
Theory of Computation

Alexandre Duret-Lutz

adl@lrde.epita.fr

September 10, 2010

ADL Theory of Computation 1 / 121

adl@lrde.epita.fr


References

Introduction to the Theory of Computation (Michael Sipser,
2005).

Lecture notes from Pierre Wolper's course at
http://www.montefiore.ulg.ac.be/~pw/cours/calc.html

(The page is in French, but the lecture notes labelled �chapitre
1� to �chapitre 8� are in English).

Elements of Automata Theory (Jacques Sakarovitch, 2009).

Compilers: Principles, Techniques, and Tools (A. Aho, R. Sethi,
J. Ullman, 2006).

ADL Theory of Computation 2 / 121

http://www.montefiore.ulg.ac.be/~pw/cours/calc.html


Introduction

What would be your reaction if someone came at you to explain
he has invented a perpetual motion machine (i.e. a device
that can sustain continuous motion without losing energy or
matter)?

You would probably laugh. Without looking at the machine, you
know outright that such the device cannot sustain perpetual
motion. Indeed the laws of thermodynamics demonstrate that
perpetual motion devices cannot be created.

We know beforehand, from scienti�c knowledge, that building
such a machine is impossible.

The ultimate goal of this course is to develop similar knowledge for
computer programs.

ADL Theory of Computation 3 / 121



Theory of Computation

Theory of computation studies whether and how e�ciently

problems can be solved using a program on a model of

computation (abstractions of a computer).

Computability theory deals with the �whether�, i.e., is a problem
solvable for a given model. For instance a strong result we will learn
is that the halting problem is not solvable by a Turing machine.

Complexity theory deals with the �how e�ciently�. It can be seen
as a continuation of the Θ/O notations you learned last year.
Here problems are grouped into classes according to their
complexity for a given model of computation. For example P is the
class of all problems solvable by a deterministic Turing machine
in polynomial time. NP is the class of all problems solvable by a
nondeterministic Turing machine in polynomial time. An open
question is whether P=NP.

ADL Theory of Computation 4 / 121



Plan for the course

The �rst half of the semester will deal with models that are simpler
than a Turing machine, but still have important applications for
programmers.

Week 1 Introduction, Basic notations, Regular languages

Week 2 Regular expressions and introduction of automata

Weeks 3�4 Operations on automata

Week 5 Stability of Regular languages, Regular Grammars,
Push-down automata

Week 6 Context-Free Grammars

Weeks 7�8 Parsing Context-Free Grammars

The second half of the semester will address Turing machines and
complexity theory.

ADL Theory of Computation 5 / 121



Side Goals

Besides studying models of computation and complexity classes we
will have two important side goals for the �rst half of the semester:

1 Understand how Finite Automata can be used to match a regular
expressions. This is important to write tools such as grep.

2 Understand how Context-Free grammars can be recognized using
Push-Down Automata. An application is writing the parser of a
language. For instance we will write a parser for the language
used in CS350.

ADL Theory of Computation 6 / 121



Problems and programs

Recall our goal:

study whether (and how e�ciently) a problem can be solved by a
program executed on a computer

We need to formalize these two notions:

problem

program executed on a computer

ADL Theory of Computation 7 / 121



What is a problem?

Example problem 1:

Find out whether a natural number is odd or even.

A problem is a generic question that applies to a set of elements
(here natural numbers).

Each instance of a problem, i.e. the question asked for a given
element (e.g. is 42 odd? ), has an answer.

The notions of problem and program are independent: we can
write a program that solves a problem, but the program does not
de�ne the problem. Several programs may exists that solve the
same problem.

ADL Theory of Computation 8 / 121



�Odd/Even� problem example continued

The instances of Problem 1, the natural numbers, can be represented
in base 2. A program that solves Problem 1 will just have to look at
the last digit of the representation of the number: the answer is Odd
if that digit is 1, it is Even if the digit is 2.

The same problem could be solved by another program that converts
the binary representation into base 10, and then check whether the
last digit is in {0, 2, 4, 6, 8} or not.

ADL Theory of Computation 9 / 121



Other problem examples

1 Find the median of an array of numbers

2 Determine whether a program will stop for any input value (this
is the halting problem)

3 Determine whether a given polynomial with integer coe�cients
has an integer solution (Hilbert's 10th problem)

The �rst problem (median) is solvable using a program executed on a
computer: you might even know its complexity (linear!).

The other two problems cannot be solved by a computer.

ADL Theory of Computation 10 / 121



Halting Problem in Pseudo-Code

Assume we have a function willhalt(f, args) that can tells
whether a call to f(args) will terminate.

foo(args):

b = willhalt(foo, args)

if b == true:

loop forever

else:

return b

What do you think is the result of calling foo(0)?

If willhalt thinks foo(0) will terminate, then b=true and
foo does not terminate. This is a contradiction.

If willhalt thinks foo(0) will not terminate, then b=false

and foo does terminate. This is a contradiction.

The only solution is that willhalt() cannot exist.
ADL Theory of Computation 11 / 121



Programs as e�ective procedures

We want to distinguish two kinds of solutions to a problem:

Solutions that can be written as programs and executed on a
computer (= e�ective procedures)

Other solutions.

Examples:

A program written in C++ is an e�ective procedure, because it
can be compiled into machine code that is executable and does
not require ingenuity from the computer.

The instruction �check that the program has no in�nite loops or
recursive call sequence� is not an e�ective procedure for the
halting problem. It does not explain how to �check� these
properties.

ADL Theory of Computation 12 / 121



Binary Problems

In the sequel will shall study only problems with binary answers
(yes/no, 0/1).

the halting problem is a binary problem

Hilbert's 10th problem is a binary problem

is a natural number odd? is a binary problem

determining a square root is not a binary problem

sorting an array is not a binary problem

It does not really matters: a more complex answer could be
asked for bit after bit.

Binary problems de�ne a partition of their instances: the set of
positive instances for which the answer is �yes�, and the set of
negative instances for which the answer is �no�. A problem
can thus be seen as testing set membership (on a set that might
be complex to de�ne).

ADL Theory of Computation 13 / 121



Representing the Inputs of Problems

An e�ective procedure (e.g. C++ program) has to receive a
representation of its input (the instance of the problem). In a
C++ program this representation might be a string, an int,
an array of floats or a more complex structure.

At a lower level, we can see all these types as sequences of bits.
So we could formalize e�ective procedures as �functions that
takes a sequence of bits and return a bit�.

Because we can, and because it will be easier to illustrate some
problems, we will generalize this to �functions that take a
sequence of symbols�, and we will keep the result binary.

ADL Theory of Computation 14 / 121



Alphabets and Words

An alphabet is a �nite and non-empty set of symbols (called
letters). Alphabets are often denoted Σ.

A word over an alphabet is a �nite sequence of letters from that
alphabet.

Examples:

01010100 is a word over Σ = {0, 1}
jodhpur and qzpbqsd are words over Σ = {a, . . . , z}
· · · −−− · · · is a word over the Morse alphabet
Sigma = {·,−, }
(1 + 2)× 3 = 9 is a word over Σ = {0, . . . , 9,+,×,−, /, (, ),=}

ADL Theory of Computation 15 / 121



Size of words

The empty word (sequence of no letters) is represented by ε
(you may also encounter λ).

The length of a word w is denoted by |w |. Examples:

|ε| = 0

|01001| = 5

A word w over the alphabet Σ can be seen as a function
w : {1, . . . , |w |} → Σ. Example:

w = jodhpur

w(1) = j , w(2) = o, . . . , w(7) = r .

ADL Theory of Computation 16 / 121



Languages

A language is a (possibly in�nite) set of words over the same
alphabet.

Examples:

{ε, ab, baaaa, aaa}, {aaa}, {ε}, and ∅ are �nite languages over
Σ = {a, b}.
{0, 00, 10, 000, 010, 100, 110, 0000, . . .} is an in�nite language
over Σ = {0, 1}. It represents all even numbers. The problem of
testing evenness amounts to testing membership to this set.

the set of words (over the ASCII alphabet) encoding an entire
program that always stop is an in�nite language.

ADL Theory of Computation 17 / 121



Why studying languages?

Two points of view:

The linguistic/applicative point of view:

For computers: compilers, interpreters

Biotechs (the 4 bases of DNA: ACGT, or the 20 amino acids

used as building blocks for proteins)

Natural Language Processing

The computational point of view:

set membership as idealization of computing problems

distinguish languages by the computational power required to

recognize them (complexity classes)

ADL Theory of Computation 18 / 121



The Concatenation Operation

Let w1 and w2 be two words on the same alphabet. The
concatenation of w1 and w2 is the word w3 denoted w3 = w1 · w2 of
size |w1|+ |w2| and such that

w3(i) =

{
w1(i) if i ≤ |w1|
w2(i − |w1|) if |w1| < i ≤ |w1|+ |w2|

Examples:

ab · bbba = abbbba

0 · 1 · 0 = 010

ε · xzw = xzw

Concatenation is associative, but it is not commutative if the
alphabet has 2 letters or more.

