values: A[1] ≤ A[2]?

A[2], A[1] A[1], A[2]

no yes

1. Devise a decision tree for sorting an array of 3 values.

2. What is the minimum number of leaves needed to

sort an array of n values?

3. Deduce the minimal height of a decision tree for

sorting n values.

4. What does this teach us about the complexity of com-
parison sorting algorithms (i.e., sorting algorithms based

on comparisons of the values to sort)?

K Day 2 k

You will have to implement the algorithms from exercises

2.1 and 2.2 this afternoon.

2.1 Binary Search

BinarySearch(A, b, e, v) takes a sorted arrayA, and looks up

a value v in the semi-open range of A delimited by indices

b ≥ 0 (included if b < e) and e (always excluded).

If there exists an index p such that b ≤ p < e and A[p] = v,

BinarySearch returns p. If there is no such index, Bina-

rySearch returns the index i of the value before which v
should be inserted if we wanted to add this value while

keeping A ordered. In other words, when v is not found in

A between b and e, the returned value i is such that:
b = e or v < A[b] if i = b

A[i− 1] < v < A[i] if b < i < e

b = e or A[e− 1] < v if i = e

BinarySearch(A, b, e, v)
1 if b < e then

2 m← b(b+ e)/2c
3 if v = A[m] then

4 return m
5 else

6 if v < A[m] then

7 return BinarySearch(A, b,m, v)
8 else

9 return BinarySearch(A,m+ 1, e, v)
10 else

11 return b

1. Prove that b(b+ e)/2c = b+ b(e− b)/2cwhen b and e
are natural numbers.

2. Although the previous equality is true from a mathe-

matical standpoint, it does not hold anymore if the op-

erations are implemented using a low level type such

as unsigned int. Suggest two unsigned int values

a and b verifying a<b but such that assert((a+b)/2
== (a + (b-a)/2)) would signal a problem. Which

one of these two expressions should you use when

implementing this algorithm?

3. Give an upper bound of T (n), the time complexity

of BinarySearch expressed as a function of the array

size n = e− b. Your expression should be recursive,

involving T (bn/2c).

4. Solve this recursive expression by substituting T (. . .)
by its definition until you reachT (1). You may assume

that n is a power of 2.

5. Are the recursive calls to BinarySearch in this function

tail calls?

6. Perform a tail call elimination in BinarySearch as if

you were a compiler (i.e., using gotos), then refactor

it to be more readable to the human (getting rid of the

gotos).

7. What is the complexity of your non-recursive version

of BinarySearch?

2.2 Insertion Sort + Binary Search

Let’s consider again the insertion sort as seen in the lecture,

where A is an array of n objects (with indices starting at 0)

that can be compared.

InsertionSort(A,n)
1 for i← 1 to n− 1 do

2 key ← A[i]
3 j ← i− 1
4 while j ≥ 0 and A[j] > key do

5 A[j + 1]← A[j]
6 j ← j − 1
7 A[j + 1]← key

1. What is the number of comparisons performed in the

worst and best cases? We only want to count com-

parisons between objects, i.e., the number of times

A[j] > key is executed.

2. What is the total number of assignments of objects?

(Lines 2, 5, and 7.)

3. Write a variant of InsertionSort that uses Binary-

Search to find where to insert key, and then shift all

objects to the right of this position to make some room

for the new value.

4. 9 What is the number of comparisons and assign-

ments in this new algorithm? (Did you also account

for the number of comparisons in BinarySearch?)

2.3 The Θ Notation

By definition

Θ(g(n)) =

{
f(n)

∣∣∣∣∣∃c1 > 0,∃c2 > 0,∃n0 ∈ N,
∀n ≥ n0, c1g(n) ≤ f(n) ≤ c2g(n)

}

For convenience, we often write f(n) = Θ(g(n)) instead

of f(n) ∈ Θ(g(n)). Similarly n3 +Θ(n2) should be under-

stood as some formula for the form “n3 + f(n)” where

f(n) ∈ Θ(n2).

1. Prove that for any two positive functions g1 and g2 we

have:

a) Θ(g1(n)) + Θ(g2(n)) ⊆ Θ(g1(n) + g2(n))
b) Θ(g1(n)) + Θ(g2(n)) ⊆ Θ(max(g1(n), g2(n)))
c) Θ(g1(n)) ·Θ(g2(n)) ⊆ Θ(g1(n) · g2(n))

2. 9 Disprove the following properties:

a) g1(n) = Θ(g1(n/2))
b) g1(n) = Θ(g2(n)) ⇐⇒ log2 g1(n) = Θ(log2 g2(n))

2.4 Ternary Search 9

Propose an implementation of TernarySearch and study

its complexity.

