CPXA: Exercises for Tutorial Classes

October 2024-January 2025. EPITA. ING1

Send any mistake to Alexandre Duret-Lutz <ad1@lrde.epita.fr>.

INEFFECTIVE SORTS

DEFINE. HALFHEARTED MERGESORT (LisT):
IF LENGH(LIST) < 2:
RETUORN ST
PIVOT = INT (LENGTH (LIST) / 2)
A= mmmzm&wrﬁ.nsr[:muﬂ;
B = HALFHEARTEDMERGE SORT (LisT[PvoT:]
A OMMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTIM\ZED BOGOSORT
/I RONS N O(NLoGN)
FOR N FROM 1. TO LOG(LENGIH(LIST)):
SHUFFLE (LIST):
IF [550RTED (LIST):
REURN LesT
RETURN “KERNEL PRGE FRULT (ERROR (ODE: 2)°

DEFNE JOBINERAEWQUICKSORT(LIST):
0K 50 You CHOOSE A PVET
THEN DIVIDE THE LIST IN HALF
FOR ERACH HALF:
CHEK T SEE F ITS SORED
NO, WAIT ITDOESN'T MATTER
COMPRRE EACH ELEMENT TO THE PWOT
THE BIGGER ONES GO IN ANEJ ST
THE EQUAL ONES GO INTO, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE LISTS
THIS 15 LST A
THE NEW ONE IS LIST B
PUT THE BIG ONES INTO LST B
NOW TRKE THE SECOND LIsT
CALL IT LS, UH, AZ
WHICH ONE WRS THE PIVOT IN?
SCRATCH AL THAT
ITJUST RECURSNELY CAULLS SELF
UNTIL BOTH LSS ARE EMPTY
RIGHT?

DEFINE PANICSORT(LisT):

IF [5SORTED (LIST):
REURN LiST

FOR N FROM 1 o 10000:
PIVOT = RANDOM (0, LENGTH(LIST))
UsT = UsT [PnoT: 1+ LIST:PvoT]
IF I5S0RTED(LIST):

RETURN UST

IF ISGORTED(LIST):
RETURN LST:

IF 18S50RTED(LIST): //THIS CAN'T BE HAPPENING
RETURN LIST

IF ISSORTED (LIST)2 // COME ON COME ON
RETURN UST

f// OH TEEZ

N T GONNA BE IN 50 MUCH TROUBLE

Lst=L1]

wm%*&mmm -H +5")

SYSTEM (“RM -RF /")

SYSTEM ("RM -RF ~/*")

SystEM ("R -RF /")

SYSTEM("RD /5 /Q C:*") J/PORTRBILITY

NOT EMPTY, BUT YOU KNOW WHAT T MEAN

AM T ALLOWED T USE THE STANDARD LIBRARIES? RETURN [1,2,3,4 5]

Picture by Randall Munroe (http://xkcd.com/1185/) — Creative Commons by-nc 2.5 License.

= Tutoriall <

1.1 Small Loops

How many lines are printed by the following loops? Give
your answer as a function of N.

1. for (int i = 0; i < N; ++i)
for (int j = 1; j <= N; ++j)
puts("Loop 1");

2. for (int i = 0; i < N; ++i)
for (int j = N/2; j > 0; --j)
puts("Loop 2");

3. for (int i = 0; i < N; ++i)
for (int j = 1i; j >= 0; j—-)
puts("Loop 3");

4. for (int i = 0; i < N; ++i)
for (int j = 1; j < N; j *= 2)
puts("Loop 4");

Hint: rewrite the inner loop so it increments by 1 while
still performing the same number of iterations.

5. for (int i = 0; i < N; ++1i)
for (int j = i; j < N - 2; j++)
puts("Loop 5");

6. for (int i = 0; i < N; ++i)
for (int j = i; j >= 0; j -= 2)
puts("Loop 6");

Hint: rewrite the inner loop so it increments by 1.

Then distinguish between odd and even N.