ADL Theory of Computation 19 / 121



Power

For a word w , let us denote wn the concatenation of n copies of w .

wn = ((w · w) · · ·w)︸ ︷︷ ︸
n times

With the special case w 0 = ε.

Alternatively, a recursive de�nition of wn can be given as:

wn =

{
ε if n = 0

wn−1 · w if n > 0

Examples: (01)3 = 010101, (abba)0 = ε, ε4 = ε.

Power is an operation that can be de�ned using the internal
operation of any Monoïd.

ADL Theory of Computation 20 / 121



Monoïd

A monoïd 〈M,⊗, 1M〉 is a set M, equipped with an associative

binary operation (often denoted using a multiplicative symbol),
and a neutral element for this operation.

It does not need to have inverse elements as in a group.

The power can be recursively de�ned for any m ∈ M, n ∈ N as

mn =

{
1M if n = 0

mn−1 ⊗m if n > 0

For instance:

〈Z,×, 1〉 is a monoïd. The powers of the elements of this
monoïd correspond to the usual powers of integers.
〈Z,+, 0〉 is a monoïd (and even a group). The power operation
amounts to a multiplication.
If we denote Σ? the set of all words over Σ, then 〈Σ?, ·, ε〉 is a
monoïd. Its power operation repeats the words as just shown.

ADL Theory of Computation 21 / 121



Free Monoïd

For a subset S of a monoïd 〈M,⊗, 1M〉, let us denote S? the smallest
submonoïd of M that contains S . It can be de�ned as

S? = {x ∈ M | ∃n ∈ N,∃(s1, . . . , sn) ∈ Sn, x = s1 ⊗ · · · ⊗ sn}.
We say that the members of S are the generators of S?.

A monoïd M is free if there exists a subset S such that S? = M, and
such that each element can be decomposed as a product of elements
of S in a unique way:

∀x ∈ M, ∃!n ∈ N,∃!(s1, . . . , sn) ∈ Sn, x = s1 ⊗ · · · ⊗ sn

If it exists, S is unique. We say that M is the free monoïd on S .

Examples:
〈N,+, 0〉 is a free monoïd with a single generator: 1.
〈Z,+, 0〉 is not a free monoïd.
For any alphabet Σ, 〈Σ?, ·, ε〉 is obviously the free monoïd on Σ.

ADL Theory of Computation 22 / 121



Pre�xes, Su�xes, Factors, and Subwords

Let v ,w ∈ Σ? be words.

pre�x
v is a pre�x of w if there exist a word h ∈ Σ? such that v = w · h.
It is a proper pre�x if h 6= ε.

su�x
v is a su�x of w if there exist a word h ∈ Σ? such that v = h · w .
It is a proper su�x if h 6= ε.

factor
v is a factor of w if there exist two words h1, h2 ∈ Σ? such that
v = h1 · w · h2. It is a proper factor if (h1, h2) 6= (ε, ε).

subword
v is a subword of w if you can transform w in v by removing some
letters.

ADL Theory of Computation 23 / 121



Left and Right Quotients

Let v ,w ∈ Σ? be words.

right quotient
The right quotient of v by w , noted v/w or v · w−1 is the pre�x h
of v such that v = hw .

left quotient
The left quotient of v by w , noted \wv or w−1 · v is the su�x h of
v such that v = hw .

Example: abbab · (bab)−1 = ab.

Note: w−1 is just a convenient notation, it is not a word.

ADL Theory of Computation 24 / 121



Order on Words

If < is a total order on Σ, then the following are total orders on Σ?:

lexicographic order: v ≤l w if

either v is a pre�x or w
or v = u · v ′, w = u · w ′ with v ′ 6= ε, w ′ 6= ε, and
v ′(1) < w ′(1).

radix order (a.k.a. genealogical order): v ≤r w if

|v | < |w |
or |v | = |w | and v ≤l w

Exercise: prove that the relations ≤l and ≤r are e�ectively total
orders (i.e. that the relations are antisymmetric, transitive, and total).

ADL Theory of Computation 25 / 121



Distance between Words

Let lcp(v ,w) denote the longest common pre�x of v and w . De�ne
similarly the longest common su�x lcs, factor lcf , and subword lcw .
The following are distance functions (or metrics):

dp(v ,w) = |v |+ |w | − 2|lcp(v ,w)|
ds(v ,w) = |v |+ |w | − 2|lcs(v ,w)|
df (v ,w) = |v |+ |w | − 2|lcf (v ,w)|
dw (v ,w) = |v |+ |w | − 2|lcw(v ,w)|

dw is also known as the Levenshtein distance, or string edit distance,
because it counts the number of letters to remove and insert to
transform v in w .

Exercises: Prove that these are distance functions indeed. Find a
dynamic programming implementation for dw .

ADL Theory of Computation 26 / 121



Some Operations on Languages

Let L1 ⊆ Σ? and L2 ⊆ Σ? be two languages over the same alphabet.
Here are several operation we could want to apply to these languages.

L1 ∪ L2, L1 ∩ L2 are naturally de�ned

L1 = {w ∈ Σ? | w 6∈ L1}
L1 · L2 = {w1 · w2 | w1 ∈ L1, w2 ∈ L2}
Lk
1

= (L1 · L1) · · · L1︸ ︷︷ ︸
k times

, with L0
1

= {ε}.

L?
1

= {w ∈ Σ? | ∃k ≥ 0, w ∈ Lk
1
}

This operator is called the Kleene star.

L+
1

= {w ∈ Σ? | ∃k ≥ 1, w ∈ Lk
1
}

w\L1 = w−1 · L1 = {v ∈ Σ? | w · v ∈ L1}
This is the left quotient.

L1/w = L1 · w−1 = {v ∈ Σ? | v · w ∈ L1}
This is the right quotient.

ADL Theory of Computation 27 / 121



Regular Languages

The set R of regular languages over an alphabet Σ is the smallest set
of languages such that

∅ ∈ R,
{ε} ∈ R,
{a} ∈ R for all a ∈ Σ,

if L1 ∈ R and L2 ∈ R, then L1 ∪ L2 ∈ R, L1 · L2 ∈ R, and
L?
1
∈ R.

In other words, a language is regular if it can be built using only the
elementary languages and the union, concatenation, and Kleene star
operations.

Example: The in�nite language
{0, 00, 10, 000, 010, 100, 110, 0000, . . .} that represents all even
binary numbers, is regular because it can be constructed as
({0} ∪ {1})? · {0}.

ADL Theory of Computation 28 / 121



Regular Languages Questions

Some questions arise:

If L is regular, is L regular too? (i.e., can we always describe L
using only ∪, ·, and ? operations.) Similarly are L/w , w\L, and
L1 ∩ L2 regular?

More generally, are all languages regular?

ADL Theory of Computation 29 / 121



Exercises

For two words x , y on a given alphabet Σ, prove the if
x · y = y · x then there exists a word u and two numbers i and j

such that x = ui and y = uj .

De�ne the language of arithmetic expressions on {0, . . . , 9,+}.
E.g. 1 + 1 + 2 is valid but 0 + +2+ is not.
For a ∈ Σ, and three languages A, L, M on Σ, and n > 1:

prove that {a} · L = {a} ·M =⇒ L = M

prove that A · L = A ·M =⇒/ L = M

prove that L? = M? =⇒/ L = M

prove that Ln 6= {wn | w ∈ L}
prove that Ln = Mn =⇒/ L = M

Which of the following regular languages are equal?

(L ∪M)? (L ·M)? · L L · (L ·M)? (L? ∪M)?

(M? ∪ L)? (L? ·M?)? (M? · L?)? (L? ∪M?)?

ADL Theory of Computation 30 / 121



A Taste of Calculability

A language or set L is

recursively enumerable (a.k.a. semidecidable) if there exists an
algorithm that, when given an input word w , eventually halts if and
only if w ∈ L.

Equivalently: there is an algorithm that enumerates the members
of L. Its output is simply1 a list of the words of L. If necessary, this
algorithm may run forever.

recursive (a.k.a. decidable) if there exists an algorithm that, when
given an input word w , will determine in a �nite amount of time if
w ∈ L or not.

A recursive language is obviously recursively enumerable.