K Day 3 k

3.1 Using the “master theorem”

Let us for recall the master theorem from the lecture.

Given a recurrence equation such as T (n) = aT (n/b +
O(1)) + f(n) with a ≥ 1, b > 1.

• If f(n) = O(n(logb a)−ε) for some ε > 0,

then T (n) = Θ(nlogb a).

• If f(n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n).

• If f(n) = Ω(n(logb a)+ε) for some ε > 0, and if

af(n/b) ≤ cf(n) for some c < 1 and all large val-

ues of n, then T (n) = Θ(f(n)).

• In other cases, the theorem does not apply.

Use this theorem to solve the following equations:

1. T (n) = 3T (n/3) + Θ(1)
2. U(n) = 2U(n/3) + Θ(1)
3. V (n) = V (n/2) + n+ 2
4. W (n) = W (bn/2c) +W (dn/2e) + Θ(log n)
5. X(n) = 2X(n/2) + Θ(n log n)

3.2 Matrix Addition

1. Write an iterative algorithm, Add(A,B, n), that sums

two n× n matrices.

2. What is the complexity of your algorithm? (The

master theorem is useless here.)

3. Argue that it is impossible to do better.

3.3 Naive Block Matrix Multiplication

Input: two n× n matrices A and B where n is a power of 2.

Output: the n× n matrix C = A×B.

BMul(A,B, n)
0 if n = 1 then

1 C[0][0]← A[0][0]×B[0][0]
2 return C

3

(
A11 A12

A21 A22

)
← A // slice A in four n

2 ×
n
2 blocks

4

(
B11 B12

B21 B22

)
← B

5 C11 ← Add

(
BMul(A11, B11,

n
2),BMul(A12, B21,

n
2),

n
2

)
6 C12 ← Add

(
BMul(A11, B12,

n
2),BMul(A12, B22,

n
2),

n
2

)
7 C21 ← Add

(
BMul(A21, B11,

n
2),BMul(A22, B21,

n
2),

n
2

)
8 C22 ← Add

(
BMul(A21, B12,

n
2),BMul(A22, B22,

n
2),

n
2

)
9 return

(
C11 C12

C21 C22

)
1. Give a recursive equation for the complexity of this

algorithm, in function of n. (Assume that slicing

matrices and grouping sub-matrices is done using

copies, so this is not constant time.)

2. Use the master theorem to find the complexity.

3. How do you think this algorithm compares to the

naive multiplication (done with a triple loop)?

3.4 Strassen’s Block Matrix Multiplication

Same questions for the following algorithm, where Sub

performs the substraction of two matrices.

SMul(A,B, n)
0 if n = 1 then

1 C[0][0]← A[0][0]×B[0][0]
2 return C

3

(
A11 A12

A21 A22

)
← A

4

(
B11 B12

B21 B22

)
← B

5 M1 ← SMul(Add(A11, A22,
n
2),Add(B11, B22,

n
2),

n
2)

6 M2 ← SMul(Add(A21, A22,
n
2), B11,

n
2)

7 M3 ← SMul(A11, Sub(B12, B22,
n
2),

n
2)

8 M4 ← SMul(A22, Sub(B21, B11,
n
2),

n
2)

9 M5 ← SMul(Add(A11, A12,
n
2), B22,

n
2)

10 M6 ← SMul(Sub(A21, A11,
n
2),Add(B11, B12,

n
2),

n
2)

11 M7 ← SMul(Sub(A12, A22,
n
2),Add(B21, B22,

n
2),

n
2)

12 C11 ← Sub(Add(M1,M4,
n
2),Add(M5,M7,

n
2),

n
2)

13 C12 ← Add(M3,M5,
n
2)

14 C21 ← Add(M2,M4,
n
2)

15 C22 ← Add(Sub(M1,M2,
n
2),Add(M3,M6,

n
2),

n
2)

16 return

(
C11 C12

C21 C22

)
Note that you do not need to understand why the algorithm

is correct to compute its complexity.

3.5 Fast Exponentiation

This computes xp
for p ∈ N.

FastPower(x, p)
1 if p = 0 then

2 return 1
3 if odd(p) then

4 return x×FastPower(x× x, bp/2c)
5 else

6 return FastPower(x× x, p/2)

1. Assuming the multiplication used here is done in

constant time, what are the worst-case and best-case

complexities as a function of p? Deduce the complex-

ity in the general case.

