Theory of Computation
(CS340)

Closed book exam. Duration: 1 hour

13 September 2010

Exercise 1

1. Construct a non-deterministic finite automaton A whose language over ¥ = {a,b} satisfies the
following two constraints:

e All words of .Z(A) have a length that is divisible by 3.
e All words of Z(A) start with the letter a and end with the letter b.

Please justify your construction.
Answer:

Building a separate automaton for each constraint is easy.
The following automaton recognizes all words w € X* such that |w| =0 mod 3.

@a,b @ a,b

a,b

The following automaton recognizes a - X* - b:

@

The question was actually to build an automaton that recognizes words that satisfy these
two constraints, i.e., the intersection of the languages of these two automata. This can be
done by building the synchronized product of the two automata:

RORoRe
520

2. Give a regular grammar that produces .Z(A).

Answer:

Since we have finite automaton describing the language, we can just generate a language out
of it. Let us just rename the states, so we can use single letters in the grammar.

~()

BN

A regular grammar producing .Z’(A) can thus be read directly from the automaton:

e S— A

e A —aB

B — bC | aD | bD

o C—e¢
oD—>aE|bE
oE—>aB’bB

Exercise 2
Consider the regular expression (a*b)*a defined over X. = {a,b}.

1. Construct a DFA that recognizes .2 ((a*b)*a)

Answer:

Here is the Thompson automaton for (a*b)*a:

Note that there exist other DFA recognizing the same language. In any case, you should
check your automaton to make sure it cannot recognize words that are not in the language

(many of you proposed automata that would accept aa for instance), and make sure that it
does not miss words from the language.

2. Explain why there cannot exist a 2-state DFA that recognizes the same language.
Answer:

If we run the minimization algorithm (e.g. using partition refinement) on the previous DFA,
we obtain the following 3-state DFA:

a

Because this is a minimal automaton we cannot have a DFA with less states (otherwise this
automaton would not be minimal).

3. Construct a regular expression for the complement language. (Please show the steps of Brzo-
zowski and McCluskey’s algorithm after each elimination of a state.)

Answer:

Let us start from the complement of the minimal DFA above:

a
0=
e
Then prepare to apply the BMC algorithm:

a

Remove state 1:

%éﬁ+ab

Remove state 2
b +ab+aa’b

(> e e+aat

Finally remove state 3 and the resulting regular expression is (b + ab + aa*b)*(e + aa™).
Other equivalent regular expressions are possible if you started from a different automaton
or removed the states in a different order.

Exercise 3

1. Prove that the language L1 = {a"b™c" | n € IN,m € IN} is not regular.

Answer:

That is very easy to prove. We have L1 N .Z(a*b*) = {a"b" | n € IN}. We know that
Z(a*b*) is a regular language (since it is described by a regular expression), and that regular
languages are closed under intersection. So if L; was regular, so would {a"b" | n € IN}. But
we know that {a"b"} is not regular, so L; cannot be.

Some of you tried using the pumping lemma in dubious ways, by considering a words like
aPbicP = xuy without specifying the value of p and g, then considering different cases for u.
But the pumping lemma just says that if a?bc? is large enough you can find a decomposition
xuy such that xu'y € L. With a?b9c? = xuy it could happens that decomposition uses u € b*,
in which case the word xu'y € L really belong to L and you have no contradiction.

A correct way to apply to pumping lemma is as follows. Let K be the constant from the
pumping lemma, and consider the word aXcK € Ly, then there should exist a decomposition
akcK = xuy such that xu'y € Ly, and you can actually see that not such decomposition is
possible by considering the various cases. The trick here is that the pumping lemma should
work for any word of L; so you should chose one that makes your demonstration easier.

If you want to consider the word a¥b?cK for instance, then you can add that the pumping
lemma asserts that we can find a decomposition xuy such that [xu| < K. This means that
x € a*, and therefore xu'y will have too many as.

2. Isis possible to find two regular languages L, and L3 such that L, € L; C L3?

Answer:

Yes. @ and X* are regular languages, and obviously L, = @ C Ly C ¥* = L3. This is actually
true for any language L1, not just the one from the previous question.

Exercise 4
Give context-free grammars for the following three languages defined over X = {a,b}.

1. Ly = {a®P' | i € N},

Answer:

e S — aaaSh | e

2. Ls = {a™b" | Ym,n such thatm > n > 0},

Answer:

e S—aSb|aS|¢

3. L = {u € ¥* | the number of a in u is equal to the number of b in u}.

Answer:

e S — aSbS | bSaS | ¢

Beware that the grammar “S — aSb | bSa

¢” would be wrong since it cannot produce abba.