1Beware: N2 is r.e., but a naive algorithm with two nested in�nite loops over

N will only enumerate {1} × N. A suitable enumeration algorithm is less trivial.
ADL Theory of Computation 31 / 121



Recursive vs. Recursively Enumerable

Some examples:

any �nite language given extensively is recursive,

the set of all even number is a recursive language,

the set of prime numbers is a recursive language,

the set of input-less programs that terminate is recursively
enumerable,

the set of input-less programs that terminate within 10s is
recursive,

the set of programs that always terminate on any input is
recursively enumerable,

the set of programs that do not terminate on some input is not
recursively enumerable.

ADL Theory of Computation 32 / 121



Regular Expressions

Regular expressions are a convenient notation to describe languages.
Regular expressions over Σ are formed using the following rules:

∅, ε are regular expressions

each element of Σ is a regular expressions

if α and β are two regular expressions, then (α + β), (αβ), and
α? are regular expressions.

A regular expression e denotes the language L (e) de�ned as follows:

L (∅) = ∅, L (ε) = {ε}
∀a ∈ Σ, L (a) = {a}
L ((α + β)) = L (α) + L (β)

L ((αβ)) = L (α) ·L (β)

L (α?) = L (α)?

In practice, we will omit useless parentheses.

ADL Theory of Computation 33 / 121



Examples of Regular Expressions

(0 + 1)?0 is a regular expression denoting the even binary
numbers.
The set of all words de�ned on the alphabet Σ = {a, b, . . . , z} is
denoted by the regular expression (a + b + · · ·+ z)?. This
regular expression Σ?: using Σ like this in a regular expression
just syntactic sugar.
The set of all nonempty words de�ned on the alphabet
Σ = {a, b, . . . , z} is denoted by the regular expression
(a + b + · · ·+ z)(a + b + · · ·+ z)? or ΣΣ? which is even
abbreviated as Σ+. (Generally α+ is syntactic sugar for αα?.)
(0 + 1)?0000(0 + 1)? denotes the set of all binary numbers
whose representation contains at least 4 consecutive 0.
((0 + 1)?1) + ε)0000((1(0 + 1)?) + ε) denotes binary numbers
with a group of exactly 4 consecutive 0 (there might be other
groups with more or less 0s).

ADL Theory of Computation 34 / 121



Some Regular Expressions are Equivalent

Let us show that L ((a?b)? + (b?a)?) = L ((a + b)?).
It is obvious that L ((a?b)? + (b?a)?) ⊆ L ((a + b)?) since (a + b)?

denotes all the words on {a, b}.
For the other way, let w ∈ L ((a + b)?) and consider four cases:

if w = an then w ∈ L ((εa)?) ⊂ L ((b?a)?),
if w = bn then w ∈ L ((εb)?) ⊂ L ((a?b)?),
if w contains as and bs and ends on b, we can split w as
a . . . ab︸ ︷︷ ︸

a?b

b . . . b︸ ︷︷ ︸
(a?b)?

a . . . ab︸ ︷︷ ︸
a?b

b . . . b︸ ︷︷ ︸
(a?b)?

showing that it indeed belongs to

L ((a?b)? + (b?a)?).
if w contains as and bs and ends on a, a similar decomposition
is possible.

Question: Can you think of an algorithm to decide whether two
regular expressions denote the same language? In other words: is the
equivalence of two regular expressions decidable?

ADL Theory of Computation 35 / 121



Exercises (1/2)

Write a regular expression that denotes the set of natural
numbers in base 10, with no leading 0 (except to represent 0).
Modify the above expression to cover all integers (i.e., including
negative numbers).
An identi�er in Java/C/C++ is a word built using letters, digits,
or underscore, but that may no start with a digit. Write a
regular expression denoting the set of all valid identi�ers.
Reading a C++ source �le line by line, and we consider each line
as a word on the ASCII alphabet. We want to detect lines that
perform two assignments (like �a = b = c;� or �a = b; c = d

+ a;� but not �a == b�). Write a regular expression that
denotes the set of lines containing two assignments.
Let L1 and L2 be the two languages over Σ = {a, b, c}
respectively denoted by ab + bc+ and a?b?c?. Can you build a
regular expression denoting the langage L1L2 ∩ L2L1?

ADL Theory of Computation 36 / 121



Exercises (2/2)

For each of the following pairs of regular expressions, tell
whether L (ϕ) ⊆ L (ϕ)ψ or L (ϕ) ⊇ L (ϕ)ψ or
L (ϕ) = L (ϕ)ψ or if they are incomparable.

ϕ ψ
a?b(ab)? a?(bab)?

a(bb)? ab?

a(a + b)?b a?(a + b)?b?

abc + acb a(b + c)(c + b)
a?bc + a?cb a?(bc + a?cb)
(abc + acb)? ((abc)?(acb)?)?

(abc + acb)+ ((abc)?(acb)?)+

(abc + acb)? (abc(acb)?)?

(abc + acb)? (a(bc)?(cb)?)?

Regular expressions over Σ, can be seen as words over the
alphabet Σ∪ {(, ),+, ?}. Can you write a regular expression that
denotes the set of regular expressions?

ADL Theory of Computation 37 / 121



Non Regular Languages

Obviously all regular languages are languages.
Let us show that not all language are regular languages using a
counting argument: there are not enough regular expressions

to describe all languages.
Such an argument would be easy with �nite sets: we would just
compare the cardinals of both sets.

One way to establish that two in�nite sets have similar size is to
establish a bijection between the two sets.

A �rst class of in�nite set are the countable sets: An in�nite set A is
countable if you can �nd a bijection between A and N.
Our plan is to show that the set of regular languages is countable
while the set of languages is not (it's bigger).

ADL Theory of Computation 38 / 121



Example of Countable In�nite sets

Even numbers are countable. Bijection is obvious.

N2 is countable: you can use Cantor's pairing function to
enumerate the pairs such that the sum of the two elements is
increasing: (0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), . . .
Generalization: the Cartesian product of countable sets is
countable.

Σ? is countable: use the radix order (i.e., order words by size
and then lexographically).

Any subset of a countable set is countable. You can use the
same order, skipping the missing items.

ADL Theory of Computation 39 / 121



Cantor's Diagonal Argument

Let A = {a1, a2, . . .} be a countable set and S the set of subsets
(a.k.a. powerset) of A.

Assume, by way of contradiction, that S is
countable: S = {s1, s2, . . .}. We can
represent S as an in�nite array showing with
0/1 whether ai belongs to si .

a1 a2 a3 · · ·
s1 1 0 1
s2 1 1 0
s3 0 1 0
...

Now consider the set D = {ai | ai 6∈ si}. This is a subset of A, so it
belongs to S . Call it sj . Was is the jth value on sj 's line?

If it is 0, then aj does not belong to sj and by de�nition of D it
must belong to D = sj ...
If it is 1, then aj belongs to sj and by de�nition of D it must not
belong to D = sj .

These contradictions prove that S is not countable.
The powerset of any in�nite countable set is not countable.

ADL Theory of Computation 40 / 121



Regular Expressions are Not Enough

Regular expressions are words over Σ′ = Σ ∪ {(, ),+, ?}.
The set of regular expressions, Σ′?, is thus countable.

Languages are subsets of Σ?. The set of languages, i.e. the
powerset of Σ?, is not countable (by Cantor's argument).

Consequently, there are many more languages than regular
expressions. There must be some languages that are not denoted by
regular expressions.

ADL Theory of Computation 41 / 121



Finite State Machines (1/2)

Let L be a language.

Consider a very simple program that reads a word letter by letter, and
�nally returns whether the word belong to L.

Each time the program reads a letter, its internal state change: the
program counter may have progressed, the value of some variable has
changed, etc. The internal state of the program is uniquely de�ned
by the sequence of letters it has read so far. In its last state, the
program should be able to tell whether the word belong to a
language.

Any execution could represented by such a sequence of states. If the
computer has m bits of memory, the number of di�erent possible
states is �nite and cannot exceed 2m.

ADL Theory of Computation 42 / 121



Finite State Machines (2/2)

We can therefore make an abstraction of such a simple program as

a set of states

some function that say how to change states when a letter is
read

a initial state, from which the computation should start

some we do distinguish whether the output should be yes or no

We can do the latter using a set of ��nal� states: states from which
all the letter read so far form a word of the language.

ADL Theory of Computation 43 / 121



Deterministic Finite Automata

A Deterministic Finite Automaton (or DFA for short) is a tuple
〈Σ,Q, δ, q0,F〉 where:

Σ is an alphabet

Q is a nonempty �nite set of states

δ : Q× Σ→ Q is a (total) transition function

q0 is the initial state

F ⊆ Q is the set of �nal states

ADL Theory of Computation 44 / 121



DFA Representation

Here is a graphical representation of the automaton A1 de�ned with
Σ = {a, b}, Q = {0, 1, 2}, q0 = 0, F = {2}, and δ given by:

δ a b

0 1 0
1 2 1
2 0 2

0 1 2

b

a

b

a

b

a

The initial state is represented using an input arrow, and �nal states
are represented by double circles.