2. This algorithm can be applied to any type that has an

associative operation (here ×) with a neutral element

(here 1), i.e., any type that has a monoid structure.

Suggest a variant of FastPower for computing the pth

power of a n× n matrix using SMul, and compute its

complexity as a function a p and n.

3. Can you see how to use FastPower to compute the

product of two integers on a computer whose multi-

plication operation is broken?

K Day 4 k

Today we compress files by just changing how each character

is encoded at the bit level.

4.1 Histogram and Fixed-Size Encodings

Let us assume that the file to compress is represented as an

array data[0..n− 1] of n 8-bit characters.

1. Suggest an algorithm to compute the histogram of

characters in data . I.e., the function Hist(data, n)
should return an array of length 256 giving the num-

ber of occurrences of each letter.

2. Give the complexity of Hist as a function of n.

3. What is the complexity of computing the number of

different characters occurring in data once the his-

togram is built?

4. How many bits are necessary to distinguish p charac-

ters? Call this value b.

5. We decide that the compressed file we will output

starts with 256 bits indicating for each possible char-

acter whether it was used in the input. (These 256 bits

are enough to find p, b, and the way each character is

encoded.) This header is followed by the n characters,

each encoded on b bits. Compute the compression

ratio as a function of n and p. What is its limit when

n→∞?

4.2 Prefix Code

We now consider a variable-length code: each character

can be encoded using a different number of bits. Obviously

we want frequent characters to use short codes, while long

codes should be reserved to infrequent characters.

Also our encoding must have the prefix property: no code

should be prefix of another code. If we do not respect this

property, for instance encoding “a” with 11, and “b” with

111, then we cannot tell if 11111 encodes “ab” or “ba”.

1. Consider the following encoding:

letter a b c d e f

code 0 101 100 111 1101 1100
Decode 11011100110001001101.

2. Suggest an algorithm that inputs one such “code table”

and a string of n bits, and outputs the decoded string.

3. How many encodings with the prefix property exist

for p letters?

4. Assuming p > 1, argue that if one letter is encoded

with p bits or more, there must exist a better encoding.

5. Let’s look for an optimal encoding. Assume the file

to compress has 10000 characters chosen between

abcdefgwith the following frequencies:

letter a b c d e f g
freq. 15% 42% 7% 11% 13% 9% 3%

Suggest an encoding of these letters such that the

resulting size of all encoded letters is 3062.5 bytes

(multiple solutions exist, but you cannot do less on

this example).

4.3 Huffman

The Huffman algorithm computes an optimal encoding

by representing any encoding as a tree whose leaves are

the letters to encode. The code of a letter can be deduced

from the path from the root to the leaf labeled by this letter:

each left branch represent a 0, and each right branch is a

1. Furthermore, each node of the tree has an attribute freq
that is the sum of the frequencies of all the letters below.

Lines 1–5 the algorithm build a forest F in which each tree

corresponds to a character occurring in the file to compress.

The two trees whose roots have the smallest frequencies

are then combined, and the operation is repeated lines 6–11

until there is only one tree left in the forest.

Huffman(letters, freqs, p)
1 for i← 0 to p− 1 do

2 z ←NewLeaf(letters[i])
3 z.freq ← freqs[i]
4 Insert(F, z)
5 for i← 1 to p− 1 do

6 z ←NewNode()
7 z.left ←ExtractMin(F)
8 z.right ←ExtractMin(F)
9 z.freq ← z.left .freq + z.right .freq

10 Insert(F, z)
11 return ExtractMin(F)

1. Execute this algorithm with the frequencies from

previous question.

2. Suggest a data structure for F so that ExtractMin and

Insert will be efficient.

3. What is the complexity of Huffman as a function of

p?

4. Write a recursive procedure that takes the tree built

by Huffman and prints the list of letters (in any order)

with their associated code. What is the complexity of

this procedure?

5. To decode a file, you need to map each code to its

character. Suggest a way to save the Huffman tree

using at most 10p− 1 bits.

6. If the histogram is passed to Huffman has a sorted list,

show that F can be represented more efficiently using

two sorted lists (one for trees that are leaves, and the

other for larger trees). What does the complexity of

Huffman become?

7. Assume the frequencies of the p letters are the p first

values of the Fibonacci sequence. What does the

Huffman encoding look like?

K Day 5 k

5.1 Frankenstein’s QuickSort

We consider a variant of QuickSort where the pivot value

chosen by the partition procedure is the median of the

values.