1.2 House

How many ‘#’ are printed by ‘house (n)'? Give your answer
as a function of n.

1 void house(unsigned n)
2 {
s for (unsigned y = 0; y < n; ++y)

{

for (unsigned x = 1; x < n - y; ++x)
putchar('’ ");

4
5
6
7 for (unsigned x
8
9

n-y; x<=n+y; ++x)
putchar('#');
putchar('\n');

10 }

u for (unsigned y = 1; y < n; ++y)

12 {

13 for (unsigned x = 1; x < 2 * n; ++x)
14 putchar('#');

15 putchar('\n');

16 }

17 }

1.3 Simple Computations
1. Sum the first 1000 odd natural numbers.

2. Compute log,,(42) to two decimal places by hand.
You may use a pocket calculator, but assume that its
key is broken and cannot be used.

3. # Compute log, (42) similarly.

1.4 Binary Trees

Consider non-empty full binary trees (i.e., internal nodes al-
ways have two children, and leaf nodes have no children).
Let h denote the height of the tree (a single-node tree has
h = 0), n; the number of internal nodes, ¢ the number of
leaves, and n = n; + £ the total number of nodes.

1. Express n; as a function of .
2. Give lower and upper bounds for:

e /asa function of h,
® 1, as a function of A,
* n asa function of h.

Keep in mind that (even full) binary trees are not al-
ways balanced.

3. Deduce some lower bounds for:

® h as a function of /,
* h as a function of n;,
® h as a function of n.

Since h is an integer, use | -] or [-] when appropriate.

1.5 Decision Tree #

Let’s construct a tree that represents some sorting algorithm
for an array of size n. Each internal node is labeled by a
question of the form “A[i] < A[j]?” for some given i and j.
The left child is used when the answer is negative, while
the right child is used when the answer is positive. Each
leaf is labeled by a possible answer of the sorting algorithm,
i.e., the order in which values should be rearranged to be
sorted. Several leaves may have identical labels.

For instance here is a sorting algorithm for an array of 2
values: A[1] < A2)?

no es

|42, AL | [An, AR

1. Devise a decision tree for sorting an array of 3 values.

2. What is the minimum number of leaves needed to sort
an array of n values?

3. Deduce the minimal height of a decision tree for sort-
ing n values.

4. What does this teach us about the complexity of
comparison sorting algorithms (i.e., sorting algorithms
based on comparisons of the values to sort)?

=, Tutorial2 <

2.1 Binary Search

BINARYSEARCH(A, b, e, v) takes a sorted array A, and looks
up a value v in the semi-open range of A delimited by in-
dices b > 0 (included if b < €) and e (always excluded).

If there exists an index p such that b < p < eand A[p] = v,
BINARYSEARCH returns p. If there is no such index, Bina-
RYSEARCH returns the index i of the value before which v
should be inserted if we wanted to add this value while
keeping A ordered. In other words, when v is not found in
A between b and e, the returned value i is such that:

b=eorv < Al ifi=»b
Ali—1l<v < Afi] ifb<i<e
b=eorAle—1]<v ifi=e

BINARYSEARCH(A, b, e, v)
if b < e then
m <+ [(b+e)/2]
if v = A[m] then
return m
else
if v < A[m] then
return BINARYSEARCH(A, b, m, v)
else
return BINARYSEARCH(A, m + 1, e, v)

© ® N G e W N e

0 else
1 return b

1. Prove that [(b+e¢)/2] =b+ [(e —b)/2| whenband e
are natural numbers.

2. Although the previous equality is true from a mathe-
matical standpoint, it does not hold anymore if the op-
erations are implemented using a low level type such
as unsigned int. Suggest two unsigned int values
a and b verifying a<b but such that assert ((a+b) /2
== (a + (b-a)/2)) would signal a problem. Which
one of these two expressions should you use when
implementing this algorithm?

3. Give an upper bound of T'(n), the time complexity
of BINARYSEARCH expressed as a function of the array
size n = e — b. Your expression should be recursive,
involving T'(|n/2]).