ADL Theory of Computation 45 / 121



Acceptance of a Word

The determine whether a word w is accepted by an automaton
A = Σ,Q, δ, q0,F〉, we have to feed the word to the automaton and
watch it progress step by step as it reads the letters. We will
represent these steps using con�gurations.

A con�guration is a pair (q, s) ∈ Q× Σ?: q is the state reached by
the automaton, and s is the su�x of the word that has yet to be read.

If s is not empty, we can write s = s(0) · s ′, and the automaton can
make a step by reading s(0) and going to state q′ = δ(q, s(0)). We
say that (q′, s ′) is derivable in one step from (q, s) and write

(q, s) `A (q′, s ′)

Once all letters have been read, we will reach a con�guration (qf , ε).
The word is accepted by the automaton i� qf ∈ F .

ADL Theory of Computation 46 / 121



Acceptance of a Word: Example

0 1 2

b

a

b

a

b

a

Let's try to evaluate the word abbaaabab.
(0, abbaaabab) `A1

(1, bbaaabab) `A1
(1, baaabab) `A1

(1, aaabab) `A1
(2, aabab) `A1

(0, abab) `A1
(1, bab) `A1

(1, ab) `A1
(2, b) `A1

(2, ε).
Because this execution ends on state 2 ∈ F this word is accepted.

On the other hand, the word abb is not accepted:
(0, abb) `A1

(1, bb) `A1
(1, b) `A1

(1, ε), and 1 6∈ F .
ADL Theory of Computation 47 / 121



Language of an automaton

Let (q, s) `?A (q′, s ′) denote the fact that (q′, s ′) is derivable from
(q, s) in many steps. In other words, (q, s) `?A (q′, s ′) if and only if
there exist (q1, s1), . . . , (qk , sk) such that

(q, s) = (q1, s1),

(q′, s ′) = (qk , sk),

and for all 1 ≥ i < k , (qi , si) `A (qi+1, si+1).

A word w ∈ Σ? is accepted by the automaton A = 〈Σ,Q, δ, q0,F〉 i�
∃qf ∈ F such that (q0,w) `?A (qf , ε).

The language L (A) of an automaton A is the set of words it
recognizes:

L (A) = {w ∈ Σ? | ∃qf ∈ F , (q0,w) `?A (qf , ε)}

ADL Theory of Computation 48 / 121



Exercises

Let D3 be the following automaton on Σ = {0, 1}:

0 1 20

1 0

1

01

1 Execute D3 on the words 101010, and 11111.
2 Prove that D3 recognizes the binary representations of all the

natural numbers that are divisible by 3.
(Hint: interpret state numbers.)

3 Construct an automaton that recognizes the binary
representations of even numbers.

4 Can you give a concise English description of L (A1) (shown on
page 45).

ADL Theory of Computation 49 / 121



Nondeterministic Finite Automata

Let's generalize DFA by

allowing several transitions for the same letter in each state

spontaneous transitions (changing of state without reading any
letter)

allowing transitions labeled by words

This generalization will allow more than one execution of the same
word (this is the nondeterminism). We will consider that a word is
accepted i� one of this executions ends in a �nal state.

ADL Theory of Computation 50 / 121



De�nition of NFA

A Deterministic Finite Automaton (or DFA for short) is a tuple
A = 〈Σ,Q,∆, q0,F〉 where:

Σ is an alphabet

Q is a nonempty �nite set of states

∆ ⊆ Q× Σ? ×Q is a transition relation

q0 is the initial state

F ⊆ Q is the set of �nal states

An element (q1, l , q2) ∈ ∆ denotes a transition of source q1, label l ,
and destination q2.

We have (q,w) `A (q′,w ′) i� ∃l such that w = lw ′ and
(q, l , q′) ∈ ∆.

ADL Theory of Computation 51 / 121



Example NFA (1/2)

Here is a graphical representation of the NFA A2 de�ned with
Σ = {a, b}, Q = {0, 1, 2}, q0 = 0, F = {2}, and ∆ = {(0, a, 0),
(0, a, 1), (1, a, 2), (0, b, 1), (0, bb, 0), (1, bb, 1), (2, bb, 2), (2, ε, 0)}.

0 1 2

bb

a

b

a

bb

a

bb

ε

ADL Theory of Computation 52 / 121



Example NFA (2/2)

Example of indeterminism: From (0, abb) you can continue with
`A2

(1, bb) `A2
(1 varepsilon) which is not accepting, to with

`A2
(0, bb) `A2

(0 varepsilon) which is accepting. Since an
accepting execution exists, abb is recognized by A2.

Derivations can get stuck, consider (0, aba) `A2
(1, ba) and we

cannot progress. (Fortunately,
(0, aba) `A2

(0, ba) `A2
(1, a) `A2

(2, ε) `A2
(0, ε) is an

accepting derivation.)

ADL Theory of Computation 53 / 121



From NFA to DFA

It should be obvious that any DFA can be seen as a NFA (with
∆ = {(q, a, q′) ∈ Q× Σ×Q | q′ = δ(q, a)}).

There fore NFAs can do as much as DFAs. Can they do more? Can a
NFA recognize a language that no DFA can recognize?

We will show that NFA are as powerful as DFA by translating NFA to
DFA in three steps:

eliminating transition labeled by words of length > 1

eliminating spontaneous transitions (i.e. labeled by words of
length < 1)

eliminating nondeterminisms (cases with multiple outgoing
transitions with the same letter).

ADL Theory of Computation 54 / 121



Eliminating Word Transitions (1/2)

Simply rewrite

aab

as

a a b

ADL Theory of Computation 55 / 121



Eliminating Word Transitions (2/2)

Our example automaton A2 is therefore rewritten as follows

0

3

1

4

2

5

b a

b

a

b

a

b

ε

b b b

ADL Theory of Computation 56 / 121



Eliminating Spontaneous Transitions (1/2)

Let E (q) the list of states that can be reached from q following only
ε-transitions. E (q) is the ε-closure of q.

To remove a spontaneous transition (q1, ε, q2) from ∆ do the
following:

1 replace it by the following set of transition:

{(q1, l , q3) | ∃q ∈ E (q2), (q, l , q3) ∈ ∆

2 add q1 to F if E (q3) ∩ F 6= ∅}.

Basically we are making sure that if (q1,w) `? (q2,w) ` (q3,w
′) for

some words w 6= w ′, then (q1,w) ` (q3,w
′) is still possible in the

updated automaton.

ADL Theory of Computation 57 / 121



Eliminating Spontaneous Transition (2/2)

Our example automaton A2 is therefore rewritten as follows

0

3

1

4

2

5

b a

b

a

b

a

b

b

a

b b b

b

Such a NFA with all labels of size 1 is called a proper NFA.

ADL Theory of Computation 58 / 121



Eliminating Nondeterminism (1/3)

The basic idea is to keep track of all possible execution in parallel. In
other words: keep track of all di�erent the states we can reach while
reading a word.

We do that by creating a new automaton the states of which
represent sets of states of the original automaton.

0

1

2

a

a

b

is transformed into {0}

{0, 1}

{2}

a

b

ADL Theory of Computation 59 / 121



Eliminating Nondeterminism (2/3)

More formally let A = 〈Σ,Q,∆, q0,F〉 be a proper NFA and let
D = 〈Σ, 2Q, δ, {q0},F ′〉 be a DFA such that

δ(q, a) = {d ∈ Q | (q, a, d) ∈ ∆}
F ′ = {q ∈ 2Q | q ∩ F 6= ∅}

Then D and A are equivalent (they recognize the same languages).
Note: 2Q designates to powerset of Q. This construction is called
determinization or powerset construction.

ADL Theory of Computation 60 / 121



Eliminating Nondeterminism (3/3)

Example:

0 1 2
a, b

a

a

a

b

gets determinized into: {0}

{1}

{2}

{1, 2}

∅

a

b

a

b

a

b

a

b

a, b

(Here the transition labeled a, b use syntactic sugar to represent two
transitions a and b.)

ADL Theory of Computation 61 / 121



Exercises

Determinize the automaton A2 (starting from the proper version
given on page 58).

Let's further generalize NFAs by allowing multiple initial states.
A word is accepted if there is an accepting execution from one of
the initial state. Show that these generalized NFAs are as
powerful as DFAs.

ADL Theory of Computation 62 / 121



Useless States

accessible states are states that can be reached from the initial state.

co-accessible states are states from which it is possible to reach a
�nal state.