Input: an array A[`..r − 1] of integers

Ouput: A is sorted in place

FrankenSort(A, `, r)
1 if r − ` > 1 then

2 p← FrankenPart(A, `, r)
3 FrankenSort(A, `, p)
4 FrankenSort(A, p, r)

Input: an array A[`..r − 1] of integers

Output: an index p, and the array A is rearranged

so that A[`..p− 1] ≤ A[p..r − 1]
FrankenPart(A, `, r)
1 x← A[Median(A, `, r)]
2 i← `− 1; j ← r
3 repeat forever

4 do i← i+ 1 until A[i] ≥ x
5 do j ← j − 1 until A[j] ≤ x
6 if i < j then

7 A[i]↔ A[j]
8 else

9 return i+ (i = `)

We assume that Median(A, `, r) returns the index of the

median of A[`..r − 1], and that it is allowed to reorder the

values of A[`..r − 1]. For some given ` and r, let n = r − `
be the length of the considered sub-array.

1. Justify that a comparison-based Median needs at least

n− 1 comparisons regardless of the implementation.

2. Explain (in two lines) how to implement Median with

Θ(n log n) comparisons.

3. Justify that the following Median implementation ef-

fectively returns the index of the median of A[l..r− 1]:

Median(A, `, r)
1 m← b(`+ r)/2c
2 for i← ` to m do

3 min ← i
4 for j ← i+ 1 to r − 1 do

5 if A[j] < A[min] then min← j
6 A[i]↔ A[min]
7 return m

4. Give, as a function of n, the complexity of Median

above.

5. Give, as a function of n, the complexity of Franken-

Part when using this Median.

6. Give a recursive equation (of the form T (n) =
aT (n/b) + f(n)) for the complexity of FrankenSort.

7. Solve this equation using the master theorem. How

does this algorithm compare to QuickSort?

8. Let us modify the main algorithm as follows, without

changing the definition of Median:

FrankenSort2(A, `, r)
1 if r − ` > 1 then

2 p←Median(A, `, r)
3 FrankenSort2(A, p+ 1, r)

Explain why it is still correct, i.e., why the array re-

turned by FrankenSort2 is sorted althought the recur-

sion is only done on the second half, and FrankenPart

is not even called...

9. What is the complexity of FrankenSort2.

10. Since the recursive call to FrankenSort2 is a tail call,

perform a tail call elimination to rewrite Franken-

Sort2 as an iterative procedure. Then inline the code

of Median, and finally, maybe give FrankenSort2 its

real name.

5.2 A QuickSort-based Selection

This exercise is almost the converse of the previous one:

instead of using Median in QuickSort, we derive a Median

implementation from QuickSort... More generally we want

to select the rank-i value (i.e., the ith smallest value) in an

array of size n. Rank 0 is the minimum, rank n − 1 is the

maximum, and rank bn/2c is the median.

1. Suggest an algorithm to find the rank-i value in a

n-sized array, and give its complexity.

2. Execute the following algorithm on a few examples,

and explain why it returns the rank-i value.

Input: a non-empty array A[`..r − 1] of integers,

and a rank i < r − `
Output: the rank-i value

Selection(A, `, r, i)
1 if r − ` = 1 then return A[l]
2 m← RandomizedPartition(A, `, r)
3 k ← m− `
4 if i < k
5 then return Selection(A, `,m, i)
6 else return Selection(A,m, r, i− k)

Input: a non-empty array A[`..r − 1] of integer

Output: an index p, and the array A is rearranged

so that A[`..p− 1] ≤ A[p..r − 1]
RandomizedPartition(A, `, r)
1 x← A[Random(`, r)]
2 i← `− 1; j ← r
3 repeat forever

4 do i← i+ 1 until A[i] ≥ x
5 do j ← j − 1 until A[j] ≤ x
6 if i < j then

7 A[i]↔ A[j]
8 else

9 return i+ (i = `)

3. Assuming Random runs in Θ(1), compute the com-

plexity of Selection in the worst case.

4. This algorithm has an average-case complexity of

Θ(n), we will prove it during the lecture.

	26 Day 1 54
	Small Loops
	House
	Simple Computations
	Binary Trees
	Decision Tree 12

	26 Day 2 54
	Binary Search
	Insertion Sort + Binary Search
	The Notation
	Ternary Search 12

	26 Day 3 54
	Using the ``master theorem''
	Matrix Addition
	Naive Block Matrix Multiplication
	Strassen's Block Matrix Multiplication
	Fast Exponentiation

	26 Day 4 54
	Histogram and Fixed-Size Encodings
	Prefix Code
	Huffman

	26 Day 5 54
	Frankenstein's QuickSort
	A QuickSort-based Selection