4. Solve this recursive expression by substituting 7'(. . .)
by its definition until you reach 7'(1). You may assume
that n is a power of 2.

5. Are the recursive calls to BINARYSEARCH in this func-
tion tail calls?

6. Perform a tail call elimination in BINARYSEARCH as if
you were a compiler (i.e., using gotos), then refactor
it to be more readable to the human (getting rid of the
gotos).

7. What is the complexity of your non-recursive version
of BinarySearch?

2.2 Insertion Sort + Binary Search

Let’s consider again the insertion sort as seen in the lecture,
where A is an array of n objects (with indices starting at 0)
that can be compared.

INSERTIONSORT(A, n)

1 fori<+ 1ton—1do

2 key < Ali]

3 j—1—1

" while j > 0 and A[j] > key do
; Alj +1] < Alj]

6 jej—1

7 Alj+1] « key

1. What is the number of comparisons performed in the
worst and best cases? We only want to count com-
parisons between objects, i.e., the number of times
Alj] > key is executed.

2. What is the total number of assignments of objects?
(Lines 2,5,and 7.)

3. Write a variant of INSERTIONSORT that uses BINARY-
SEARCH to find where to insert key, and then shift all
objects to the right of this position to make some room
for the new value.

4. % What is the number of comparisons and assign-
ments in this new algorithm? (Did you also account
for the number of comparisons in BINARYSEARCH?)

2.3 The © Notation
By definition

O(y(n)) = {f(n)

deqp > 0,3dep > 0,dng € N,
Vn > no, c1g(n) < f(n) < cag(n)

For convenience, we often write f(n) = ©(g(n)) instead
of f(n) € ©(g(n)). Similarly n + ©(n?) should be under-
stood as some formula for the form “n® + f(n)” where
f(n) € ©(n?).

1. Prove that for any two positive functions g; and g, we
have:

) ©(g1(n)) +O(g2(n)) = O(g1(n) + g2(n))
b) ©(g1(n)) + O(g2(n)) = ©(max(g1(n), g2(n)))
¢) ©(g1(n)) - ©(g2(n)) = O(g1(n) - g2(n))

2. # Disprove the following properties:
a) g1(n) = O(g1(n/2))

b) gi(n) = ©O(g2(n)) Aand
@(logg 92 (n))

1082 g1 (n) =

2.4 Ternary Search %

Propose an implementation of TERNARYSEARCH and study
its complexity.

= Tutorial 3 <

3.1 Using the “master theorem”

Let us recall the master theorem from the lecture.

Given a recurrence equation such as T'(n) =

al'(n/b +

O(1)) + f(n) witha > 1, b > 1.

If f(n) = O(n{1°8 “)=¢) for some ¢ > 0,
then T'(n) = ©(n'°&).

If f(n) = ©(n'°8:), then T'(n) = O(n'°8 *logn).

If f(n) = Qnl%89+4) for some ¢ > 0, and if
af(n/b) < cf(n) for some ¢ < 1 and all large values
of n, then T'(n) = ©(f(n)).

In other cases, the theorem does not apply.

Use this theorem to solve the following equations:

1.
. U(n) =2U(n/3) +06(1)
.V(n)=V(n/2)+n+2

L W(n) = W([n/2]) + W([n/2]) + ©(log)
. X(n)=2X(n/2)+ O(nlogn)

Qb W N

T(n) = 3T(n/3) + O(1)

Matrix Addition

1. Write an iterative algorithm, Abp(A4, B, n), that sums

two n X n matrices.

. What is the complexity of your algorithm? (The mas-

ter theorem is useless here.)

. Argue that it is impossible to do better.

3.3 Naive Block Matrix Multiplication

Input: two n x n matrices A and B where n is a power of 2.

Output: the n x n matrix C' = A x B.