Obviously executions cannot reach states that are not accessible:
such states can be removed from the automaton without changing
the language.

When an execution reaches a state that is not co-accessible, we can
immediately say that the word is not accessible, without reading the
end of the word. If we relax our de�nition of DFA to allow δ to be a
partial function, we can also remove these useless states. (E.g. the ∅
state of the DFA of page 61 is not co-accessible.)

A trimmed automaton is a automaton whose states are all accessible
and co-accessible.

ADL Theory of Computation 63 / 121



Thompson's Algorithm: Basic Cases

Thompson's Algorithm builds a NFA that recognizes a given regular
expression.

Do you remember how regular expression are de�ned using ∅, ε, all
a ∈ Σ, and the union, concatenation, and Kleene star operations?
Thompson proceeds similarly by providing a translation for these base
symbols and operations.

This allows to construct the automaton recursively on the de�nition
of the regular expression. The automata constructed for each
subexpression all have exactly one initial state, and one �nal state.

Automaton for ∅:

0 1

Automaton for ε:

0 1
ε

Automaton for a:

0 1
a

ADL Theory of Computation 64 / 121



Thompson: Union

Automaton for e1 + e2:

q0

q1
0 A1 q1f

q2
0 A2 q2f

qf

ε

ε

ε

ε

Here qi
0
, Ai , and qif , represents the automaton that has been

recursively constructed for the regular expression ei . q
i
0
and qif are

the designated initial and �nal states, while Ai denotes the rest of the
automata.

ADL Theory of Computation 65 / 121



Thompson: Concatenation

Automaton for e1e2:

q1
0 A1 a1f q2

0 A2 q2f
ε

ADL Theory of Computation 66 / 121



Thompson: Kleene star

Automaton for e?
1
:

q0 q1
0 A1 q1f qf

ε ε

ε

ε

ADL Theory of Computation 67 / 121



Thompson: Example

Here is a Thompson automaton for (a + (cc)?)(b + c):

0

1 2

3 4 5 6 7 8

9 10

11 12

13 14

15

ε

ε

a
ε

ε

ε

c ε c ε

ε

ε

ε
ε

ε

b
ε

c ε

You can see in the construction rules that we always add two states
(new initial and �nal states) each time we process a letter, ε, ∅, or
the operations + and ?. The only case we do not add states is in the
concatenation operation.
Here our expression uses 5 letters, 2 unions, and one Kleene star: we
can verify that the Thompson automaton has 8× 2 = 16 states.

ADL Theory of Computation 68 / 121



Thompson: Conclusion

Thompson's algorithm is simple to program and to prove correct
(because it is so close to the recursive de�nition of rational
expressions). However the automata it produces are rather big,
and usually full of nondeterminism.

They should be trimmed, simpli�ed using ε-closure, which
require additional time.

There exist several other algorithms that can translate regular
expressions to (proper) NFA or DFA.

The main point here is that we have shown that automata can
recognize regular languages.

Can they recognize languages that are not regular?

ADL Theory of Computation 69 / 121



Exercise

For each of the following regular expressions, construct the
Thompson automaton, trim it (if needed), build its ε-closure, and
determinize the result.

1 c(ab + c)

2 ((ab + ε)?c)?

3 (a + b + c)?abab

4 (∅(a + b))?

ADL Theory of Computation 70 / 121



Brzozowski and McCluskey's Algorithm (1/3)

The BMC algorithm transforms an NFA into a regular expression. It
uses a generalization of NFA, called generalized automata, in which
labels are regular expressions.

To translate a NFA into regular expression, the general idea is the
enumerate all the paths between the initial state and a �nal state,
and sum the words recognized by all these paths. The only di�culty
is that loops in the automata can generate in�nite paths.

ADL Theory of Computation 71 / 121



Brzozowski and McCluskey's Algorithm (2/3)

Starting from the NFA to translate, the BMC algorithm, also called
�states elimination algorithm� proceeds as follows:

1 add a new initial state I , and connect it with ε transition to the
original initial state

2 add a new �nal state F , and connect it with ε transitions to all
original �nal states

3 let I and F be the only initial and �nal states

4 pick any state of the automaton (except I and F ), remove it and
recreate all the paths that were going through that state, using
transitions labelled with equivalent regular expression

5 repeat previous step until the only two states left are I and F .

6 the sum of all transitions between I and F is a regular expression
denoting the regular language recognized by the automaton.

ADL Theory of Computation 72 / 121



Brzozowski and McCluskey's Algorithm (3/3)

How to eliminate a state:

Let qi denote the state to eliminate. Let eii be the label of the
transition going from qi to itself (if there are many transitions sum
them, and if there are none, use eii = ∅).
For each pair of states (qj , qk) with j 6= i , k 6= i , such that there
exists a transition qj → qi labelled eji (again, sum all the labels if
there are many transitions) and a transition qi → qk labelled eik , add
a new transition qj → qk , with label ejie

?
iieik . If a transition qj → qk

did already exists with label ejk , you may simply update its label with
ejk = ejk + ejie

?
iieik .

(This should be done for each pair of state, including when qj = qk .)

Then, delete qi and its incident transitions.

ADL Theory of Computation 73 / 121



BMC Illustration

Eliminating state qi :

qj qi qk
eji

ejk

eik

eii

 qj qk
ejke

?
iieik + ejk

ADL Theory of Computation 74 / 121



BMC Example (1/2)

Let's compute a regular expression of this automaton:

0 1 2

a

b

a

b

a

b
First we add the new initial and �nal states.

I 0 1 2 F
ε

a

b

a

b

ε

a

b

ε

ADL Theory of Computation 75 / 121



BMC Example (2/2)

We decide to delete states 2, 1, and 0 in that order.

I 0 1 F
ε

a

b

a

ba? + ε

ba?b

I 0 F
ε

a

ba?ba?b

ba? + ba?ba?

I F
(a + ba?ba?b)?(ba? + ba?ba?)

ADL Theory of Computation 76 / 121



Review of Equivalences

So far, we have established that the following formalisms are
equivalent:

Regular languages.

Regular expressions.

NFA.

DFA.

We could say that �nite automata (deterministic or not) are able to
solve problems whose positive instances form a regular language.

ADL Theory of Computation 77 / 121



Regular Operations

Concatenation, Union of two automata, and Kleene star of one
automaton can be implemented as in Thompson's construction (if at
some point we have too much �nal states, it is easy to add a new
unique �nal state, connected to all the other with ε-transitions).
What about:

Complementation?

Intersection?

Left and Right Quotient?

Transposition?

Do these operations preserve the regular property of a language?

ADL Theory of Computation 78 / 121



Complementation

Let A = 〈Σ,Q, δ, q0,F〉 be a complete (i.e. δ is total) deterministic
automaton.
The automaton A = 〈Σ,Q, δ, q0,Q \ F〉 is the complement of A.
We have L (CA) = L (A).

Exercise:

Let L be the language denoted by ((a?b + ε)a)?. Compute a
regular expression that denotes L. (Hint: Translate the
expression into an NFA, determinize this automaton,
complement it, and then translate it back into a regular
expression.)

ADL Theory of Computation 79 / 121



Intersection

Using De Morgan's law: L1 ∩ L2 = L1 ∪ L2. It is quite complex
since it involves three complementations (hence tree
determinizations).

Using a synchronous product is faster:
Let A = 〈Σ,Q, δ, q0,F〉 and A′ = 〈Σ,Q′, δ′, q′

0
,F ′〉 be two

DFAs. The synchronous product of A and A′, denoted A⊗ A′ is
the automaton (Σ,Q⊗, δ⊗, q⊗

0
,F⊗) where

Q⊗ = Q×Q′,
δ⊗ = {((s, s ′), l , (d , d ′)) ∈ Q⊗ × Σ×Q⊗ | (s, l , d) ∈
δ and (s ′, l , d ′) ∈ δ′},
q⊗
0

= (q0, q
′
0
),

F⊗ = F × F ′.

ADL Theory of Computation 80 / 121



Transposition

The transposition of a word is the word printed in the opposite
direction: w t(i) = w(|w | − i − 1). E.g. (ababb)t = bbaba.

Lt = {w t | w ∈ L}

This operation is easily done on an automaton by exchanging the
�nal and initial states (if there are many �nal states, just connect
them all with spontaneous transition to a new �nal state before doing
the exchange) and reversing all transitions.

ADL Theory of Computation 81 / 121



Left and Right Quotients

If L is recognized by a DFA A = 〈Σ,Q, δ, q0,F〉. We can recognize

\wL with the DFA \wA = 〈Σ,Q, δ, q′
0
,F〉 where q′

0
is the only state

such that (q0,w) `?A (q′
0
, ε). We may also write A[q′

0
] to denote the

automaton A in which the initial state has been replaced by q′
0
.

0

1

2

3 4

a

b

a

b

b
a

a, b
a, b

ab\L (A) = Σ+ is denoted by the automaton A[3].

What about right quotients?
ADL Theory of Computation 82 / 121



Decidable Problems on Regular Expressions

membership w ∈ L

emptiness L = ∅
universality L = Σ?

inclusion L1 ⊆ L2

equivalence L1 = L2

ADL Theory of Computation 83 / 121



State Equivalence

For a NFA A = 〈Σ,Q,∆, q0,F〉, and a state x ∈ Q, let A[x ]
designate the automaton 〈Σ,Q,∆, x ,F〉 in which the starting state
has been replaced by x .

We say that two states x , y ∈ Q of A are equivalent, written x ≡A y ,
i� L (A[x ]) = L (A[y ]).

Intuitively, if two states are equivalent we can remove one of the two
and direct all its incoming transition to the other.

ADL Theory of Computation 84 / 121



Quotient Automaton

For a NFA A = 〈Σ,Q,∆, q0,F〉, the quotient automaton
A/≡ = 〈Σ,Q′,∆′, q′

0
,F ′〉 is de�ned as follows:

Q ′ = Q/≡ is the set of ≡A-equivalence classes

(S , a,D) ∈ ∆′ i� there exist two states s ∈ S and d ∈ D such
that (s, a, d) ∈ ∆.

q′
0

= [q0]≡A the ≡A-equivalence class of q0

S ∈ F ′ i� there exists a state s ∈ S ∩ F

If A is deterministic, then A/≡ will be deterministic. In other words, if
x ≡A y , then δ(x , a) ≡A δ(y , a).
Proof: consider a word w ∈ L (A[δ(x , a)]). Then aw ∈ L (A[x ]).
Since x ≡A y , we have aw ∈ L (A[y ]). Because A is deterministic,
w ∈ L (A[δ(y , a)]).

ADL Theory of Computation 85 / 121



Computing ≡A by Re�ning

Let L i(A) designate the words of L (A) with at most i letters. We
say that x ≡i

A y i� L i(A[x ]) = L i(A[y ]).

x ≡0

A y i� either x , y ∈ F or x , y 6∈ F .
x ≡i+1

A y i� x ≡i
A y and ∀a ∈ Σ, δ(x , a) ≡i

A δ(y , a) (Note: this
is true only for DFAs.)

≡i+1

A is therefore a re�nement of ≡i . Because the number of possible
partition is �nite, at some point we will have (≡j+1

A ) = (≡j
A), and

then it follows that (≡j
A) = (≡A)

ADL Theory of Computation 86 / 121



The minimization Algorithm

Start with an automaton A.
Partition the states according to ≡0

A, i.e., separate �nal states from
non-�nal states.
Re�ne the partition to obtain ≡1

A by �nding the letters a such that
δ(x , a) 6≡0

A δ(x , a).
Re�ne the partition to obtain ≡2

A by �nding the letters a such that
δ(x , a) 6≡1

A δ(x , a).
Repeat until ≡i+1=≡i . The �nal partition de�ne the state that can
be merged.

ADL Theory of Computation 87 / 121



Word Equivalence

Let L be a regular language over Σ. We say that to words x , y of Σ?

are L-equivalent, written x
L≡ y i� ∀z ∈ Σ?, xz ∈ L ⇐⇒ yz ∈ L.

This equivalence relation is a right congruence: x
L≡ y =⇒ xa

L≡ ya.

We note [x ] L
≡

= {y ∈ Σ? | x L≡ y} the equivalence class of x .

For instance on Σ = {a, b} the language L = Σ?aΣ has four
equivalence classes:

Σ?aa

Σ?ab

Σ?ba + a

Σ?bb + b + ε

The number of equivalence classes of L is the index of L.
ADL Theory of Computation 88 / 121



Myhill-Nerode Theorem (1/2)

The relation
L≡ characterizes exactly what an automaton that

recognize L should remember. When it has read a pre�x w of the
input, it should be in the same state as after reading any other word
of [w ] L

≡
. So the state of the automaton just have correspond to

equivalence classes.

If the index of L �nite and equal to n, there exists a n-states DFA
ML = 〈Σ,Q, δ, q0,F〉 that recognizes L:
Q = {[w ] L

≡
‖w ∈ Σ?}

δ(q, a) = [wa] L
≡
for some word w ∈ q.

q0 = [ε] L
≡

F = {q ∈ Q‖q ⊆ L}
Determinism follows from the fact that

L≡ is a right congruence.
It can be proven that for any DFA A, A/≡ = ML (A) up to some
renaming of states.

ADL Theory of Computation 89 / 121



Myhill-Nerode Theorem (2/2)

If a DFA A has k states, then the index of L (A) is at most k .
(Indead, if two words w1 and w2 move A to the same state, then

w1

L≡ w2 so the number of equivalence classes cannot exceed the
number of states of A.)

It follows that a language is regular i� it has a �nite index.

Example: let L be a regular language and let L2 = {ww | w ∈ L}.
Question: Is L2 regular ?
Consider the L2-equivalence on words. Obviously two di�erent words
x , y ∈ L are not L2 equivalent, because they are distinguished by the
su�xes x and y . So the index of L2 is at least |L|. If L is an in�nite
language, then L2 is not regular.
On the other hand if L is �nite, then L2 is �nite, and we know that
�nite language is regular.

ADL Theory of Computation 90 / 121



Introduction to Grammars

An Automaton gives rules to recognize the words of some
language. It is an accepting device.

A grammar give rules to generate/produce the words of some
languages. It is a generative device.

The grammar rules are rewriting rules. For instance:

A sentence has the form subject verb

A subject can be he or she

A verb can be eats or sleeps

With these rules sentence can be rewritten as

he eats,

he sleeps,

she eats, or

she sleeps.
ADL Theory of Computation 91 / 121



Grammar De�nition

A grammar is a tuple G = 〈V ,Σ,R , S〉 where
V is an alphabet
Σ ⊆ V is the set of terminal symbols (these are the symbols
used in the language generated by the grammar).
R ⊆ V+ × V ? is a �nite set of rewriting rules (the �rst element,
in V+, can be rewritten as the second element of the rule), also
called production rules
S ∈ V \ Σ is the start symbol.

The symbols V \ Σ are called the non-terminal symbols. They are
only used during the generation.

Example:
V = {SENTENCE, SUBJECT,VERB, he, she, eats, sleeps},
Σ = {he, she, eats, sleeps},
R = {(SENTENCE, SUBJECT · VERB),
(subject, he), (subject, she), (verb, eats), (verb, sleeps)},
S = SENTENCE.ADL Theory of Computation 92 / 121



Grammar Conventions

Here are some conventions when describing grammars or algorithms
on grammars:

Nonterminal symbols (V \ Σ) are denoted by uppercase letters:
A,B , . . .

Terminal symbols (Σ) are denoted using lowercase letters:
a, b, . . .

Rewriting Rules (α, β) ∈ R are denoted α→ β, or even α→G β
(if we need to specify the grammar).

The starting symbol is usually denoted S

The empty word is denoted ε as we did so far.

ADL Theory of Computation 93 / 121



Grammar Example

Consider the following grammar G = 〈V ,Σ,R , S〉:
V = {S ,A,B , a, b},
Σ = {a, b},
R = {S → A, S → B ,B → bB ,A→ aA,A→ ε,B → ε},
S is the starting symbol.

Let's show that aaaa belongs to the language L (G ) generated by G :

the start symbol S

can be rewritten as A by rule S → A

aA A→ aA

aaA A→ aA

aaaA A→ aA

aaaaA A→ aA

aaaa A→ ε

ADL Theory of Computation 94 / 121



Derivation Between Words

Let G = 〈V ,Σ,R , S〉, v ∈ V+ and w ∈ v ?. We say that G derives in
one step w from v , written v ⇒

G
w , i� ∃x , y , y ′, z such that v = xyz ,

w = xy ′z and y →G y ′.

We also write v
∗⇒
G
w is there exists many words x1, x2, . . . , xn such

that v ⇒
G
v1 ⇒

G
v2 ⇒

G
· · · ⇒

G
vn ⇒

G
w .

Finally the language of G = 〈V ,Σ,R , S〉 is

L (G ) = {w ∈ Σ? | S ∗⇒
G
w}

ADL Theory of Computation 95 / 121



The Chomsky Hierarchy

Chomsky has classi�ed grammars in four categories:

Type 0 No restriction on rules.