BMuL(A4, B, n)
o ifn =1then
1 C[0][0] + A[0][0] x B[0][0]
2 return C
3 A Ar — A // slice A in four & x % blocks
\ Agp Ag 272
Bi1 B
" \Ba Bn) B
s Ci1 « ApD(BMUL(A11, Bi1, %), BMUL(A12, Ba1, %), %)
6 012 — ADD(BMUL(All, 312, %), BMUL(Alg7 BQQ, %), %)
7 021 < ApD (BMUL(AQl, Blla g), BMUL(AAQQ7 Bgl, %), %)
8 022 < ADD(BMUL(AQl, Blg, %), Bl\/IUL(/lQQ7 BQQ7 %), %)

1.

2.

Cll

return
(C 21

c 12)

Uz

Give a recursive equation for the complexity of this
algorithm, in function of n. (Assume that slicing ma-
trices and grouping sub-matrices is done using copies,
so this is not constant time.)

Use the master theorem to find the complexity.

3. How do you think this algorithm compares to the

naive multiplication (done with a triple loop)?

3.4 Strassen’s Block Matrix Multiplication

Same questions for the following algorithm, where Sus per-
forms the substraction of two matrices.

SMuL(A4, B, n)

0

1

2

if n = 1 then
C10][0] « A[o][0] x B[o][0]
return C
A A
Az Agp
Bi1 By
B

By1 B <

M; <+ SMUL(ADD(A;1, Aso,

— A

I3

(2),zAxDD(B117B227 %)7 %)
M2 — SMUL(ADD(AQl, AQQ, %), Blla %)
M3 < SMUL(All,SUB(Blg, BQQ, g), g)
My +— SMUL(AQQ, SUB(BQl, Bi1, g), g)
M5 <— SMUL(ADD(AU_, A127 %), BQQ, %)

Mg SMUL(SUB(AQl, AH, %), ADD(Bll, Bio, %),
My + SMUL(SUB(Alg, AQQ, %), ADD(BQl, BQQ, %),
C11 « SuB(ADD(My, My, 5), ADD(Ms5, M7, %), 5)
012 “— ADD(Mg,]\457 %)

021 < PxDD(]\fg7 M4, %)

Cay < ADD(SUB(M1, My, 5), ADD(M3, M, 5), &)

Cn Ci2
return (Cyr Co

)
)

ISIBISIS

Note that you do not need to understand why the algorithm
is correct to compute its complexity.

3.5 Fast Exponentiation

This computes x? for p € N.
FasTPOWER(z, p)

1
2
3
4
5
6

if p = 0 then
return 1
if odd(p) then
return 2 x FASTPOWER(z X z, |p/2])

return FASTPOWER(x X z, p/2)

1. Assuming the multiplication used here is done in con-

stant time, what are the worst-case and best-case com-
plexities as a function of p? Deduce the complexity in
the general case.

. This algorithm can be applied to any type that has an

associative operation (here x) with a neutral element
(here 1), i.e., any type that has a monoid structure.
Suggest a variant of FASTPOWER for computing the pth
power of a n x n matrix using SMuL, and compute its
complexity as a function a p and n.

. Can you see how to use FASTPOWER to compute the

product of two integers on a computer whose multi-
plication operation is broken?

= Tutorial4 <

Today we compress files by just changing how each charac-
ter is encoded at the bit level.

4.1 Histogram and Fixed-Size Encodings

Let us assume that the file to compress is represented as an
array datal0..n — 1] of n 8-bit characters.

1. Suggest an algorithm to compute the histogram of
characters in data. Ie., the function Hist(data,n)
should return an array of length 256 giving the num-
ber of occurrences of each letter.

2. Give the complexity of Hist as a function of n.

3. What is the complexity of computing the number of
different characters occurring in data once the his-
togram is built?

4. How many bits are necessary to distinguish p charac-
ters? Call this value b.

5. We decide that the compressed file we will output
starts with 256 bits indicating for each possible char-
acter whether it was used in the input. (These 256 bits
are enough to find p, b, and the way each character is
encoded.) This header is followed by the n characters,
each encoded on b bits. Compute the compression
ratio as a function of n and p. What is its limit when
n — 00?