Type 1 Context-sensitive grammars. For any rule α→ β, we require
that |α| ≤ |β|. One exception (to enable grammars to
generate the empty word), we allow S → ε as long as S does
not appear on the right side of any rule.

Type 2 Context-free grammars (CFG). Any rule should have the
form A→ β where A ∈ V \ Σ is a nonterminal symbol.

Type 3 Regular grammars. Rules can only have the following two
forms: A→ wB or A→ w , with A,B ∈ V \ Σ, and w ∈ Σ?.

It can be shown that type 3 ⊂ type 2 ⊂ type 1 ⊂ type 0 . The only
di�culty is that type 2 grammars can have rules of the form A→ ε
that are not allowed by type 1 grammar.

ADL Theory of Computation 96 / 121



Eliminating A→ ε Rules

Let G = 〈V ,Σ,R , S〉 be a type 2 grammar with some rules of the
form A→ ε that we want to remove.

1 If ε ∈ L (G ) create a new starting symbol S ′ and add two rules:
S ′ → ε and S ′ → S .

2 Repeat the following step until there are no more A→ ε rules:

Pick a rule of the form A→ ε (other than S ′ → ε) and remove

it from R

For each rule α→ β such that A appears in β, add a rule

α→ β′ where β′ is obtained by replacing A by ε in β.

ADL Theory of Computation 97 / 121



Regular Grammars (1/2)

Claim: A language is regular i� it is generated by a regular grammar.
Proof (1/2). Let us show that any regular language can be generated
by a grammar. Consider a NFA M = 〈Σ,Q,∆, q0,F〉 recognizing the
language. Then the following Grammar G = 〈V ,Σ,R , S〉 generates
the same language:

V = Q∪ Σ (the states corresponds to nonterminal symbols)

S = q0

R = {A→ wB | (A,w ,B) ∈ F} ∪ {A→ ε | A ∈ F}
It should be fairly obvious that (q,w) `?M (p, v), with w = uv i�

q
∗⇒
G
up. So in particular

(q0,w) `?M (p, ε) with p ∈ F i� S
∗⇒
G
w

ADL Theory of Computation 98 / 121



Regular Grammars (2/2)

Proof (2/2). Let us show that a regular grammar generates a regular
language.
Given a regular language G = 〈V ,Σ,R , S〉, let's construct the NFA
M = 〈Σ,Q,∆, q0,F〉 where

Q = (V \ Σ) ∪ {f }: states are nonterminal symbols plus a new
state f ,

q0 = S ,

F = {f },
∆ = {(A,w ,B) | (A→ wB) ∈ R} ∪ (A,w , f ) | (A→ w) ∈ R}

Then L (M) = L (G ).

ADL Theory of Computation 99 / 121



Proving that a Language is Regular

We have seen di�erent ways to prove that a language is regular:

Describe the language using only basic regular operations
(concatenation, union, Kleene star)

Describe the language using other operations that preserve
regularity (intersection, set di�erence, complementation,
transposition, left and right quotients)

Describe the language using a �nite automaton (DFA or NFA)

Describe the language using a regular grammar (a.k.a. right
linear grammar).

It can be proved that any regular language can also be represented
using a left linear grammar (i.e. with rules of the form A→ Bw or
A→ w).

ADL Theory of Computation 100 / 121



Proving that a Language is Not Regular

Some facts:
Any non-regular language must have an in�nite number of words
(because every �nite language is regular).
An in�nite language does not have a upper bound for the length
of its words (if it did, it would have a �nite number of words).
Any regular language is accepted by a �nite automaton with a
�nite number of states (call it m).
Consider a regular language accepted by a m-state �nite
automaton. Then we the automaton evaluates a words of size
≥ m it must visit some state at least twice, forming a loop.

We have seen one use of the Myhill-Nerode Theorem to prove that
L2 = {ww | w ∈ L} is not regular when L is in�nite (because L2's
index would be in�nite).

Another useful tool is the �pumping lemma�, based on the above
observations.

ADL Theory of Computation 101 / 121



Pumping Lemma

Two versions of the pumping lemma can be used:

1 Let L be an in�nite regular language. Then there exist
x , u, y ∈ Σ? with u 6= ε such that x · un · y ∈ L for all n ≥ 0.

2 Let L be an in�nite regular language and w ∈ L such that
|w | ≥ Q (assuming Q denotes the states of a DFA recognizing
L). Then ∃x , u, y with u 6= ε and |xy | ≤ |Q| such that xuy = w

and ∀n ∈ N, x · un · y ∈ L.

Examples:

Use the pumping lemma to show that {anbn | n ∈ N} is not a
regular language. (The �rst version of the lemma is enough.)

Show that {an2 | n ∈ N} is not regular (use the second version
of the lemma).

ADL Theory of Computation 102 / 121



Tools for Proving Non-Regularity

1 Pumping Lemma

2 Myhill-Nerode Theorem

3 Show that the language (the one that you want to prove is
nonregular) can be combined with regular language and using
operations that preserve regularity in order to build a language
that is known to be nonregular.

Example for the third case: prove that
L = {w ∈ {a, b}? | w as the same numbers of as and bs} is not
regular.
We have L ∩L (a?b?) = {anbn | n ∈ N}, so if L was regular, then
{anbn} would also be regular, which we know is wrong. Therefore L
is not regular.

ADL Theory of Computation 103 / 121



Intuition For Non-Regularity

Finite automata model machines with a �nite amount of memory
(the number of states). We can say that the membership to a regular
language can be decided in constant space. Or said otherwise,
REGULAR the set of all regular languages, is equal to
DSPACE (O(1)), the set of decision problem that can be solved in
constant space using a deterministic Turing machine.

anbn is not regular because it require counting the number of as and
bs. Here counting just does not require an integer, because the size
of the word may be too long to �t 32 or 64 bits. Counting letters in a
words of n letters requires Θ(log n) bits, so the memory is not
bounded.

ADL Theory of Computation 104 / 121



Exercises

Write a regular grammar for (a + b)(ab)?

Write a regular grammar for automaton A2 on page 58

Show that a subset of a regular set is not always regular.

Write a Context-Free Grammar for {anbn | n ∈ N}.
Explain why {ancmbn | n ∈ N,m ∈ N} is not regular.
Explain why the set of regular expressions is not a regular
language.

Write a Context-Free Grammar generating all regular
expressions.

ADL Theory of Computation 105 / 121



Pushdown Automata

A pushdown automaton is a tuple P = 〈Q,Σ, Γ,∆,Z , q0,F〉 where:
Q is a set of states

Σ is an input alphabet

Γ is a stack alphabet

Z ∈ Γ is an initial stack symbol

q0 ∈ Q is the initial state

F ⊆ Q is the set of �nal states

∆ ⊆ ((Q× Σ? × Γ?)× (Q× Γ?) is the transition relation.

These automata have a stack. When they read a symbol from the input,

and change state, they can also�at the same time�replace a word at the

top of the stack by another word.

A transition ((x ,w , α), (y , β)) ∈ ∆ means that the automaton can go

from state x to state y if

w is a pre�x of the input word

α is at the top of the stack

If these conditions are matched and the automaton changes state, it

should replace α by β on the stack.

ADL Theory of Computation 106 / 121



Con�guration of a PDA

The con�guration of a PDA is a tripled (x ,w , α) ∈ Q× Σ? × Γ?

where
x is a state
w is the part of the input that has not been read yet
α is the contents of the stack.

A con�guration (x ′,w ′, α′) is derivable from (x ,w , α) in one step,
denoted (x ,w , α) `P (x ′,w ′, α′) if

w = uw ′

α = βδ
α′ = γδ
((x , u, β), (x ′, γ)) ∈ ∆

The language of P is all words that can move the PDA into a �nal
state:

L (P) = {w ∈ Σ? | ∃q ∈ F , ∃γ ∈ Γ?, (q0,w ,Z ) `?P (q, ε, γ)}
ADL Theory of Computation 107 / 121



Example PDA (1/2)

The PDA P = 〈Q,Σ, Γ,∆,Z , q0,F〉 with
Q = {0, 1, 2}
Σ = {a, b}
Γ = {A,Z}
∆ = {((0, a, ε), (0,A)), ((0, ε, ε), (1, ε)),
((1, b,A), (1, ε)), ((1, ε,Z ), (2,Z ))}
q0 = 0

F = {2}
accepts the language {anbn | n ∈ N}.

0 1 2

a; ε/A

ε; ε/ε

b;A/ε

ε;Z/Z

ADL Theory of Computation 108 / 121



Example PDA (2/2)

The PDA P = 〈Q,Σ, Γ,∆,Z , q0,F〉 with
Q = {0, 1, 2}, Σ = {a, b}, Γ = {A,B ,Z}
∆ = {((0, a, ε), (0,A)), ((0, b, ε), (0,B)), ((0, ε, ε), (1, ε)),
((1, a,A), (1, ε)), ((1, b,B), (1, ε)), ((1, ε,Z ), (2,Z ))}
q0 = 0

F = {2}
accepts the palindromes on {a, b}, i.e. {ww t | w ∈ {a, b}?}.

0 1 2

a; ε/A

b; ε/B

ε; ε/ε

a;A/ε

b;B/ε

ε;Z/Z

ADL Theory of Computation 109 / 121



Context-Free Grammars

A Grammar G = 〈V ,Σ,R , S〉 is a Context-Free Grammar (CFG) if
any rule of R should has the form A→ β where A ∈ V \ Σ is a
nonterminal symbol (no constraint on β).

The following Context-Free Grammar generates {anbn | n ∈ N}:
S → aSb

S → ε

The following Context-Free Grammar generates palindromes on
{a, b}:

S → aSa

S → bSb

S → ε

ADL Theory of Computation 110 / 121



Grammar for Regular Expressions (1/3)

The following grammars generates all regular expressions over
{a, b, c} with parentheses around operators, and assuming 1 is the
regular expression for the empty word, and 0 for the empty language.

S → a

S → b

S → c

S → 0

S → 1

S → (SS)

S → (S + S)

S → S?

How can we modify it to accept expressions like (a + b + c)ab? + a

instead of ((((a + b) + c)(a(b?))) + a)? I.e., without the unneeded
parentheses?

ADL Theory of Computation 111 / 121



Grammar for Regular Expressions (2/3)

Let's introduce A→ α | β | γ as syntactic sugar for A→ α, A→ β,
A→ γ.

S → a | b | c | 0 | 1 | (S) | SS | S + S | S?

This grammar can generate a + bc in di�erent ways:

S ⇒ SS ⇒ Sc ⇒ S + Sc ⇒ a + Sc ⇒ a + bc

S ⇒ S + S ⇒ a + S ⇒ a + SS ⇒ a + bS ⇒ a + bc

Other derivations exist, because you can substitute a, b, c in di�erent
orders. The above two derivations should be quite chocking if you
look at them from a mathematical standpoint: one correspond to the
interpretation of a + bc as a sum of products, and the other as a
product of sums. We say that the grammar is ambiguous.
How can we �x the ambiguity, assuming that ? has priority over
concatenation, and that concatenation has priority over +.

ADL Theory of Computation 112 / 121



Syntax Trees

The two interpretations of the a + bc with the previous grammar can
be pictured as syntax trees:

S

S

a

+ S

S

b

S

c

S

S

S

a

+ S

b

S

c

A grammar is ambiguous if it can generate some word with two
di�erent syntax trees.

ADL Theory of Computation 113 / 121



Syntax Trees and Derivations

Note that each syntax tree corresponds to many possible derivations.
For instance the �rst syntax tree can be used to produce the
following derivations:

Leftmost derivation S ⇒ S + S ⇒ a + S ⇒ a + SS ⇒ a + bS ⇒ a + bc

Rightmost derivation S ⇒ S + S ⇒ S + SS ⇒ S + Sc ⇒ S + bc ⇒ a + bc

And others like... S ⇒ S + S ⇒ S + SS ⇒ S + bS ⇒ a + bS ⇒ a + bc

ADL Theory of Computation 114 / 121



Grammar for Regular Expressions (3/3)

Consider the following grammar, where S is the starting symbol:

S → C | S + C

C → E | CE
E → a | b | c | 0 | 1 | E ? | (S)

This unambiguous grammar recognizes all the words over
{0, 1, a, b, c ,? , (, )} that denote a regular expression, allowing for
useless parenthesis to be omitted (or not).

a+ bc can only be interpreted as a+ (bc) with a derivation similar to
S ⇒ S + C ⇒ C + C ⇒ E + C ⇒
a + C ⇒ a + CE ⇒ a + Cc ⇒ a + Ec ⇒ a + bc

where only the order in which you expand the E -productions may
change.

Can you write a push-down automaton that recognizes the same
language?

ADL Theory of Computation 115 / 121



Converting CFG to PDA

Given a grammar G = 〈V ,Σ,R , S〉, the PDA
P = 〈Q,Σ, Γ,∆,Z , q0,F 〉 where
Q = {q0, x , f },
Γ = V ∪ {Z},
Z 6∈ V ,

F = {f },
D = {((q0, ε, ε), (x , S)), ((x , ε,Z ), (f , ε))} ∪
{((x , ε,A), (x , α)) | (A→ α) ∈ R)} ∪
{((x , a, a), (x , ε)) | a ∈ Σ)}

is such that L (P) = L (G ).

ADL Theory of Computation 116 / 121



Pumping Lemma for Grammars

For any context-free grammar G , there exists a constant K such that
every word w ∈ L of size |w | > K can be written w = uvxyz with
(v , y) 6= (ε, ε) and ∀n > 0uvnxynz ∈ L.

The idea is that of the word is big enough, there should be one branch
of the derivation tree where one non-terminal should appear twice.

If we set m = |V − Σ and p = max{|α|,A→ α ∈ R} then any value
K ≥ pm will work.

Exercise: Prove that {anbncn | n ∈ N} is not a context-free language.

ADL Theory of Computation 117 / 121



Properties for Context-Free Languages

Given two Context-Free languages L1, L2 ⊆ Σ?:

L1 ∪ L2 is a context-free language

L1 ∩ L2 might not be.
E.g. {anbncm | n ∈ N,m ∈ N} ∩ {ambncn | n ∈ N,m ∈ N} =
{anbncn | n ∈ N} is not a CFL.

L1 = Σ? \ L1 may not be context free either. Because if it were

always, then L1 ∩ L2 = L1 ∪ L2 would also be a CFL.

Some languages are inherently ambiguous (i.e. you cannot build a
nonambiguous grammar that produces it). For instance the language
{anbncmdm | n,m ∈ N} ∪ {anbmcmdn | n,m ∈ N} is context-free,
but any grammar that generates it will be ambiguous for the subset
{anbncndn | n ∈ N}.

ADL Theory of Computation 118 / 121



Decision Problems for Context-Free Grammars

Given a CFG that produces the language L:

Set membership (w ∈ L) is decidable (in O(n3)).

Emptiness (L = ∅) is decidable.
Universality (L = Σ?) is undecidable.

Also

Equality and inclusion of two grammars are undecidable.

Deciding if a context-free grammar generates a regular language
is undecidable.

Deciding if a context-sensitive grammar generates a
context-free language is undecidable.

Deciding if a context-free grammar is ambiguous is undecidable.

ADL Theory of Computation 119 / 121



Deterministic Push-Down Automata

Let P = 〈Q,Σ, Γ,∆,Z , q0,F 〉 be a PDA.

Compatible transitions Two transitions ((s,w , α), (d , β)) ∈ ∆ and
((s ′,w ′, α′), (d ′, β′)) ∈ ∆ are said to be compatible if:

s = s ′

w is a pre�x of w ′, or w ′ is a pre�x of w

α is a pre�x of α′, or α′ is a pre�x of α

Deterministic PDA P is said to be deterministic if it does not have
any pair of compatible transition.
The intuition is that in a con�guration there is at most one
transition that can be used.

Deterministic Context-Free Language A context-free language is
deterministic if it can be recognized by a deterministic PDA.

Examples: {w · c · w t | w ∈ {a, b}?} is deterministic.
{w · w t | w ∈ {a, b}?} is not.

ADL Theory of Computation 120 / 121



Properties of Deterministic Context-Free

Languages

Let L, L1, L2 be deterministic context-free languages.

L = Σ? \ L is a deterministic CFL.

There exist some CFL that are not deterministic (otherwise CFL
would be closed by complementation, and we know it is not the
case).

L1 ∪ L2 and L1 ∩ L2 might not be deterministic.

Also set membership (w ∈ L) can be solved in Θ(n) time, and this is
the main interest of deterministic context-free languages: they are
easier to parse.

ADL Theory of Computation 121 / 121


	Title
	References
	Introduction
	Problems and programs
	Basics
	Concatenation
	Relations Between Words
	Operations on Languages
	Regular Languages
	A Taste of Calculability
	Regular Expressions
	Non Regular Languages
	Automata
	Finite State Machines
	DFA
	NFA
	From NFA to DFA
	Useless states
	Thompson
	NFS to Regular Expression

	Some Operations on Automata
	Decidable Problems
	Quotient Automaton
	Myhill-Nerode Theorem
	Grammars
	Regular Grammars
	Pumping Lemma (for regular language)
	Pushdown Automata
	Context-Free Grammars