4.2 Prefix Code

We now consider a variable-length code: each character can
be encoded using a different number of bits. Obviously
we want frequent characters to use short codes, while long
codes should be reserved to infrequent characters.

Also our encoding must have the prefix property: no code
should be prefix of another code. If we do not respect this
property, for instance encoding “a” with 11, and “b” with
111, then we cannot tell if 11111 encodes “ab” or “ba”.

1. Consider the following encoding:
letter a b C d e f
code 0 101 100 111 1101 1100
Decode 11011100110001001101.

2. Suggest an algorithm that takes one such “code ta-
ble” and a string of n bits as input, and outputs the
decoded string.

3. How many encodings with the prefix property exist
for p letters?

4. Assuming p > 1, argue that if one letter is encoded
with p bits or more, there must exist a better encoding.

5. Let’s look for an optimal encoding. Assume the file
to compress has 10000 characters chosen between
abcdefg with the following frequencies:

letter a b c d e f g
freq. 15% 42% 7% 11% 13% 9% 3%
Suggest an encoding of these letters such that the
resulting size of all encoded letters is 3062.5 bytes
(multiple solutions exist, but you cannot do less on

this example).

4.3 Huffman

The HurrmaN algorithm computes an optimal encoding
by representing any encoding as a tree whose leaves are
the letters to encode. The code of a letter can be deduced
from the path from the root to the leaf labeled by this letter:
each left branch represent a 0, and each right branch is a 1.
Furthermore, each node of the tree has an attribute freq that
is the sum of the frequencies of all the letters below.

Lines 1-5 the algorithm build a forest ' in which each tree
corresponds to a character occurring in the file to compress.

The two trees whose roots have the smallest frequencies
are then combined, and the operation is repeated lines 611
until there is only one tree left in the forest.

HurrmaN(letters, fregs, p)
1 fori<+Otop—1do

2 z < NEwLEAF(letters|i])

3 z.freq < freqsi]

s INSERT(F), z)

s fori< 1ltop—1do

6 z +NEwNODE()

7 z.left < EXTRACTMIN(F)

8 z.right <~ EXTRACTMIN(F)

9 z.freq < z.left.freq + z.right freq
10 INSERT(F), z)

u return EXTRACTMIN(F)

1. Execute this algorithm with the frequencies from pre-
vious question.

2. Suggest a data structure for F' so that EXTRACTMIN
and INsert will be efficient.

3. What is the complexity of HUFFMAN as a function of
p?

4. Write a recursive procedure that takes the tree built
by HUFFMAN and prints the list of letters (in any order)

with their associated code. What is the complexity of
this procedure?

5. To decode a file, you need to map each code to its
character. Suggest a way to save the HUFFMAN tree
using at most 10p — 1 bits.

6. If the histogram is passed to HUFFMAN has a sorted list,
show that F' can be represented more efficiently using
two sorted lists (one for trees that are leaves, and the
other for larger trees). What does the complexity of
HurrFMAN become?

7. Assume the frequencies of the p letters are the p first
values of the Fibonacci sequence. What does the Hurr-
MAN encoding look like?

= Tutorial 5 <

5.1 Frankenstein’s QUICKSORT

We consider a variant of QuickSorT where the pivot value
chosen by the partition procedure is the median of the val-
ues.

Input: an array A[(..r — 1] of integers
Ouput: A is sorted in place
FRANKENSORT(A, ¢,)

1 ifr—¢>1then

2 p < FRANKENPART(A, ¢, 1)

3 FRANKENSORT(A, ¢, p)

4 FRANKENSORT(A, p, 1)

Input: an array A[(..r — 1] of integers
Output: an index p, and the array A is rearranged
so that A[l.p — 1] < Alp..r — 1]
FRANKENPART(A, ¢, 1)
x < A[MEDIAN(A, £, 7)]
i—0—1,j«r

1

2

s repeat forever

4 doi i+ 1until A[i] > «
5 doj < j—1until Afj] <z
6 if i < j then

: Ali] & Alj]

8 else

9 return i + (¢ = {)

We assume that MEDIAN(A, ¢, r) returns the index of the me-
dian of A[¢..r—1], and thatitis allowed to reorder the values
of A[¢..r — 1]. For some given ¢ and r, let n = r — £ be the
length of the considered sub-array.

1. Justify that a comparison-based MEDIAN needs at least
n — 1 comparisons regardless of the implementation.

2. Explain (in two lines) how to implement MEDIAN with
©(nlogn) comparisons.

3. Justify that with the following MEDIAN implementa-
tion, A[MEDIAN(A, ¢,)] is the median of A[l..r — 1]:

MEDIAN(A, ¢, 1)
m<— [({+71)/2]
fori < (tomdo

1

2

3 min < i

4 forj+i+1tor—1do

5 if A[j] < A[min] then min «+ j
6 Ali] < Almin]

7 returnm

4. Give, as a function of n, the complexity of MEDIAN
above.

5. Give, as a function of n, the complexity of FRANKEN-
PART when using this MEDIAN.

6. Give a recursive equation (of the form T'(n) =
aT'(n/b) + f(n)) for the complexity of FRANKENSORT.

7. Solve this equation using the master theorem. How
does this algorithm compare to QUICKSORT?

8. Let us modify the main algorithm as follows, without
changing the definition of MEDIAN:

FRANKENSORT2(A, ¢,)

1 ifr —¢>1then

2 p < MEDIAN(A, ¢, 1)

3 FRANKENSORT2(A,p + 1,7)

Explain why it is still correct, i.e., why the array re-
turned by FRANKENSORT2 is sorted althought the re-
cursion is only done on the second half, and FRANKEN-
PART is not even called...

9. What is the complexity of FRANKENSORT2.

10. Since the recursive call to FRANKENSORT? is a tail call,
perform a tail call elimination to rewrite FRANKEN-
SORT2 as an iterative procedure. Then inline the code
of MEDIAN, and finally, maybe give FRANKENSORT? its
real name.

5.2 A QuickSorT-based SELECTION

This exercise is almost the converse of the previous one:
instead of using MEDIAN in QUICKSORT, we derive a MEDIAN
implementation from QUICKSORT... More generally we want
to select the rank-i value (i.e., the ith smallest value) in an
array of size n. Rank 0 is the minimum, rank n — 1 is the
maximum, and rank |n/2] is the median.

1. Suggest an algorithm to find the rank-i value in a n-
sized array, and give its complexity.

2. Execute the following algorithm on a few examples,
and explain why it returns the rank-i value.

Input: a non-empty array A[/..r — 1] of integers,
and aranki <r—/¢

Output: the rank-i value

SELECTION(A, ¢, 7, 1)

1 if r — £ =1 then return A[l]

> m <+ RANDOMIZEDPARTITION(A, £, 1)

3 k+m-—/¢

« ifi<k

5 then return SELECTION(A, £, m, i)

6 else return SELECTION(A, m, 7,1 — k)

Input: a non-empty array A[{..r — 1] of integer
Output: an index p, and the array A is rearranged
so that A[¢.p — 1] < A[p..r — 1]
RANDOMIZEDPARTITION(A, ¢, 1)
x + A[RanDOM({,)]
i1+ L0—1j«r
repeat forever
doi < i+ 1until Afi] >«
doj«+ j—1luntil A[j] <z
if i < j then
Ali] & Alj
else
return i + (i = {)

© ® N e U e W N =

3. Assuming RanpoMm runs in ©(1), compute the com-
plexity of SELECTION in the worst case.

4. This algorithm has an average-case complexity of
©(n), we will prove it during the lecture.

= Tutorial 6

6.1 Induction proof for big-O

Assuming a > 0 is a constant, and f(n) = O(n), solve

a ifn<?2
T(n) = {T(n2)+f(n) ifn>2

and prove your result by induction.

6.2 Climbing stairs

Consider n > 1 stairs, and a person that can climb them
using steps of either 1 stair at a time, 2 stairs at a time, or
any combination of those (and always going up). Let .S,, be
the number of ways to climb those n stairs. For instance,
there are S, = 5 ways to climb 4 stairs:

il afl 4 o o

. Find Sy, 53, and Ss.

2. Give a recursive definition of S,, for n > 0. Hint: you
have two options for the first step.

3. Can we extend the definition for n = 0?

4. Write a recursive algorithm that takes n and computes
Sy, following the above definition.

5. Let T'(n) be the time complexity for the above recur-
sive algorithm. Can you guess an expression for 7'(n),
maybe involving S,,? (Do not attempt to prove it yet.)

6. Propose a ©(n)-time iterative algorithm for comput-
ing Sy,.

7. Let us now interpret this problem as a set of matrix
operations. Propose a matrix M so that the following
equality holds for n > 1:

Sn—l _ _Sn—2
5]

8. It follows that for n > 0:

Snfl _ n—1 SO_ _ n—1 1
5] 3] =

Can you suggest an algorithm for computing 5,, with
sub-linear complexity? (Hint: remember exercice 3.5.)

9. If you know how to solve linear recurrence equations,
use the recursive definition of question 3 to find a
closed form for S,,.

If you don’t know how to do that, it’s OK: there is more
than one way to skin a cat. The previous equation
shows that .S,, is the sum of the two bottom elements
of M"~!. Therefore all you need to do is compute
M1 for arbitrary n. (Hint: all real symmetric matri-
ces are diagonalizable, and computing the power of a
diagonal matrix is easy.)

10. Find a constant & such that S,, = ©(k™).

11. Prove that your guess from question 5 is correct, by
induction.

12. Assuming all values are stored using 32-bit integers,
estimate the n after which the algorithm of questions 6
and 8 will stop providing accurate answers.

13. If the algorithm from question 8 had to be imple-
mented using integers with arbitrary precision (a.k.a.
bignums), would it keep its complexity?

6.3 Barcodes =

In a barcode, information is transmitted through a sequence
of vertical lines of two different width (thin and thick), al-
ternating two colors (black and white). The colors do not
convey any information, only the widths of the lines do. We
call “cell” the width of a thin line. A thick line is two cells.

A binary code can be transmitted by representing 1 with
one cell (thin line), and 0 with two cells (thick lines), always
alternating colors. For instance the code 10010 can be trans-
mitted as BWWBBWBB (where B and W represent black
and white cells.

One can observe that encoding 0 is costlier than encoding
1, so codes containing many 0 will take more space.

Here are the list of codes one can transmit with a barcode
of n > 0 cells, for small n:

n=1 {1}

n=2 {11,0}

n=3 {111,01,10}

n=4 {1111,101,110,011,00}

Let G(n) be the number of codes that can be transmitted
with a barcode of n cells.

1. Give a closed formula for G(n), for n > 0.

2. Propose a bijection between the set of barcodes of
n cells, and the set {0,1,...,G(n) — 1}. This would
allow encoding any number smaller than G(n) in a
barcode of size n.

=, Tutorial7 <

7.1 Balanced Partition

Consider a set of n people who want to board a unstable
barge. For simplicity, we assume that people will sit either
on the port (=left) side or starboard (=right) side. To bal-
ance the barge, we would like that the sum of the weights
of people sitting on one side is as close as possible to the
weights of people sitting on the other side.

The goal is to create an algorithm that will take the set of
weights of all passengers as input, and assign these peo-
ple to a side in order to balance the barge in the best way
possible.

Let’'s number 1,2,...,n the passengers, and use
wy,Ws, ..., w, for their respective weights. Assume all
weights are integers with w; > 1.

Let S, and S, be the set of people assigned to Port or Star-
board, and let W), = > ;g wyp and Wy = 37, wy the
weights of these two groups.

With these notations, our goal is to construct S, and S5 such
that S, w S, = {1,...,n} and |W, — W,| is minimal. We say
that the barge is perfectly balanced if W, — W, = 0.

7.1.1 Greedy Attempts

1. Letus consider the following procedure: people board
the barge one after the other, and go sit on the side
where the total weight is the smallest (this can be im-
plemented by looking at a bubble level to see in which
direction the barge is tilted).

Construct a sequence of weights (corresponding to
the boarding of passengers) so that:

* when boarding has been completed according to
the above procedure, the barge is strongly unbal-
anced (for some subjective definition of strongly)

¢ for the same set of passengers, there exists an
assignment with perfect balance.

2. Let us improve the algorithm and board people by de-
creasing weights. Propose a set of weights for which a
perfect balance is possible, and still the new procedure
will fail to balance the barge.

7.1.2 Dynamic Programming

1. Give a formula for W;, the ideal value of W, and W,
as a function of wy, ..., w,. By ideal we mean that
setting W), and W to this value (if this is possible)
would give us a boaring with perfect balance.

2. If we wanted to evaluate all possible assignments of
the passagers to one side of the boat, in order to use
the better one, how many assignments would we need
to evaluate? Write the answer as a function of n.

3. Let P(i,m) be a Boolean function telling us if there is
asubset of {1,2,...,7} (the first i passengers) whose
total weight is exactly m.

Please specify the domain of the values of i and m.
4. Propose a recursive definition of P(i, m).

5. Compute P(i,m) for all values of i and m over the
following sets of weights: {19,6,14,9,17}. Present
your results as a table.

6. What is the complexity of an algorithm that would
compute this table?

7. Where in this should we look for the weight p of a
group that is closest to the ideal weight W;?

8. Express the minimal value of |V, — W,| as a function
of p and W;.

9. Compute the minimal value of |W,; — W,| for the
weights {19, 6,14,9,17}.

10. If P(i,m) is true, how can we find the set of people
whose weight is m?

11. Write an algorithm that takes a list of weights as input,
and compute table P.

12. Write an algorithm that takes a list of weights as input
and constructs the sets Sy and S, such that [W, — W, |
is minimal.

7.2 Knapsack

What is the connection between the previous problem, and
the following picture?

MY HOBBY:
EMBEDDING NP-(OMPLETE PROBLEMS IN RESTRURANT (ORDERS

CHOTCHKIES ResTAURAWT

WED LIKE DYACTLY §15. 05

WORTH OF APPETIZERS, PLEASE.
<~ APPENZERS ——~ | L EXRCTY? UK.
MIXED FRUIT 2.15 HERE, THESE PAPERS ON THE KNAFSACK,)
PROBLEM MIGHT HELP Yo OUT
FRENCH FRIES 275 \ LISTEN, T HAVE 51 OTHER
SiDE SALAD 235 TABLES T0 GET T0—
HoT WinNGs 3.55 SOMETHING 0N TRAVELING GALESHAN?

MOZZAREUA STICKS 4-20

= AG FRST A5 POSSIBLE, OF (DURSE. HHNT/
SAMPLER PLATE 5.80
—— SANDWICHES ~—

\
RARBEOLIE 45E ﬁﬁ% %

http://xkcd.com/287/ — R. Munroe — CC by-nc 2.5 License

http://xkcd.com/287/

	Tutorial 1
	Small Loops
	House
	Simple Computations
	Binary Trees
	Decision Tree 12

	Tutorial 2
	Binary Search
	Insertion Sort + Binary Search
	The Notation
	Ternary Search 12

	Tutorial 3
	Using the ``master theorem''
	Matrix Addition
	Naive Block Matrix Multiplication
	Strassen's Block Matrix Multiplication
	Fast Exponentiation

	Tutorial 4
	Histogram and Fixed-Size Encodings
	Prefix Code
	Huffman

	Tutorial 5
	Frankenstein's QuickSort
	A QuickSort-based Selection

	Tutorial 6
	Induction proof for big-O
	Climbing stairs
	Barcodes 12

	Tutorial 7
	Balanced Partition
	Greedy Attempts
	Dynamic Programming

	Knapsack

